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Abstract: A suite of composite materials comprising carbon xerogel content and TiO2 was synthesised
via a modified sol–gel method. The textural, morphological, and optical properties of the composites
were extensively characterised and correlated with the observed adsorption and photodegradation
performances. The homogeneity and porous structure of the composites depended on the amount of
TiO2 deposited in the carbon xerogel. During polymerisation, Ti-O-C linkages were formed, which
favoured the adsorption and photocatalytic degradation of the target methylene blue dye. Adsorption
was deemed favourable, and most accurately fitted by the Sips model, exhibiting a maximum uptake
of 209 mg g−1 estimated for the sample containing 50% TiO2. However, the synergistic effect of
adsorption and photocatalytic degradation for each composite depended on the amount of TiO2

deposited in the carbon xerogel. The dye degradation process for the composites with 50%, 70%, and
90% TiO2 improved by 37%, 11%, and 2%, respectively, after exposure to visible light after adsorption.
Repeated runs demonstrated over 80% of activity was retained after four cycles. Thus, this paper
provides insight into the optimal amount of TiO2 required within such composites for maximum
removal efficiency via adsorption and visible light photocatalysis.

Keywords: carbon xerogels; photocatalyst titania; adsorption; photodegradation; adsorption isotherm;
recyclable composites; water treatment

1. Introduction

Increasing water pollution, along with the appearance of emerging pollutants, has
led to ongoing developments in innovative wastewater treatment methods that can meet
the standards for clean water. Environmental catalysis is one such technology that can
effectively respond to this demand, and these methods can be enhanced by developing new
materials and processes to meet the needs of an increasingly industrialised society. Among
these technologies, photocatalytic processes are interesting systems, which are occasionally
used in combination with other techniques to improve water treatment processes. In
particular, since these systems use visible irradiation, they can save energy, allowing them
to be employed in developing countries. In this regard, the photocatalyst TiO2 has been
reported in combination with other materials to enhance its photocatalytic performance.
One way to improve photoactivity is by combining TiO2 with an adsorbent material,
whereby the synergistic effect of the integrated materials enhances pollutant adsorption
and disintegrates pollutants under visible light [1].

Carbon-based adsorbents are often used as adsorbent materials because of their high
surface area and porous nature, which facilitate the adsorption of pollutants [2]. Addition-
ally, carbon materials have been employed to modify the electronic structure of TiO2 to
improve visible-light photocatalysis because TiO2 has a large bandgap and is only acti-
vated upon UV irradiation to generate electron and hole pairs, which undergo a series of
chemical reactions to produce hydroxyl species responsible for disintegrating pollutants [3].
Additionally, carbon materials can entrap photoexcited electron and hole pairs, inhibiting
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their recombination and promoting charge transfer efficiency. Carbon gels, derived from
the polycondensation of resorcinol and formaldehyde, have been investigated extensively
for a range of applications in various sectors because of their tunability, large surface area,
interconnected porous network, and high electrical conductivity [4]. Substantial research
has been conducted on energy storage applications [5], gas storage [6], and thermal con-
ductivity. Owing to their three-dimensional structure, which can serve as an ideal host for
catalytic species, carbon gels have recently been used in combination with other materials in
water treatment applications [7]. For water remediation applications, titania/carbon aero-
gel composites have been reported to successfully degrade dyes. These studies established
that the synergy of mesoporous carbon and titania results in enhanced dye degradation
when compared with other carbon/titania composites [8–10].

In our previous studies, we established that the high surface area and porosity pro-
vided by the carbon xerogel (CX) matrix enhanced the adsorption capacity of pollutants
and modified the band gap of TiO2 due to chemical linkages formed between CX and TiO2,
which promoted the photogenerated charge recombination rate for sufficient production of
hydroxyl species. Therefore, the synergistic effect of combining these phases resulted in
enhanced adsorption and photodegradation under visible-light irradiation. Overall, the
composite synthesised with 10% TiO2 showed 72% degradation activity, which improved
with further addition of TiO2, exhibiting 99% degradation activity for the composite with
30% TiO2 [11,12]. In another study by Garcia et al. [13], the successful synthesis of car-
bon xerogels and TiO2 composites showed significant degradation of the orange G dye.
Studies so far have reported up to 40% TiO2 in the gel matrix, showing an increase in
removal efficiency with increasing TiO2 content. To the best of our knowledge, no liter-
ature has been found on the application of samples with higher loading of TiO2 in the
CX matrix, synthesised by the approach employed in this work. Hence, in this work, we
synthesised a suite of CX and TiO2 composites (CXTiX, where X denotes % TiO2) with
20% sequentially increasing steps, starting from 50% TiO2. The composites were tested for
their adsorption–photodegradation performance for the reduction in methylene blue (MB)
dye. The dye degradation performance was analysed based on the structural, textural, and
optical characteristics of the synthesised CXTi composites.

