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Abstract: Healthcare professionals face an ongoing challenge in managing both acute and chronic
wounds, given the potential impact on patients’ quality of life and the limited availability of expensive
treatment options. Hydrogel wound dressings offer a promising solution for effective wound care
due to their affordability, ease of use, and ability to incorporate bioactive substances that enhance
the wound healing process. Our study aimed to develop and evaluate hybrid hydrogel membranes
enriched with bioactive components such as collagen and hyaluronic acid. We utilized both natural
and synthetic polymers and employed a scalable, non-toxic, and environmentally friendly production
process. We conducted extensive testing, including an in vitro assessment of moisture content,
moisture uptake, swelling rate, gel fraction, biodegradation, water vapor transmission rate, protein
denaturation, and protein adsorption. We evaluated the biocompatibility of the hydrogel membranes
through cellular assays and performed instrumental tests using scanning electron microscopy and
rheological analysis. Our findings demonstrate that the biohybrid hydrogel membranes exhibit
cumulative properties with a favorable swelling ratio, optimal permeation properties, and good
biocompatibility, all achieved with minimal concentrations of bioactive agents.

Keywords: biohybrid; hydrogel; wound; healing; dressing; bioactive; collagen; hyaluronan

1. Introduction

With a growing population and increased life expectancy, it is crucial for the healthcare
system to adapt to the complex medical needs of patients, while the industry must provide
accessible and cost-effective solutions. Recent research conducted in 2021 confirmed the
significant impact of chronic wounds on patients’ quality of life [1]. Additionally, an analy-
sis of Medicare data highlighted that approximately 2.5% of the U.S. population suffers
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from chronic wounds [2]. As the global population ages, diseases that can complicate
with chronic wounds, such as diabetes or venous insufficiency, become more prevalent.
Consequently, there is an increasing demand for wound management resources that are
affordable, user-friendly, and effective. Despite significant advancements in wound man-
agement resources, including the highly sought-after “smart” dressings, there remains a
significant gap between research findings and the availability of commercial products. This
gap arises from several factors, such as the limited scalability of prototypes, the substantial
costs associated with mass production or restricted access to innovative technologies in
underdeveloped regions. Additionally, the high expenses related to regulatory affairs
pose significant barriers to the entry of new products into the market [3]. In order to
develop an effective and customized treatment plan, healthcare professionals need to
integrate information about the patient, specific wound characteristics, and the proper-
ties of the dressing being considered. This process often demands significant time and
resources, leading healthcare workers to often rely on traditional treatment strategies [4,5].
In the 1960s, the modern world rediscovered through the work of Winter [6,7], Hinman
and Maibach [8] that wounds tend to heal better in a moist environment and the use of
bandages gained widespread popularity. Since then, significant progress in the fields of
material science, biotechnology, and medicine have led to notable advancements in the
design and therapeutic efficacy of wound dressings. Today there are several materials that
are popular among those used in wound dressing production such as natural and syn-
thetic polymers. Natural polymers (biopolymers) such as proteins or polysaccharides have
the great advantage of high biocompatibility, biodegradability and bioactivity although
they also possess some disadvantages such as low mechanical strength, batch-to-batch
variations or the need for further purification. Synthetic polymers offer advantages such
as improved stability, higher reproducibility, and customizable properties, but they may
also have disadvantages including poor biocompatibility and limited bioactivity [9–12].
Alginate (Alg), a highly versatile anionic hydrophilic natural polysaccharide primarily ob-
tained from brown algae (phylum Ochrophyta, class Phaeophyceae), is composed of repeating
mannuronic acid (M) and glucuronic acid (G) units [13–15]. Alginate extract is found as a
sodium or calcium salt and contains numerous hydroxyl and carboxyl functional groups,
enabling the formation of intramolecular hydrogen bonds [14,16–19]. Depending on the
processing method, it can be produced as foams [20,21], sponges [22,23], hydrogels [24–26],
films [27–29], nanofibers [30–32], or nanoparticles [33–35]. Alginate can be crosslinked via
physical or chemical methods [14]. It can form hydrogels through ionic crosslinking or
processing in an acidic environment with the formation of hydrogen bonds between its
chains [26,36,37]. Alginate is biocompatible and biodegradable, non-toxic and non-irritant
substance, has immunomodulatory and hemostatic effects and, thanks to its functional
groups, has an impressive ability to absorb liquids [38,39]. During the processing stage,
alginate can be combined with other natural or synthetic polymers such as hyaluronic
acid [40], gelatin [41], or polyvinyl alcohol [41,42]. Polyvinyl alcohol (PVA), a hydrophilic
synthetic polymer, is traditionally derived from the hydrolysis of polyvinyl acetate and is
characterized by an abundance of hydroxyl groups that facilitate the formation of hydrogen
bonds [43]. Products made from polyvinyl alcohol can be in the form of hydrogels [44],
nanofibers, foams [45] or hydrocolloids [46]. Chemical crosslinking methods of polyvinyl
alcohol use irradiation, radical polymerization, or crosslinking agents while physical meth-
ods use freeze–thaw cycles, irradiation or electrospinning [44,47–51]. PVA can be tailored or
combined with other natural and/or synthetic polymers which influence the stiffness [52],
biocompatibility [53] or microstructure [54] of the final product. Polyvinyl alcohol dressings
are known for their transparency, semipermeability, strong mechanical resistance, and mois-
ture retention abilities [43,44,55,56]. Collagen (COL) is a protein formed from amino acids
such as hydroxyproline, glycine or proline that form polypeptide chains. Collagen fibers
can be crosslinked via physical, chemical or biological methods [57] obtaining products
in the form of sponges, fibers, films or nanofibers. Collagen is usually combined with
other types of natural or synthetic polymers [58–62]. Collagen is naturally found at the



Gels 2023, 9, 476 3 of 27

tissue level in the extracellular space and gives mechanical resistance and elasticity to
the skin while its fibers allow cell recruitment, attachment, proliferation and migration.
When incorporated in wound dressings, collagen can promote the healing process [63–66].
Hyaluronic acid (HA) is a glycosaminoglycan consisting of repeating disaccharide units
of β-D-glucuronic acid and N-acetyl-D-glucosamine, linked by glycosidic bonds, and can
be obtained from animal or microbial sources [67–69]. The highly hydrophilic character is
due to the abundant hydroxyl and carboxyl groups in its structure [69]. Hyaluronic acid
dressings are available in various formats, including creams, sponges, films, hydrogels,
and nanofibers. Free radical reactions, esterification, casting or electrospinning are some of
the methods used to produce dressings that contain hyaluronic acid [70–76]. Hyaluronic
acid is an essential part of the extracellular space, along with collagen. Thus, it is biocom-
patible, biodegradable and can be easily modified due to the presence of hydroxyl and
carboxyl groups [71,73]. During the healing process, hyaluronic acid plays a role in various
important aspects such as hemostasis, cell migration and proliferation, collagen deposition,
angiogenesis, and re-epithelialization. It maintains a moist, optimal healing environment
and has a supporting role for the cells involved in healing. The disadvantages of this
biopolymer are its low mechanical strength and low stability, with rapid degradation [71].