2. Results and Discussion
2.1. Characteristics of CXTi

The amount of TiO2 present in each composite was determined via thermal gravimetric
analysis (TGA) after combustion of the organic phase in air. The recorded residual masses of
the samples were slightly higher than the theoretical TiO2 contents, which can be ascribed to
contributions from the segments of the RF phase trapped in the TiO2 phase. In contrast, TiO2
samples with very high amounts of TiO2, for example RFTi90, showed a residual inorganic
phase, slightly lower than the theoretical amount, which may result from insufficient
hydrolysis and condensation of the TiO2 precursor during material synthesis. Nevertheless,
the experimental data are close to the expected values (Table 1). The arguments supporting
the observed differences are in agreement with previous work for composite systems with
Ti/carbon and Ti/epoxy resins [14–16].

In our previous work, for samples with low TiO2 content (10 and 30% TiO2 in CX), the
composite samples maintained a regular spherical shape with an overall homogeneous
smooth surface without differentiation between the organic and inorganic phases within
the composites [11,12]. In this study, heterogeneity and surface roughness were observed,
as smooth CX spheres (Figure 1a) seemed to be shielded with TiO2, seen in the micrograph
obtained for CXTi50 (Figure 1b). With further addition of TiO2, the heterogeneity increased
owing to reduction in the organic phase, as well as the tendency of TiO2 to aggregate,
resulting in a heterogeneous distribution of TiO2 clusters. The TiO2 crystallites continued to
grow, as shown in the micrographs for RFTi70, demonstrating an increase in TiO2 aggregates
with greater surface roughness (green arrows) and reduced porosity (yellow arrows), in
comparison with the highly porous, smooth carbon surface of CX and CXTi gels with low
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amounts of TiO2. Elemental mapping is included in Figure A1 (Appendix A). In the case of
CXTi90, the discreteness of the carbon spheres became less evident, owing to the high TiO2
content, and the pores could not be identified through the micrograph images obtained for
this sample (Figure 1e,f).

Table 1. Textural characteristics of the CXTi composites synthesised in this study.

Sample SBET (m2 g−1) Average Pore Size (nm) Pore Range (nm) Pore Volume (cm3 g−1) % TiO2 Ref

RFTi10 439 9 2–57 0.7 11.1 [11]

CXTi30 384 8 2–53 0.8 - [12]

CXTi50 290 4 2–42 0.2 52 This work

CXTi70 193 5 2–40 0.2 72.5 This work

CXTi90 150 16 2–128 0.4 89 This work
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Figure 1. FESEM micrographs of (a) CX; (b) CXTi50; (c) and (d) CXTi70; (e) and (f) CXTi 90. Green
arrows identify areas of greater surface roughness, and yellow arrows highlight reduced porosity.
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Owing to their different morphologies, as indicated by field emission scanning electron
microscope (FESEM) images, the samples exhibit porosity in different pore ranges. The
porous structure of all samples was studied by N2 sorption measurements, and the results
are shown in Table 1. The results obtained showed variation in the textural properties of
the composites with increasing TiO2 content. As previously observed for samples with low
TiO2 content [11,12], the surface area decreased with the addition of TiO2, implying that a
proportion of pores in the CX network were blocked by TiO2 nanoparticles. Likewise, the
surface area of the rest of the samples continued to decrease with the increasing amount
of TiO2 added, accompanied by a change in the shape of the hysteresis loops, suggesting
disordered porosity within the composite structures. This indicates increasingly complex
pore systems, due to TiO2 aggregates occupying the pore sites, consequently leading
to a significant reduction in surface area. According to IUPAC classification, hysteresis
loop shapes can be classified, providing insight into the porous networks and adsorption
mechanisms [17]. The shape of the isotherm for CXTi50 (Figure 2a) suggests that the porous
network comprises wide neck-like or ink bottle-shaped pores, in which pore evaporation is
delayed, and desorption at equilibrium does not occur through open pores, while the wide
pores remain filled until low p/p0 is reached, with evaporation occurring from the neck
section, leading to Type H2 hysteresis.
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Figure 2. N2 sorption isotherms (77 K) and BJH pore size distribution (inset) of (a) CXTi50, (b) 
CXTi70, and (c) CXTi90. 
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the shape of the isotherms for CXTi70 (Figure 2b) revealed similar findings. The N2 iso-
therm obtained for the CXTi90 sample (Figure 2c) appears similar to that of the pure TiO2, 
synthesised in this work (Figure A2, Appendix A), where both isotherms are Type H3 with 
the hysteresis loop confined in the range 0.7 < p/p0 < 1.0, demonstrating a wide pore size 