An ideal wound dressing should incorporate a range of qualities, including the promo-
tion of healing, biocompatibility, biodegradability, suitable mechanical properties, adapt-
ability, moisture variations, semipermeability, conformity to body contours, ease of use,
and affordability [77]. Due to the absence of a single substance possessing all the necessary
characteristics for an ideal wound dressing, a combination of multiple substances may hold
the key to developing highly performing dressings [10,78]. The formulation development
and substance selection are dependent on specific requirements and desired properties. Our
main goal is to explore the properties of a hybrid hydrogel membrane matrix made of PVA
and alginate obtained through a scalable, non-toxic, eco-friendly method that incorporates
bioactive substances such as collagen and hyaluronic acid for wound dressing applications
in order to discover the most suitable formulation.

2. Results and Discussion
2.1. Formulation Optimization of Hydrogel Membranes

To ascertain the most performant formulation that could act as a matrix for integrat-
ing bioactive additives, we conducted an initial evaluation of seven formulations using
alginate (Alg) and polyvinyl alcohol (PVA). We evaluated hydrogel membranes made of
biopolymer (BP40 and BP50), synthetic polymer (SP25 and SP15), or a combination of both
(hybrid hydrogel membranes—H1, H2and H3) macroscopically and via in vitro studies
for their swelling index, degradation rate and gel fraction. As presented in Figure 1A,
biopolymer hydrogel membranes showed a high swelling ratio (266.44 ± 12.82% at 3 h
for sample BP50), however, the formed network was quickly destructured. In contrast,
synthetic hydrogel membranes showed great stability at 48 h yet their swelling ratio did
not exceed 67.88 ± 3.67%, especially for sample SP25 at 30 min. Remarkably, formulations
BP40 and BP50 appeared to perform slightly better with higher gel fractions (Figure 1B)
and lower degradation rates (Figure 1C) compared to SP25 and SP15. This unexpected
observation contradicts the prevailing trend in the literature, which generally postulates
that hydrogel membranes based on synthetic polymers perform superiorly to those based
on biopolymers [79,80]. We presume that factors such as polymer molecular weight and
concentration, the inclusion of glycerol, or the crosslinking method might account for
the unique behavior of the hydrogel membranes obtained in this study. As depicted in
Figure 1, the hybrid hydrogel membranes demonstrated cumulative properties consistent
with those in previous literature reports [81,82]. Notably, formulation H1 demonstrated
excellent swelling abilities, the highest gel fraction value and an acceptable degradation
rate. These results are potentially attributed to the capability of Alg to crosslink through
dual mechanisms: ionic interactions and freeze–thaw cycles [83,84]. This dual crosslinking
approach may have facilitated the formation of a greater number of crosslinking sites in the
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hybrid hydrogel membrane, resulting in a denser network with a higher gel fraction and
increased stability [80]. Interestingly, most researchers observe a decline in the gel fraction
when combining biopolymers at increasing proportions with synthetic polymers. [79,85].
Consistently with the earlier results of this study, formulation H3 showed notable swelling
ability but was quickly destructured after only 3 h. Similarly, sample H2 showed high
stability but a diminished swelling capacity, illustrating the influence of the polymer ratios
on the properties of the hydrogels.
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Figure 1. Initial evaluation of hydrogel formulations showing cumulative properties of hybrid
hydrogel membranes, (A) swelling index, (B) gel fraction, and (C) hydrolytic degradation (dH2O,
pH 7.4). Swelling index assay displays high SD due to variable disintegration rates of hydrogel
samples during the study. Results are presented as mean ± S.D.

Table 1 provides information on the pH, thickness, weight variations, and visual
appearance of the hydrogel membranes. All formulations produced membranes that
displayed some degree of skin adhesion and a cooling, pleasant feeling when placed on
intact skin. While the synthetic polymer membranes exhibited distinct imprint patterns
of crystalline structures, likely a result of freeze–thaw treatment, the incorporation of
Alg eliminated this appearance in the case of hybrid hydrogel membranes. The hybrid
membranes had excellent visual appearance but lost some degree of transparency. They
were easy to manipulate and showed the best properties for the evaluated parameters, with
cumulative properties. Based on these initial results, we selected formulations H1 and H2
for further experimental design, which involved the incorporation of bioactive compounds
and an evaluation of various relevant parameters.
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Table 1. Macroscopic evaluation and pH values of hydrogel membranes with different ratios of
polymers, with and without bioactive compounds.

Formulation Weight
Variation

Thickness
Variation pH Homogeneity Surface Transparency Smell Skin Adhesion/

Cooling Effect

BP40 2.55 ± 0.20 1.72 ± 0.04 7.55 ± 0.07 Homogenous Smooth Transparent Specific Yes
BP50 2.44 ± 0.22 1.92 ± 0.04 7.55 ± 0.07 Homogenous Smooth Transparent Specific Yes
SP25 0.90 ± 0.02 0.82 ± 0.04 6.23 ± 0.04 Homogenous Crystalline

structures Transparent No smell Yes

SP15 0.88 ± 0.14 0.18 ± 0.04 6.25 ± 0.05 Homogenous Crystalline
structures Transparent No smell Yes

H1 1.31 ± 0.14 1.08 ± 0.11 7.38 ± 0.14 Homogenous Smooth Translucent Specific Yes
H2 2.12 ± 0.19 1.62 ± 0.16 7.00 ± 0.01 Homogenous Smooth Translucent Specific Yes
H3 1.92 ± 0.28 1.38 ± 0.11 7.37 ± 0.15 Homogenous Smooth Translucent Specific Yes

BH1.20 4.73 ± 0.63 1.98 ± 0.08 7.26 ± 0.04 Homogenous Smooth Translucent Specific Yes
BH1.40 5.69 ± 0.49 2.18 ± 0.15 7.28 ± 0.02 Homogenous Smooth Translucent Specific Yes
BH1.80 6.21 ± 0.63 2 ± 0.1 7.26 ± 0.04 Homogenous Smooth Translucent Specific Yes
BH2.20 5.51 ± 0.56 1.84 ± 0.11 7.16 ± 0.03 Homogenous Smooth Translucent Specific Yes
BH2.40 5.45 ± 0.67 2.24 ± 0.11 7.1 ± 0.01 Homogenous Smooth Translucent Specific Yes
BH2.80 4.94 ± 0.47 2.1 ± 0.07 7.13 ± 0.01 Homogenous Smooth Translucent Specific Yes

BP—biopolymer hydrogel membrane, SP—synthetic polymer hydrogel membrane, H—hybrid hydrogel mem-
brane, BH—biohybrid hydrogel membrane. Results are presented as average of triplicates ± S.D.