Figure 2. N2 sorption isotherms (77 K) and BJH pore size distribution (inset) of (a) CXTi50, (b) CXTi70,
and (c) CXTi90.

The nature of the pores can be further classified as H2(a) [18], which means that the
neck portion is much narrower than the wider pore cavities, thus generating a sharp drop
in the desorption isotherm as the loop closes, indicating pore-blocking effects. Analysis
of the shape of the isotherms for CXTi70 (Figure 2b) revealed similar findings. The N2
isotherm obtained for the CXTi90 sample (Figure 2c) appears similar to that of the pure
TiO2, synthesised in this work (Figure A2, Appendix A), where both isotherms are Type H3
with the hysteresis loop confined in the range 0.7 < p/p0 < 1.0, demonstrating a wide pore
size distribution in the range of 2–100 nm, as also previously reported for low carbon/TiO2
composites [19] or pure TiO2 nanoparticles [20,21]. This classification of hysteresis implies
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the existence of aggregates (loose accumulations) of plate-like particles forming slit-like
pores [21]. Such characteristics have been reported for mesoporous TiO2 nanoparticles
synthesised through a sol–gel route for photocatalytic applications [22]. However, the
textural properties obtained for TiO2 nanoparticles in this study are superior to commercial
Degussa P25, exhibiting a specific surface area of ~57 m2g−1 [23].

The chemical complexation between CX and TiO2 determines the visible light ab-
sorption capabilities of the synthesised material for photodegradation under visible light
irradiation. The Ti-O-C bond formation introduces a new absorption band in the visible
region, whereby the modified electronic structure will require less energy for photoacti-
vation [12,24]. The formation of a charge transfer complex, modification of the electronic
structure, charge transfer efficacy, and the consequent optical response are related to the
composition of the constituents of the material; hence, the shift of the absorption edge and
the lowering of the bandgap are dependent on the amount of CX and TiO2 in each sample.
The electronic characteristics were studied for newly synthesised composites, and band
gaps were calculated using the Tauc method [25]. Figure 3 shows the Tauc plots obtained for
the three composites. The calculated band gaps for CXTi50, CXTi70, and CXTi90 were 2.60,
2.93, and 3.10 eV, respectively. As compared to samples with low amounts of TiO2 in the
composites, the samples synthesised in this work showed increased band gaps, ascribed to
the decrease in surface complexation due to the reduced carbon content of these composite
samples; hence, the lack of optimal surface complexes between CX and TiO2 results in a
poor optical response of CXTi samples with very high amounts of TiO2. This can also be
verified via Fourier-transform infrared spectroscopy (FTIR), and the spectra obtained for
two composite materials are shown in Figure 4, with pure TiO2 for comparison. Ti-O-C
peaks are evident in the spectrum obtained for CXTi50 (trace (a) in Figure 4) in the range
from 1200 to 1000 cm−1, whereas the spectrum for CXTi90 (trace (b) in Figure 4) shows a
diminished peak for chemical bonding between CX and TiO2; however, the sample exhibits
a prominent Ti-O peak in the fingerprint region, comparable to the spectrum of pure titania
shown in trace (c). Other characteristic peaks associated with the functional groups of the
synthesised CXTi composites are shown in Table A1 (Appendix A). A consistent correlation
between carbonaceous and TiO2 contents and their effects on optical response has been
previously reported, where the authors asserted that light absorption was reduced with low
carbonaceous content in the photocatalyst [26,27]. These studies rationalised the correlation
between the mesoporous carbon content and the change in the electronic properties of
the composites. Additionally, as observed via FESEM analysis, large amounts of TiO2 did
not disperse well within these samples, and, therefore, caused the aggregation of TiO2
nanoparticles, resulting in increased recombination rates of photogenerated electron/hole
pairs, supporting the observation of poor optical response.
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2.2. Adsorption Performance