The incorporation of different concentrations of collagen (COL) and hyaluronic acid
(HA) had no observable effect on the appearance of the biohybrid hydrogel membranes
(Table 1). However, all optimized formulations required a longer time for solvent evapora-
tion compared to the initial formulations and appeared thicker and juicier. Formulation
BH2.80 had a high degree of hydration and a less stable structure, requiring gentle manipu-
lation. The pH values for the biohybrid hydrogel membranes were in the neutral spectrum,
ranging from 7.1 ± 0.01 to 7.28 ± 0.02. While most authors consider that a slightly acidic
environment is more suitable for healing certain types of wounds [86–88], a recent study
suggested that an alkaline environment could be more beneficial [89]. Therefore, the pH of
the biohybrid hydrogel membranes obtained in this study is considered suitable for wound
healing applications. Representative images of biohybrid hydrogel membranes enhanced
with different concentrations of bioactive compounds—collagen and hyaluronic acid—are
shown in Figure 2.
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2.2. In Vitro Evaluation
2.2.1. Moisture Content and Moisture Uptake

As depicted in Figure 3, the incorporation of bioactive substances, specifically COL
and HA, led to a substantial increase in the moisture content of the samples. The moisture
content of sample H1 increased from 5.17 ± 1.89% to a maximum of 66.53 ± 0.95% for
sample BH1.80, while for sample H2 it increased from 3.98 ± 1.51% to a maximum of
67.79 ± 1.45% for sample BH2.40. This significant increase in hydration can be attributed
to the hydrophilic nature of collagen and hyaluronic acid, which have the ability to absorb
and retain water molecules [67,68,90–94]. The moisture content of the samples was not
significantly affected by changes in hyaluronic acid concentration, indicating that the
lowest concentration tested may be sufficient for optimal outcomes. The observed increase
in moisture content is of particular significance in biomedical applications, where it can
influence the materials’ properties, biocompatibility, and ability to support cellular growth
and tissue regeneration [95,96].
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As presented in Figure 3, all samples had excellent moisture uptake capabilities
achieving satisfactory levels of hydration, after undergoing the drying process. Notably,
formulations BH1.40 and BH1.80 exhibited slightly higher values for moisture uptake
compared to those for moisture content, demonstrating their excellent ability to attract
water and maintain moisture. These results emphasize the great potential of the biohybrid
hydrogel membranes obtained in our study for diverse biomedical applications, particularly
in the realm of wound healing [96–98]. The moisture uptake ability of hydrogel membranes
used for wound healing applications is an essential parameter, as it is related to their
capacity to absorb wound exudate.

2.2.2. Swelling Ratio

The swelling ratio, which indicates the water retention capacity of the hydrogels, was
determined via a gravimetric assay. In order to mimic in vivo conditions, the samples
were tested immediately following the completion of the crosslinking procedure and not
fully dried prior to the analysis. The addition of COL and HA affected the swelling
behavior differently depending on the PVA/Alg ratio, as depicted in Figure 4. Among the
BH1 formulations, the sample with the lowest concentration of hyaluronic acid, BH1.20,
exhibited the highest swelling ratio with a maximum value at 6 h. When compared
to formulation H1, which also had the highest swelling ratio at 6 h (407.96 ± 2.34%),
formulation BH1.20 had a lower value (255.44 ± 11.54%), and this was expected as BH1
formulations had a higher moisture content. Formulation BH1.80 had a maximum swelling
rate at 3 h with a value of 208.40 ± 2.38%. The BH2.40 formulation exhibited a maximum
value of 144.25 ± 4.98% at 3 h, which was slightly higher than the value of 125.58 ± 1.30%
observed for sample H2. The increase was observed consistently from 30 min until the
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end of the 48 h assay. The swelling ratio of formulation BH2.80 was the lowest among that
of all formulations, never exceeding 50%. These results align with previously reported
data [67,99]. We assume that our findings are due to the way the bioactive substances
interacted with the polymer chains before crosslinking, but also their influence on the
behavior of the network formed after the crosslinking process was finished. COL and
HA could have interposed between the polymer chains, affecting both the quality and the
density of the bonds during the crosslinking process [100,101]. Following the crosslinking,
the presence of highly hydrophilic bioactive compounds may exert additional forces on
the resulting network by attracting and retaining additional amounts of water [67,93]. The
non-toxic, environmentally friendly dual crosslinking method utilized in this study lead
to the formation of non-covalent bonds and as a consequence the resulting network was
more fragile. These assumptions are supported by analyzing the swelling behavior of
the biohybrid hydrogel membranes compared to that of the hybrid hydrogel membranes.
Interestingly, the optimal swelling index was observed in the case of formulation H1, both
with and without the bioactive substances. This finding suggests that these formulations
may have the ideal composition for producing high-performance biohybrid hydrogel
membranes and that even discrete concentrations of bioactive substances may influence
hydrogel properties [102,103].
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Figure 4. Swelling ratio of biohybrid hydrogel membranes (BH) to that of hybrid hydrogel membranes
(H). Results are presented as mean ± S.D.

2.2.3. Biodegradation Study

The biodegradation of hydrogel membranes primarily occurs through the action of
enzymes that recognize and target specific regions within the polymer network formed
through crosslinking [104–106]. These enzymes facilitate the cleavage of bonds between
polymer chains, resulting in the structural breakdown of the network. Physiologically,
wound sites are abundant with enzymes such as collagenases, gelatinases, serine proteases,
and glycosidases which can accelerate the degradation of topically applied products. In an
in vivo setting, the enzymatic degradation rate of hydrogel membranes is influenced by
various factors, including enzyme concentration, exposure time, pH, temperature, compo-
sition, and the material properties. In order to understand the degradation behavior of the
biohybrid hydrogel membranes under circumstances that resemble in vivo conditions, we
performed a degradation assay with different aqueous solutions that contained enzymes
such as hyaluronidase (HAasa, 10 U/mL), collagenase (COLasa, 10 U/mL), and a mixture
of the two (HAasa + COLasa, 10 U/mL each), compared to that with distilled water (dH2O,
pH 7.4) and simulated wound fluid (SWF, pH 8.3). As expected, the addition of enzymes
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resulted in an elevated degradation rate of the samples, although the increase was not
substantial but rather discrete. The results of the degradation study illustrated in Figure 5
demonstrate that the hydrogel membranes exhibit a non-specific degradation behavior,
likely due to the hydrophilic nature of the formulations and the crosslinking method used,
which allows water molecules to easily penetrate the structure. The rate of degradation
primarily depends on the physical and chemical properties of the hydrogel, such as its
hydrophilicity, crosslink density, and porosity, rather than its interaction with specific
biological molecules. These findings suggest that the formulations may be suitable for
incorporating and releasing therapeutic agents in a controlled manner that is not influenced
by environmental factors, especially where quick delivery is required [107]. Additionally, it
indicates that if the hydrogel membrane is employed as a wound dressing, it can integrate
effectively with the surrounding tissue and be comfortably removed without causing harm
to the newly formed tissue [108,109]. However, it also implies that the structural integrity of
the hydrogel is relatively weak and that it could require frequent replacement, potentially
limiting its suitability for certain types of wounds or patients. According to the available
literature, the components used in the production of hydrogel membranes have been found
to be non-toxic and biocompatible. As a result, it is expected that the degradation products
would also exhibit non-toxic properties, based on the available data [66,110–115].
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Figure 5. In vitro biodegradation study for biohybrid hydrogel membranes (BH) compared to hybrid
hydrogel membranes (H) using distilled water (dH2O, pH 7.4), SWF (pH 8.3), HAasa (10 U/mL),
COLasa (10 U/mL) and mixture of HAasa + COLasa (10 U/mL each). Results are presented as
mean ± S.D.