Data for the experimentally determined adsorption capacities of the synthesised
samples, as a function of the initial MB concentration (50–200 mg L−1) and contact time
(0–240 min), were recorded, and are shown in Figure 5a–c. The data obtained show that the
trend of adsorption uptake, by all synthesised samples, was similar; that is, the adsorption
capacity increased initially, and the process then gradually reached a plateau, as the rate of
mass transfer slowed, owing to active sites being saturated, which hindered the adsorption
of additional MB molecules on the sample surface; hence, the system attained equilibrium
at ~150 min in all cases. Although the adsorption trend is the same for all samples, the
extent of adsorption affinity depends predominantly on the nature of the adsorbent, as the
change in surface chemistry and porosity play vital roles in adsorption uptake.
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The experimentally determined equilibrium adsorption capacities for CXTi50, CXTi70,
and CXTi90 are shown in Table 2. Poor uptake with increasing amounts of TiO2 in the
composites is consistent with the results obtained from surface area and textural analyses,
indicating blockage of pores, which results in slower mass diffusion and a reduced number
of active sites, resulting in weaker adsorbate–adsorbent interactions. Another detrimental
factor for low adsorption on CXTi70 and CXTi90 is the size of the TiO2 nanoparticles, or the
size of aggregates due to overcrowded TiO2 nanoparticles, which may lead to pore blocking,
as also observed in other studies [28]. It is noteworthy that the adsorption capacity for low
TiO2 content analogues (e.g., CXTi10 and CXTi30) were higher than samples synthesised
in this work [11,12]. This validates the hypothesis that it is crucial to consider an optimal
amount of TiO2 deposited in the CX matrix for the pores to be accessible, as well as presence
of sufficient surface-active sites for maximum removal performance.

Table 2. Experimentally determined equilibrium adsorption capacities of synthesised samples at
different initial concentrations (errors omitted as negligible).

50 mg L−1 100 mg L−1 150 mg L−1 200 mg L−1 Ref

RFTi10 109 176 201 212 [11]

CXTi30 113 217 220 221 [12]

CXTi50 100 161 203 211 This work

CXTi70 95 140 171 191 This work

CXTi90 69 95 100 104 This work

2.3. Adsorption Isotherm Analysis

MB adsorption isotherms on CXTi composites are shown in Figure 6. A steep initial
increase in MB uptake, with a pronounced slope, was observed for all samples, with an
increase in initial concentration of the MB solution (50–200 mg L−1). As predicted, the
adsorption performance exhibited by each sample was related to the textural properties and
surface chemistry of the composites. The surface-active sites originated due to the interac-
tion between CX and TiO2, as well as sufficient porosity leading to strong π–π interactions
between aromatic groups of the sample and MB molecules. However, due to increasing
TiO2 loading, the number of surface-active sites is reduced, and blockage of pores results
in weakened π–π interactions, and hence, the poor uptake of the MB dye. The maximum
adsorption capacity (qm) of composites was in the order CXTi50 > CXTi70 > CXTi90.
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The experimentally obtained equilibrium adsorption data for MB were analysed using
several adsorption isotherm models: Langmuir, Freundlich, and Sips. The isotherm model
that demonstrated the most appropriate fit to the experimentally obtained data was selected
on the basis of the correlation coefficient (R2). The adsorption isotherm models employed
in this work were as follows:

The Langmuir isotherm model is a simple theoretical model, which describes mono-
layer adsorption on homogeneous adsorbents [29]. The model considers several assump-
tions: (i) there are a well-defined and fixed number of active sites; (ii) adsorption forms a
monolayer; (iii) the active sites are identical and cannot host multiple molecules; (iv) the
adsorption sites possess the same energy, are energetically equivalent, and therefore, the
adsorbent surface is homogenous; (v) the adsorbed molecules do not interact with neigh-
bouring active sites; and (vi) the system is in equilibrium [29,30]. Equation (1) describes the
nonlinear Langmuir model:

qe =
qLKLCe

1 + CeKL
(1)

where qe (mg g−1) is the equilibrium adsorbate uptake, Ce (mg L−1) is the concentration at
equilibrium, qL (mg g−1) is the quantity of adsorbate corresponding to monolayer coverage,
and KL is the Langmuir constant, which indicates the adsorption energy and, consequently,
the strength of interactions between the adsorbate and adsorbent.