2.2.4. Gel Fraction

The number of crosslinked molecules forming an insoluble gel fraction is reflected
by the gel content of a hydrogel, while the non-crosslinked portion of the hydrogel dis-
solves upon immersion in a solvent, leading to a reduction in the sample weight [116].
In addition to PVA crosslinking, freeze–thaw cycles have been demonstrated to pro-
mote the formation of intermolecular bonds in Alg [84,117,118], collagen [101,119] and
hyaluronic acid [100,120]. The biohybrid hydrogel membranes were found to exhibit
lower values for the gel fraction when compared to the corresponding hybrid hydro-
gel membranes, as expected from previous assays. The gel fraction was in the range of
39.75 ± 1.69–23.72 ± 1.11% for samples BH1 and BH2 indicating low crosslinking. The
results show that the variation of HA concentration had no influence on the gel content of
the analyzed samples, and we assume that COL may have been mainly responsible for this
effect. As depicted in Figure 6, BH1 samples have a slightly increased gel fraction. However,
among all the biohybrid hydrogel membranes, formulation BH1.20 has the highest value,
of 39.75 ± 1.69%.
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Figure 6. Gel fraction of biohybrid hydrogel membranes (BH) compared to that of hybrid hydrogel
membranes (H). Results are presented as mean ± S.D.

2.2.5. Water Vapor Transmission Rate

In this study, we evaluated the water vapor transmission rate (WVTR) at 24 and 48 h
using the gravimetric method while filter paper served as a control. At 24 h, the WVTR for
the biohybrid hydrogel membranes was in the range of 104.33 ± 3.06–125.56 ± 3.06 g/m2 h
and at 48 h between 106.99 ± 1.53–127.32 ± 2.65 g/m2 h. As it is shown in Figure 7, the
WVTR of all formulations remained almost identical at 48 h, so we presume the biohybrid
hydrogel membranes were stable and maintained their properties throughout the study.
While these results align with those in the previous literature, it is important to note that
there is no gold standard for WVTR and a wide range of values have been reported in
the literature [82,96,121–123]. Water vapor transmission rate (WVTR) is a critical parame-
ter for materials used in biomedical applications, particularly those intended to support
the dermo-epidermal healing process that need to display semipermeability properties.
This parameter indicates the ability of biohybrid hydrogel membranes containing bioac-
tive compounds to facilitate gas exchange between the wound bed and the atmosphere
while serving as a barrier against the infiltration of pathogens and preventing dehydra-
tion [124]. It is noteworthy that for intact and healthy skin, WVTR is typically in the range
of 200–300 g/m2 h, while for wounded skin it can increase by a factor of ten or more,
depending on the wound thickness [125,126].
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2.2.6. Protein Adsorption Study

In order to evaluate the protein adsorption of the biohybrid hydrogel membranes,
we implemented a modified protocol inspired by one in the existing literature [79,127].
Bovine serum albumin (BSA) was utilized as a model protein for this purpose, as it is
known for its versatility and presence in wound exudate [128–130]. Our experimental
findings (Figure 8) showed that the biohybrid hydrogel surface exhibited minimal protein
uptake. Interestingly, the results demonstrated that protein uptake was particularly low
in HA hydrogels. We presume that this finding can be attributed to the electrostatic
repulsion forces between BSA and the negatively charged HA, in pH 7 buffer solutions. The
experimental data also indicated a modest correlation between the concentration of HA and
BSA uptake. It is well-known that a material used as a wound dressing that displays low
protein adsorption has significant implications such as reduced inflammation at the wound
site. The low protein adsorption promotes a moist wound environment, facilitating better
interaction between the wound bed and the dressing, thereby enhancing wound healing.
Additionally, the dressing requires fewer changes, minimizing disruption to the wound bed
and improving patient comfort. The low protein adsorption of hydrogel membranes also
helps prevent the accumulation of proteins that can promote bacterial growth, reducing the
risk of secondary infections. Furthermore, it enhances patient comfort by reducing dressing
adherence and pain during removal. [131–133].
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Figure 8. Protein adsorption study at 24 h. The amount of BSA that remained after removing the
hydrogels was assayed spectrophotometrically using the Bradford method. The protein uptake was
evaluated indirectly, taking into account the initial and equilibrium concentrations of BSA in the
solution, as well as dimensions as the samples. Results are presented as mean ± S.D.

2.2.7. Protein Denaturation Study

The hydrogels were assessed for their anti-inflammatory properties using the protein
denaturation inhibition assay, using BSA as a model protein and aspirin as a control.
According to our results, the BH1.20 formulation exhibited the most significant inhibition
of protein denaturation, with a value of 59.26 ± 0.86% in comparison to aspirin. We presume
that this effect is primarily attributed to the presence of COL and HA in the formulation
(Figure 9). Additionally, we observed that the inhibitory action had a tendency to be dose-
dependent for hyaluronic acid, although higher concentrations led to a slight attenuation of
the positive effect. This attenuation could be due to electrostatic repulsion forces between
the negatively charged BSA and hyaluronic acid at pH 7. Comparing the BH1 and BH2
formulations, BH1 exhibited a superior protein inhibition rate, which can be correlated
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with the higher concentration of Alg in its hydrogel matrix. The methodology of this assay
was adapted from the recent literature [134–136]. BSA is known to absorb strongly in the
UV region due to its aromatic amino acids, such as tryptophan and tyrosine. Its UV-Vis
spectrum exhibits two absorbance peaks at 280 nm (due to tryptophan absorption) and
220 nm (due to other aromatic amino acids) [137]. The specific shape and intensity of the
spectrum can differ based on various factors, including the concentration of the protein,
the pH level of the solution, and the existence of other molecules that interact with the
protein. We evaluated the activity of BSA in PBS (pH = 7) on the entire spectrum, and
the most significant variations appeared in the UV-Vis spectrum at 280 nm, so our further
determinations were conducted at 280 nm.
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Figure 9. Inhibition of protein denaturation. Different hydrogel formulations were incubated in a
BSA 5% solution at 37 ◦C, 15 min, then 70 ◦C for 70 min and cooled down to 25 ◦C. The samples were
removed and the absorbance of the remaining BSA solution was spectrophotometrically assayed at
278 nm, using an aspirin solution (0.5 mg/mL) as a control. Results are presented as mean ± S.D.