Furthermore, adsorption favourability can be determined by a dimensionless constant
called the separation factor, RL, expressed by:

RL =
1

(1 + KLC0)
(2)

where C0 is the initial adsorptive concentration (mg L−1) and KL is the Langmuir constant,
which indicates adsorption capacity. RL > 1 suggests that adsorption is unfavourable, while
0 < RL < 1 indicates that adsorption is favourable.

The Freundlich isotherm model can be applied to adsorption processes that occur
on highly heterogeneous surfaces. This model assumes that adsorption at multiple sites
may occur with multilayer formation, which have a range of adsorption energies, leading
to an exponential reduction in energy as surface coverage proceeds. Bond strength is
heterogeneous, as a consequence of differences in adsorption site character, or due to
already adsorbed molecules. Notably, as a site becomes occupied by an adsorbate molecule,
the likelihood of another molecule adsorbing is reduced, since more energy is required.
The Freundlich equation can be expressed as:

qe = KFC1/nF
e (3)

The variables qe (mg g−1) and Ce (mg L−1) are as previously defined for the Langmuir
equation. The adsorption constant KF indicates the affinity for adsorption, and nF is
related to the scale of the driving force for adsorption, which indicates favourability for
adsorption. In summary, 0 < 1/nF < 1 suggests favourable adsorption, 1/nF > 1 indicates
unfavourable adsorption, and 1/nF = 1 is obtained for irreversible adsorption. The value of
nF also indicates surface/site heterogeneity and provides information about distribution
of adsorption energies: 2–10 suggests high adsorption capacity, 1–2 represents moderate
adsorption capacity, and a value < 1 suggests low adsorption capacity.

To further understand the adsorption process of MB in the mesopores of RFTi gels, the
adsorption data obtained at equilibrium were fitted to an adsorption model based on three
parameters. The Langmuir and Freundlich isotherm models have been combined to obtain
the Sips isotherm model, which is widely applied, and is represented as:

qe =
qsKsCns

e

1 + KsCns
e

(4)
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The variables qe (mg g−1) and Ce (mg L−1) are as previously defined for the Freundlich
and Langmuir equations, Ks is known as the Sips constant (L g−1), and ns, the Sips isotherm
exponent, indicates the degree of deviation of adsorption from linearity for the adsorption
system studied. A value of ns = 1 (or close to) indicates a homogeneous surface for the
adsorbent, while ns close to 0 defines a surface with heterogeneously distributed active
sites. It is considered an appropriate isotherm model, since it avoids the restriction of
increasing concentration, in contrast to the Freundlich isotherm model (which assumes
an infinite number of active sites). The Sips isotherm transforms to the Freundlich model
at dilute concentrations, while the Sips model reduces to the Langmuir model at higher
concentrations, thereby appropriately predicting monolayer adsorption [29,31]. Adsorbent
heterogeneity is indicated by 1/ns within the equation; 1/ns < 1 suggests a heterogeneous
surface, and 1/ns~1 is obtained for homogeneous surfaces [32].

The parameters obtained using the above-described models are given in Table 3.
Based on the correlation factor, R2, a reasonable fit is obtained for the Langmuir equation,
indicating extended monolayer adsorption for the composites, correlated with the textural
characteristics of the composites. RL for specific concentrations can be determined using
the corresponding values of KL, shown in Table 3. According to the values of RL obtained
from the application of the Langmuir model, all the systems show favourable adsorption
capacity, with values in the range 0 < RL < 1 for all concentrations used within this study.
This indicates high and favourable adsorption capacities, as all RL values are low. The
values obtained from the Freundlich model, 1/nF, are less than one, implying that the
dye is favourably adsorbed by the synthesised composites. The value of nF increases with
the increase in TiO2 in CX, suggesting increasing homogeneity of the TiO2 nanoparticles.
Overall, it can be observed that the Sips model appropriately predicts the experimentally
determined values of adsorption capacity better than the Langmuir and Freundlich models,
with higher R2 values for all samples. This may be due to the ability of the Sips isotherm
model to predict adsorption over wide adsorbate concentration ranges, and also the fact that
it accommodates both homogeneous and heterogeneous character in the adsorption system.
The values of the heterogeneity factor, ns, are greater than one; therefore, the adsorption
surface may be predicted to be heterogeneous, with the exception of data obtained for CXTi90.
The value of ns determined for CXTi90 is less than one and is characteristic of a homogeneous
surface. The Sips model reduces to a Langmuir form when ns = 1; hence, monolayer adsorption
for this system can be predicted for this sample [33]. Surface homogeneity of the composite
with a very high amount of TiO2 in the samples indicates that surface-active sites may be
dominated by homogenously distributed functional moieties of TiO2.

Table 3. Results of application of the Langmuir, Freundlich, and Sips isotherm models to the
adsorption isotherms for MB on CXTi adsorbent gels at 296 K.

Parameters Sample

CXTi50 CXTi70 CXTi90

qexp 215 195 104

Langmuir

qL (mg g−1) 231 222 116

KL (Lmg−1) 0.108 0.036 0.061

R2 0.974 0.958 0.990

Freundlich

KF 47.7 28.1 27.7

nF 3.22 2.39 3.60

1/nF 0.311 0.420 0.278

R2 0.900 0.927 0.951
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Table 3. Cont.

Parameters Sample

Sips

qs (mg g−1) 209 185 117

Ks (Lmg−1) 0.029 0.003 0.064

ns 1.45 2.01 0.983

1/ns 0.689 0.497 1.017

R2 0.983 0.993 0.998

2.4. Photocatalytic Performance

Figure 7a–d represents MB decolourisation by synthesised composites after exposure
to visible light. Post adsorption treatment, this shows a reduction in intensity of the
main peak at 663 nm, attributed to the benzene ring and aromatic groups of MB [34].
Upon irradiation with visible light, the absorbance peaks of the MB dye remain almost
unchanged in the absence of the catalyst throughout exposure to irradiation (Figure 7a),
confirming that MB is stable under visible light [35]. The photodegradation results for
synthesised composites are consistent with the adsorption properties and optical responses
of the synthesised samples. Additionally, according to the dye degradation curves shown in
Figure 7b, CXTi50 showed a significant reduction in absorbance after 30 min of photoactivity,
owing to the efficient adsorption–photodegradation exhibited by this composite. However,
in the case of CXTi70, the peak reduction was gradual, while no peak reduction was
observed for CXTi90, suggesting poor adsorption, a large band gap, and poor optical
response exhibited by this composite. The corresponding absorption recorded is plotted in
Figure 8 and combined adsorption–photodegradation activity is recorded in Table 4, along
with kinetic analysis.
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Figure 7. UV-Vis absorption spectra for the degradation of dye in (a) the absence of catalyst and by
(b) CXTi50, (c) CXTi70, and (d) CXTi90 (experimental conditions: pH~7, temperature 296 K, exposure
to visible light after 10 min intervals post adsorption).
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Figure 8. Combined adsorption–photodegradation performance of MB dye degradation tested
against synthesised samples (experimental conditions: pH~7, temperature 296 K, exposure to visible
light after 120 min).

Table 4. Summary of combined adsorption–photodegradation performance demonstrated by samples
synthesised in this study; data obtained at 296 K.

Sample Band Gap (eV) Adsorption (%) Photodegradation (%) Rate Constant min−1 Ref

RFTi10 2.97 72 75 1.25 × 10−3 [11]

CXTi30 2.24 85 99 2.98 × 10−2 [12]

CXTi50 2.60 59 87 2.27 × 10−2 This work

CXTi70 2.93 64 75 6.95 × 10−3 This work

CXTi90 3.10 58 60 3.99 × 10−4 This work

Kinetics of Photodegradation

The decolourisation of MB under visible light was observed by recording dye degrada-
tion curves after 10 min post adsorption treatment, as shown in Figure 8. The corresponding
absorbance data recorded were fitted to a first order kinetic model:

ln
Co

Ce
= kt (5)

where Co and Ce are the MB concentration at zero time and then equilibrated at a given
time. Photocatalytic kinetic fits of dye degradation to the first order equation are shown in
Figure A3. The value of the rate constant k was evaluated from the gradient of a plot of ln
(Co/Ce) vs. time (t) in min. This value correlates with photocatalytic performance, defining
the reduction in dye concentration, which is related to the reacting substances, i.e., the
photogenerated reactive oxide species; thus, k is higher for greater photocatalytic efficiency.