2.3. LDH Assay

The assessment of in vitro cytotoxicity is crucial in determining the biocompatibility
of biomaterials, and one commonly used method is the LDH assay (lactate dehydrogenase
assay). LDH is a stable enzyme present in the cytosol of cells, and its release into the
surrounding medium indicates cellular membrane permeabilization induced by chemicals
or factors that affect cellular integrity [138,139]. In our study, the results obtained from the
LDH assay revealed that the presence of collagen and hyaluronic acid had distinct effects
on the response of human fibroblasts to the biohybrid hydrogel membranes (Figure 10).
Specifically, cells treated with sample H1 showed a lower release of LDH compared to cells
treated with sample H2. The introduction of bioactive compounds resulted in a decrease in
LDH release for samples H2.20, H2.40, and H2.80 compared to sample H2. Surprisingly,
the introduction of bioactive agents led to an increase in LDH release for cells treated with
samples H1.20, H1.40, and H1.80. The highest LDH value recorded was for sample H1.40,
reaching 29.24%. Notably, despite sample H1 demonstrating better overall performance
compared to sample H2, the addition of COL and HA had a contrasting effect. Of all the
tested formulations, H1 and BH1.80 showed the best results.



Gels 2023, 9, 476 12 of 27Gels 2023, 9, x FOR PEER REVIEW 14 of 29 
 

 

 

Figure 10. Cytotoxicity determined via LDH assay. Normal human fibroblasts were incubated with 

mentioned gel formulations. LDH release was measured spectrophotometrically in the cell 

supernatant. Readings were normalized to background for each formulation and expressed as ratio 

to normalized lysis control. Results are presented as mean ± S.D. 

Several factors may account for these findings, including potential variations in the 

purity or molecular weight of the natural components employed in the study. 

Additionally, physical interactions due to the surface morphology and mechanical 

properties of the hydrogels could play a role, along with possible concentration-

dependent effects. The specialized literature reported minimal cytotoxicity for the 

components used in the study. Charron et al. (2020) demonstrated that the number of 

freeze–thaw cycles (F-H cycles) did not have an influence on the cytotoxicity of gels 

incorporating polyvinyl alcohol (PVA) and gelatin [140]. Schulze et al. (2016) reported that 

the addition of PVA lowered the cytotoxicity of the hydrogel, due to its ability to 

incorporate and control nanoparticle release [141] while Song et al. (2012) demonstrated 

that adding HA to a PVA matrix positively influenced cellular growth, whereas adding 

collagen had minimal impact [142]. Another study demonstrated that collagen had no 

cytotoxic effect on human dermal fibroblasts for both non-crosslinked and crosslinked 

samples of hydrogel [143]. Interestingly, one study showed that an increase in collagen 

concentration (from 1% to 10%) leads to a slight increase in cytotoxicity levels [144]. In a 

study conducted by Travan et al. (2016) using human dermal fibroblasts, it was observed 

that there was no statistically significant difference in LDH release between untreated cells 

and cells treated with samples containing alginate and hyaluronic acid [145]. Another 

study showed that the addition of high concentrations of a hydrogel based on 

methylcellulose and hyaluronic acid lead to increased LDH release (up to 43%) [146]. 

Rubert et al. (2012) evaluated the cytotoxicity of alginate and hyaluronic acid hydrogels 

on MC3T3-E1 cells. The study found no toxicity in any of the tested hydrogels. Notably, 

comparing 1% hyaluronic acid hydrogels to 1% alginate hydrogels revealed a significant 

increase in cell viability [147]. Another study showed that samples containing gelatin and 

hyaluronic acid showed a greater effect on cell viability compared to samples containing 

collagen alone on mouse fibroblasts [148] while other authors reported that the addition 

of HA has a positive effect on cell viability and causes a decrease in LDH release [149,150]. 

  

0

20

40

60

80

100

120

lysis control H1 BH1.20 BH1.40 BH1.80 H2 BH2.20 BH2.40 BH2.80

%
 o

f 
ly

si
s

Formulation

Figure 10. Cytotoxicity determined via LDH assay. Normal human fibroblasts were incubated
with mentioned gel formulations. LDH release was measured spectrophotometrically in the cell
supernatant. Readings were normalized to background for each formulation and expressed as ratio
to normalized lysis control. Results are presented as mean ± S.D.

Several factors may account for these findings, including potential variations in the
purity or molecular weight of the natural components employed in the study. Additionally,
physical interactions due to the surface morphology and mechanical properties of the
hydrogels could play a role, along with possible concentration-dependent effects. The
specialized literature reported minimal cytotoxicity for the components used in the study.
Charron et al. (2020) demonstrated that the number of freeze–thaw cycles (F-H cycles) did
not have an influence on the cytotoxicity of gels incorporating polyvinyl alcohol (PVA)
and gelatin [140]. Schulze et al. (2016) reported that the addition of PVA lowered the
cytotoxicity of the hydrogel, due to its ability to incorporate and control nanoparticle re-
lease [141] while Song et al. (2012) demonstrated that adding HA to a PVA matrix positively
influenced cellular growth, whereas adding collagen had minimal impact [142]. Another
study demonstrated that collagen had no cytotoxic effect on human dermal fibroblasts for
both non-crosslinked and crosslinked samples of hydrogel [143]. Interestingly, one study
showed that an increase in collagen concentration (from 1% to 10%) leads to a slight increase
in cytotoxicity levels [144]. In a study conducted by Travan et al. (2016) using human
dermal fibroblasts, it was observed that there was no statistically significant difference in
LDH release between untreated cells and cells treated with samples containing alginate and
hyaluronic acid [145]. Another study showed that the addition of high concentrations of a
hydrogel based on methylcellulose and hyaluronic acid lead to increased LDH release (up
to 43%) [146]. Rubert et al. (2012) evaluated the cytotoxicity of alginate and hyaluronic acid
hydrogels on MC3T3-E1 cells. The study found no toxicity in any of the tested hydrogels.
Notably, comparing 1% hyaluronic acid hydrogels to 1% alginate hydrogels revealed a
significant increase in cell viability [147]. Another study showed that samples containing
gelatin and hyaluronic acid showed a greater effect on cell viability compared to samples
containing collagen alone on mouse fibroblasts [148] while other authors reported that
the addition of HA has a positive effect on cell viability and causes a decrease in LDH
release [149,150].
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2.4. Instrumental Evaluation
2.4.1. Morphological Evaluation