The synergistic effect of CX and TiO2 was analysed by combined adsorption–photodegra-
dation performance, recorded in Table 4. The dye reduction improved from 59 to 87%,
64 to 75%, and 58 to 60% for CXTi50, CXTi70, and CX90, respectively, upon visible light
irradiation. Although effective photocatalytic activity is observed for these composites,
kinetic analysis showed a decrease in rate constant as TiO2 loading increased. Thus, the
analysis validates the dependence of TiO2 content in the composites and corresponding
adsorption–photodegradation responses.
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3. Conclusions

A suite of CXTi composites was synthesised using a modified sol–gel technique. The
synergy between the carbon xerogel (CX) and TiO2 exhibited adsorption–photodegradation
activity depending on the amount of TiO2 in the composites. The mesoporosity, Ti-O-C
complexation, and electronic properties deteriorated due to changing properties, including
increasing amounts of TiO2 nanoparticles blocking the porous network of CX, insufficient
chemical bonding between CX and TiO2, and poor response to visible light. Adsorption
isotherm analysis showed that the system tended to be homogeneous with a higher loading
of TiO2 in the composite. All systems were well described by the Sips isotherm model,
which indicated that the greatest adsorption capacity was obtained for CXTi50. Composites
CXTi50 and CXTi70 were heterogeneous according to the Sips isotherm model, whereas
CXTi90 primarily fitted the Langmuir isotherm model equation, suggesting surface homo-
geneity. Post-adsorption photodegradation was performed under visible light. The results
showed improvement from 59 to 87%, 64 to 75%, and 58 to 60% for CXTi50, CXTi70, and
CXTi90, respectively. The recyclability of the synthesised composites showed a negligible
loss in dye degradation efficiency, indicating a substantial reusability after four repeated
cycles (Figure 9). Overall, these composites can efficiently reduce a variety of contaminants
owing to their enhanced properties; however, it is essential to balance the amount of TiO2
present in terms of site access and performance. Finally, this study provides a framework
for the industrial use of these composites in various applications.
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Figure 9. Reusability of synthesised CXTi composites after testing against degradation of MB dye by
combined adsorption–photodegradation (C0 = 100 mg L−1, T = 23 ◦C, dose = 0.01 g m L−1).

4. Materials and Methods
4.1. Synthesis of Composites

Samples were synthesised following the method described in our previous work [12].
A sol–gel method was used to combine CX with TiO2. Table 5 shows the compositions of
reagents added to deposit 50, 70, and 90% TiO2 in the CX matrix. The reagents used were
Resorcinol (R; SigmaAldrich, ReagentPlus, 99%, Poole, UK), formaldehyde (F; 37 wt%),
and catalyst Na2CO3 (C; Sigma-Aldrich, anhydrous, 99.5%, Poole, UK), in the ratios R:F 0.5
and R:C 300. TiO2 sol was synthesised using titanium isopropoxide (TTIP) (98+%, ACROS
Organics™, Geel, Belgium), in molar ratio 1 TTIP:10 EtOH:0.3 HCl:0.1 H2O. A pH~7.4
was maintained using 1M HCl and 1M NaOH. The integrated system was agitated for
two hours at 296 K, and then the sol mixture was aged for 72 h at 358 K. After aging, the
solvent was exchanged by submerging wet monolithic CXTi in acetone. After 72 h, gels
were dried for 48 h at 383 K in a vacuum oven (Townson and Mercer 1425 Digital Vacuum
Oven, Stretford, UK), yielding the final CXTi with 50, 70, and 90% TiO2.
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Table 5. Initial compositions of reagents.

Sample Resorcinol (g) Formaldehyde (g) Catalyst (g) Titania (g)

CXTi50 3.8756 2.1135 0.0112 6.00

CXTi70 2.3252 1.2681 0.00670 8.40

CXTi90 0.7750 0.4227 0.00224 10.8

4.2. Structural Characterisation

Thermal gravimetric analysis was performed using a thermal gravimetric analyser
(NETZSCH STA 449 F3 Jupiter, Wolverhampton, UK). Al2O3 crucibles were employed for
analysis. A total of ~20 mg of a respective sample was heated to 1073 K at 5 K min−1 in N2/O2
atmosphere. The mass flow controller (MFC) was set to purge gas 1 MFC-50 mL min−1 and
purge gas 2 MFC-50 mL min−1, and protective MFC flow was set to 110% of combined
purge gas 1 and 2. The thermographs were obtained using the attached Proteus software
for further evaluation, and compositional analysis was carried out according to the ASTM
E1131-03 procedure [36]. Morphological analysis was carried out at different magnifications
using field emission electron scanning microscopy (FESEM) TESCAN-MIRA (TESCAN’S
EssenceTM software). Chemical moieties were identified using ABB Fourier-transform
infrared (FTIR) spectroscopy (Horizon MBTM FTIR software, MB3000 series, conditions:
400–4000 nm, 4 cm−1 intervals, 16 scans). Textural characteristics were studied via N2
adsorption at 77 K (Micromeritics ASAP 2420, Hexton, UK) and using the in-built ASAP
2420 software for BET isotherm analysis; BJH theory was used to estimate pore size [37].
Adsorption measurements were obtained using UV-Vis absorption spectra against given
wavelengths (Varian Cary 5000 UV-Vis NIR Spectrophotometer, Agilent, UK; Hellma
Analytics, Cary WinUV software version 3.0.

4.3. Photocatalytic Performance and Adsorption Isotherms

Adsorption behaviour was determined by adding 10 mg of CXTi to 25 mL of prepared
MB solutions, with concentrations in the range of 20–200 mg L−1. Solution pH was ad-
justed to ~7, as required, by addition of 1 M HCl and/or 1 M NaOH. Adsorption equilibria
were then measured by mixing the solutions and composites, using an orbital shaker
(3500 Analog Orbital Shaker unit, 125 rpm, Lutterworth, UK) at 296 K, under dark con-
ditions. Once a predefined period of time had elapsed, the mixture was centrifuged for
15 min, and UV-Vis was conducted on the collected supernatant (Varian Cary 5000 UV-Vis
NIR Spectrophotometer, Agilent, UK; Hellma Analytics, Cary WinUV software version
3.0). Similarly, post adsorption, the concentration of dye remaining after photocatalytic
treatment was measured using UV-Vis, at predetermined time intervals of irradiation by
visible light (irradiance 111 W m−2).

The value of qe (mg g−1), the equilibrium adsorption capacity, was calculated using:

qe =
(Co − Ce).V(l)

W
(6)

Co and Ce are as previously defined. W is adsorbent weight (g), while V is MB solution
volume (L).

Contact time can affect adsorption and was investigated by taking aliquots of MB
solution in flasks (25 mL, 100 mg L−1) and adding 10 mg of composite, before mixing
for predetermined contact times (0–240 min). Samples were treated as outlined above for
measurement, and adsorption uptake was calculated via Equation (7):

qt =
(Co − Ce).V(l)

W
(7)
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Co, Ce, W, and V are as previously defined. Equilibrium concentration was calculated
via plots of qt versus time, at which each aliquot was collected, for the range of time
intervals used.
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Appendix A

Table A1. Assignment of additional peaks obtained for FTIR spectra of CXTi50 and CXTi90.

Wavenumber cm−1 Assignment

3300 Phenolic OH

1605, 1473 Aromatic ether bridge

1300 C-O-C asymmetric stretching of the methylene ether bridge

1470 CH2 (methylene ether bridge)

1200, 1084 Ti-O-C

600 Ti-O-Ti



Gels 2023, 9, 468 15 of 18

Gels 2023, 9, x  14 of 17 
 

 

predetermined contact times (0–240 min). Samples were treated as outlined above for 
measurement, and adsorption uptake was calculated via Equation (7): q୲ = (C୭ − Cୣ). V(l)W  (7)

Co, Ce, W, and V are as previously defined. Equilibrium concentration was calculated 
via plots of qt versus time, at which each aliquot was collected, for the range of time inter-
vals used. 
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