The scanning electron microscope (SEM) images (Figures 11 and 12) revealed that hy-
brid hydrogel membranes exhibit a predominantly smooth surface, interspersed with pores
of varying dimensions that can also be observed on the cross-section. These pores are rela-
tively uniformly distributed across both the surface and the cross-section of the membranes.
On closer inspection, there were minimal presence of aggregates or crystals, and negligible
ripples, lumps, or gaps on the surface of the hydrogels. This suggests a homogeneous
blending of the two constituent polymers. Compared to sample H2, sample H1 presented a
less porous surface. Upon the incorporation of bioactive substances—COL and HA—an
increase in surface roughness was observed for the biohybrid hydrogel membranes. This
change could potentially be attributed to the infiltration of these bioactive substances into
the free spaces of the established network as suggested by previous assays. Interestingly,
the alterations in pore size and distribution were less noticeable in the hydrogel samples
containing the highest concentration of HA. For sample H1.80, the SEM images revealed an
increase in the number of pores, implying a more pronounced effect of the variance of HA
concentration on this particular hydrogel formulation. While the variation in the PVA/Alg
ratio for the formulations investigated in this study did not significantly affect the surface
morphology, pore size, or distribution, the general appearance of the hydrogel membranes
was nonetheless consistent with that in the previously published literature [93,151,152].
This could indicate that factors other than the PVA/Alg ratio might influence membrane
characteristics such as the addition of glycerol or the number of freeze–thaw cycles.
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2.4.2. Rheological Assay

Mechanical characteristics are crucial in the design of new biomaterials, including
wound dressings, as they must conform to body contours, provide mechanical protection,
and maintain their inherent properties during their application period. Key parameters
including Young’s modulus, elongation at break, and tensile strength are essential in
assessing dressing performance and clinical indications. We evaluated the rheological
characteristics of samples BH1.80 and H1, identified as potential optimal wound dressing
formulations based on previous assays. Our focus was on rheological properties influenced
by moisture content, aiming for a versatile material for both dry and exudative wounds.
The addition of COL and HA was found to influence the behavior of the hydrogel mem-
branes, aligning with findings from previous tests. Our analysis revealed that within a
moisture content range of 30–40%, the Young’s modulus of sample BH1.80 exceeded that
of H1 (Figure 13A). Above a 45% moisture content, this difference diminished, yet BH1.80
consistently maintained a higher modulus of elasticity. As moisture content increased, the
elastic modulus declined for both samples, a predictable outcome given that hydrogels
soften and gain flexibility upon water absorption. Young’s modulus of healthy human skin
typically lies between 0.01–140 MPa, with variations depending on factors such as body
location, the orientation of Langer’s lines, age, individual distinctions, and the specific
testing method used [153–160]. Elongation at break (Figure 13B) showed that sample H1
had a better performance but again our results revealed that this behavior is dependent on
the moisture levels of the samples. Between 40–55%, the difference between the samples
was more evident. A moisture content over 55% lead to a reduction in the difference of the
elongation at break for the two samples. The elongation capacity of human skin can reach
up to 80% of its initial length, while it exhibits a breaking stress of 15 Mpa [161,162]. Our
results fall within a desirable range of values of biomaterials that can be used as wound
dressings [79,163]. Tensile strength (Figure 13C) for sample BH1.80 exceeded that of sample
H1 at moisture levels below 45%. When moisture content ranged from 45–55%, H1 mani-
fested superior tensile strength. Beyond 55% moisture, the difference in tensile strength
between the two samples became minimal. The tensile strength values for human skin
reported in the literature lie within a broad range [162–164]. The observed tensile strength
in our study was below the expected level [85,165–169]. However, it is worth mentioning
that our primary goal was not to design a product with exceptional mechanical strength. In
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order to address this finding, we suggest that the obtained hydrogel could be placed on
an additional support, usually made of polyurethane [70] if the intended treatment area is
subjected to high mechanical stress (such as in the sacral area). In the context of wound
dressing applications, our findings indicate that the obtained hydrogel membranes are soft
and flexible. These features hold promise for providing increased patient comfort during
both application and removal. Furthermore, these hydrogels demonstrate the ability to
adapt to a wide range of humidity levels. Additionally, their mechanical properties align
with those commonly found in human skin, although variations may occur depending on
moisture content and composition.

Figure 13. Mechanical properties of sample H1 compared to sample BH1.80 depending on moisture
content. (A): Young’s modulus (N/mm2), (B): elongation at break (%), (C): tensile strength (N/mm2).
For each formulation at least eight samples were analyzed in triplicate. Results are presented as
mean ± S.D.

3. Conclusions

The objective of this study was to produce and to explore the influence of polymer
ratio and the addition of bioactive agents on the properties of biohybrid hydrogel mem-
branes that can be used as wound dressings. Through a comprehensive analysis using
various in vitro and instrumental methods, the study revealed important insights into the
performance of these membranes. The hybrid hydrogel membranes displayed cumulative
properties, including improved stability and an enhanced swelling ratio. The PVA/Alg
ratio had a notable influence especially on the swelling ratio and gel fraction.
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The addition of bioactive substances, specifically collagen (COL) and hyaluronic
acid (HA), had a significant influence on the performance of the biohybrid hydrogel
membranes compared to the hybrid hydrogel membranes. The presence of COL and HA
had an impact on the crosslinking process and influenced various characteristics of the
obtained membranes, including moisture content, gel fraction, swelling rate, morphological
appearance, and mechanical properties.

Interestingly, variations in hyaluronic acid concentrations did not significantly affect
the overall properties of the biohybrid hydrogel membranes.

The introduction of bioactive agents had varying effects on LDH release during cell
studies. Cells treated with BH2 formulations (a higher PVA concentration) demonstrated
lower LDH release, indicating a decrease in cytotoxicity. On the other hand, cells treated
with BH1 formulations (a higher alginate concentration) showed an increase in LDH release.
Further research is required to comprehensively understand the underlying mechanisms
and fine-tune the concentrations of bioactive agents to enhance biocompatibility.

4. Materials and Methods
4.1. Materials

Polyvinyl alcohol (molecular weight, 89–98,000; 99% hydrolyzed), bovine serum albu-
min (BSA, fraction V, 96%), collagenase (Clostridium histolyticum, type IA, ≥125 CDU/mg),
CaCl2, and hyaluronidase (1000 U) were purchased from Sigma. Sodium alginate, glyc-
erol (anhydrous, 99.0–101%), sodium hyaluronate (≥98.0%), and collagen (rat tail) were
purchased from VWR Chemicals, Honeywell, MedChemExpress and Roche, respectively.

4.2. Hydrogel Membrane Production

The biopolymer hydrogel membranes (BP40 and BP50) were prepared via ionic
crosslinking, using the solvent casting method. Briefly, the proper amounts (Table 2)
from stock solutions (sodium alginate 5% and CaCl2 1%) were dispersed in glycerol. Warm
distilled water (68 ◦C) was added to the homogeneous mixture, and the ensuing solution
was homogenized at 1000–1500 rpm for 15 min. The solution was poured onto a Petri dish
and left at 28 ◦C for 48 h. The obtained hydrogel membranes were sterilized by UV light
for 15 min and kept at room temperature until further investigations.

Table 2. Formulation of hydrogel membranes.

Formulation PVA
(mL)

Alginate
(mL) CaCl2

Glycerol
(mL)

Collagen
(mL)

Hyaluronic
Acid (mL)

BP40 - 40 10 15.87 - -
BP50 - 50 10 15.87 - -
SP25 25 - - 3.96 - -
SP15 15 - - 3.96 - -
H1 14.3 22.8 7.5 6.8 - -
H2 22.8 11.4 7.5 6.8 - -
H3 5.7 45.6 7.5 6.8 - -

BH1.20 14.3 22.8 7.5 6.8 1.65 0.020
BH1.40 14.3 22.8 7.5 6.8 1.65 0.040
BH1.80 14.3 22.8 7.5 6.8 1.65 0.080
BH2.20 22.8 11.4 7.5 6.8 1.65 0.020
BH2.40 22.8 11.4 7.5 6.8 1.65 0.040
BH2.80 22.8 11.4 7.5 6.8 1.65 0.080

Stock solutions: PVA (10%), sodium alginate (5%), CaCl2 (1%), glycerol 99.9%, density = 1.26 g/cm3, collagen
(0.35%), and hyaluronic acid (0.25%). All formulations were prepared by mixing the stock solutions in the proper
amounts presented in Table 2. Final volume = 100 mL. The “-“ sign is used to indicate the absence of a particular
substance or component in a given formulation.

The synthetic polymer hydrogel membranes (SP25 and SP15) were prepared using
the freezing–thawing (F–T) method reported by Peppas and Stauffer, 1991. The proper
amounts of hot PVA solution (10%) and glycerol (Table 2) were mixed with distilled water
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and homogenized by stirring on a hot plate at 400–600 rpm, for 10–15 min. The solution
was poured onto a Petri dish, cooled down at room temperature, and placed at −20 ◦C, for
20 h. Three F–T cycles (2 h/cycle) were applied to the samples. The hydrogel membranes
were sterilized by UV light for 15 min and kept at room temperature.

The hybrid hydrogel membranes (H1, H2, and H3) were prepared by stirring mixtures
(according to Table 2) of sodium alginate solution (5%) with PVA solution (10%) prepared
in distilled water as described above, at 1500–1800 rpm until the solution became homo-
geneous. An optimal amount of solution (aprox. 15 g) was transferred onto a Petri dish
with a diameter of 5 cm ensuring the uniformity and leveling of the solution. The solution
was dried at 28 ◦C for 48 h, and then it was placed at −20 ◦C for 20 h. Subsequently, 3 F–T
cycles were carried out (2 h/cycle) to ensure crosslinking. The hydrogel membranes were
sterilized by UV light, for 15 min and kept at room temperature until further investigations.
For the production of the biohybrid hydrogel membranes (BH1.20, BH1.40, BH1.80, BH2.20,
BH2.40, and BH2.80) enriched with bioactive compounds COL and HA the polymer so-
lutions were obtained as described above, with the mention that in the final solution the
required amounts of COL and HA stock solutions were added, as described in Table 2. The
solution was stirred until complete homogenization. The obtained hydrogel membranes
were sterilized by UV light, for 15 min and kept at 4 ◦C until further investigations.

Stock solutions of collagen (0.35%) and hyaluronic acid (0.25%) were prepared in
distilled water.

4.3. In Vitro Evaluation of Hydrogel Membranes
4.3.1. Macroscopic Evaluation and pH

The thickness variations were achieved using a digital micrometer (Mitutoyo, Japan)
and were evaluated as a dependent variable to optimize the hydrogel formulation. We
measured five different points (center and edges). For the weight variation test, the
hydrogels were weighed individually. The pH of the hydrogel formulation was determined
using a digital pH meter (Thermo Fisher Orion Star A211).

4.3.2. Moisture Content and Moisture Uptake

To determine the moisture content, at the end of the crosslinking process, the samples
were cut in the form of a circle with a diameter of 2 cm and weighed before (Wi) and after
drying (Wd) [98]. The samples were dried for 24–48 h at 55 ◦C, until their weight was
constant. The moisture content was determined using the following formula:

Moisture Content (%) = (Wi − Wd)/Wi ×100 (1)

For moisture uptake determination, the crosslinked hydrogel membranes were cut
into circles with a diameter of 2 cm and left for 24–48 h in an oven at 55 ◦C, until their
weight became constant (W1) [96]. The samples were then placed in a chamber with a
relative humidity of 75% at a temperature of 24 ◦C for 72 h. Once the allotted time expired,
the samples were carefully removed, wiped of excess water with filter paper and weighed
(W2). The moisture uptake ability of the hydrogel membranes was determined using the
formula described below:

Moisture Uptake (%) = (W2 − W1)/W1 (2)

4.3.3. Swelling Ratio

The swelling ratio was evaluated in vitro via the gravimetric method [24,170] using
simulated wound fluid (SWF) at pH 8.3, and at 37 ◦C, in an orbital incubator (50 rpm). The
simulated wound fluid was prepared in accordance with the method of Arafa et al. [171].
The hydrogel membranes were cut into 2 cm diameter circles and then dried for 48 h at
55 ◦C until their weight became constant (Wi). The samples were immersed in excess
SWF and at predetermined time intervals (5, 30 min and 1, 2, 3, 6, 24, and 48 h) they were
removed and weighed (Wf). The excess liquid on the swollen samples was gently removed
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with filter paper before each determination. The consumed liquid was periodically replaced
to ensure the complete immersion of the samples during the course of the test. The swelling
rate was calculated using the following formula:

Swelling ratio (%) = (Wf − Wi)/Wi × 100 (3)

4.3.4. Biodegradation Study

The biodegradation of the hydrogel membranes was studied in vitro using different
solutions—dH2O (pH 7.4), SWF (pH 8.3), hyaluronidase solution (HAasa, 10 U/mL),
collagenase solution (COLasa, 10 U/mL) and a mixed solution of HAasa and COLasa
(HAasa + COLasa, 10 U/mL each)—using an adapted protocol previously described in
the literature [172,173]. The enzyme solutions were prepared in simulated wound fluid.
The hydrogel membranes were cut into 2 cm diameter circles and then dried for 24–48 h at
55 ◦C, until their weight became constant (W0). Afterwards, the samples were immersed in
the excess of the prepared solutions for 4 h. Once the time had elapsed, the samples were
removed from the liquid and the excess was carefully removed with filter paper. Then, they
were dried for 24 h at 55 ◦C and reweighed (Wf). The same samples were then immersed
again in the excess of fresh solutions for 20 h, repeating the protocol. The biodegradation
rate was calculated using the following formula:

Degradation Rate (%) = (W0 − Wf)/W0 × 100 (4)

4.3.5. Gel Fraction

The gel fraction of the hydrogel membranes was evaluated in vitro via the gravimetric
method [82,174] using distilled water at room temperature. The hydrogel membranes were
cut into 2 cm diameter circles and then dried for 48 h at 55 ◦C until their weight became
constant (Wi). The samples were then immersed in excess distilled water for 24 h and after
that they were dried again for 24 h at 55 ◦C and the final weight was recorded (Wf). The
gel fraction was calculated using the following formula:

Gel Fraction (%) = (Wf − Wi) × 100 (5)

4.3.6. Water Vapor Transmission Rate

The water vapor transmission rate of the biohybrid hydrogel membranes was assessed
using a modified method described by Razzak et al. [175]. To measure WVTR, an Eppendorf
tube containing 2 mL of distilled water was utilized, with the hydrogel sample serving
as a lid, sealed around the edges. The tube had a diameter of 10 mm, while the sample’s
approximate diameter was 12 mm. The weight of each tube was recorded initially (Wi).
The tubes were placed in an oven set at 35 ◦C with a fan speed of 60%. If condensation
formed on the membrane surface, it was removed using filter paper. At designated time
intervals of 24 and 48 h, the tubes were taken out from the oven and their weights (Wf)
were measured. The control was established using Whatman filter paper no. 12. The WVTR
was calculated using the following formula:

Water Vapor Transmission Rate = [(Wi − Wt)/A × t] × 106 g/m2 h (6)

where A = area of tube opening, and t = time.

4.3.7. Protein Adsorbtion Study

The evaluation of protein adsorption of the hydrogel membranes was assayed using
BSA as the protein model. The evaluation protocol employed in this study was adapted
from the existing literature [79,127]. The protein was dissolved (5% w/v) in phosphate-
buffered solutions (PBS, pH 7). Batch experiments were carried out by adding 5 mL of the
protein solutions to the hydrogel samples (which had a diameter of 1 cm and thickness of
1 mm). The samples were placed in an orbital shaker (200 rpm) at 37 ◦C, for 24 h. Aliquots
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of the solution were collected and initial and equilibrium protein concentrations were
assayed spectrophotometrically in a UH5300 Hitachi spectrophotometer (Japan) using
the Bradford reagent. The amount of protein adsorbed by the hydrogel membranes was
calculated using the following equation:

q = (C0 − Ce) × V/m (7)

where q (mg/g) is adsorption capacity; C0 and Ce (mg/L) are the initial and equilibrium
concentrations of protein in the solution, respectively; V (L) is the solution volume; and m
(g) is the hydrogel membrane mass.

4.3.8. Protein Denaturation Assay

To assess the anti-inflammatory properties of the hydrogels, we evaluated their ability
to inhibit protein denaturation. The methodology was adapted from the literature [134–136].
The hydrogel samples (with a diameter of 1 cm and thickness of 1 mm) were incubated in a
5 mL solution of 5% BSA in PBS (pH = 7.4) at 200 rpm, and at 37 ◦C, for 15 min. A solution
of 0.5 mg/mL aspirin in PBS was used as a positive control and the negative control was
made of BSA solution only. Following the incubation, the samples were subjected to heat
treatment at 70 ◦C for 5 min and then cooled down in an ice bath to reach a temperature
of 25 ◦C. The hydrogel samples were removed and the solution of BSA was evaluated at
278 nm, using a Hitachi spectrophotometer (Japan). For calculating the ability for protein
denaturation inhibition, the following formula was used:

Inhibition of denaturation (%) = (1 − At)/Ac × 100 (8)

where At represents the absorbance of tested samples and Ac represents the absorbance of
the control sample, at 278 nm.

4.4. LDH Assay

For the LDH assay [176], human normal fibroblasts (HS27—CRL-1634-ATCC) were
routinely grown in DMEM/F12, supplemented with 10% fetal bovine serum (Corning) in a
humidified atmosphere with 5% CO2 at 37 ◦C. Cytotoxicity was assessed via cellular LDH
release (CytoTox 96® Non-Radioactive Cytotoxicity Assay, Promega). In total, 10,000 cells
were seeded in triplicates overnight in 96-well plates and incubated the next day with
triplicates of the gel formulations. Two controls were included—a negative control (cell
culture medium only) and a positive control (addition of Cell Lysis Reagent 25x, G182B,
Promega, 30 min prior to LDH detection). Additional cell-free wells were incubated with
tested gels, for background subtraction. For the LDH analysis, 50 µL of the supernatant
was collected from each well and incubated with the assay reagent for 30 min, in the dark.
After the addition of the stop solution, absorbance was read at 490 nm with the microplate
reader Anthos Zenyth 3100. Cytotoxicity was assessed as a % of that of the lysis control
using the described formula:

Cytotoxicity = 100 × (Sample OD − Background OD)/(Average lysis control − Control background) (9)

4.5. Instrumental Assay
4.5.1. Morphological Evaluation

The morphological features of the biohybrid hydrogel membranes compared to those
of the hybrid hydrogel membranes were acquired using Nova NanoSEM 630 Scanning
Electron Microscope (FEI Company, Hillsboro, OR, USA) with an accelerating voltage
of 5 kx. For the SEM images, all samples were coat-sputtered with Au to ensure the
conductivity of the sample (60 s).
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4.5.2. Rheological Assay

The samples were cut into strips (0.5 cm × 4 cm) to analyze the mechanical properties
of obtained hydrogels using a protocol adapted from the literature [177,178]. The analyses
were performed using the universal testing machine Shimadzu EZ-test SX (100 N) (Kyoto,
Japan). Hydrogels were placed between the clamps with an initial separation of 25 mm,
and the cross-head speed was set at 10 mm/min. Young’s modulus, tensile strength, and
elongation at break were calculated and discussed based on the obtained results.
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