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Abstract: Thermoresponsive gels based on N-isopropylacrylamide functionalized with amino groups
were modified with gallic acid, with gallate (3,4,5-trihydroxybenzoic) groups being introduced into
the polymer network. We investigated how the properties of these gels were affected at varying pH, by
the formation of complexes between the polymer network of the gels and Fe3+ ions (which form stable
complexes with gallic acid, exhibiting 1:1, 1:2, or 1:3 stoichiometry, depending on pH). The formation
of complexes with varying stoichiometry within the gel was confirmed using UV-Vis spectroscopy,
and the influence of such complexes on swelling behavior and volume phase transition temperature
were investigated. In the appropriate temperature range, complex stoichiometry was found to
strongly affect the swelling state. Changes in the pore structure and mechanical properties of the gel
caused by the formation of complexes with varying stoichiometry were investigated using scanning
electron microscopy and rheological measurements, respectively. The volume changes exhibited
by p(NIPA-5%APMA)-Gal-Fe gel were found to be greatest at close to human body temperature
(~38 ◦C). Modification of thermoresponsive pNIPA gel with gallic acid opens new opportunities for
the development of pH- and thermosensitive gel materials.

Keywords: gallic acid; thermosensitive gel; pH-sensitive gel; iron complex; volume phase transition

1. Introduction

Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is an interesting compound present in
many areas of life—for instance, it is commonly used in the ink, dye, food, and pharma-
ceutical industries [1]. GA is a phenolic compound (a secondary polyphenolic metabolite)
naturally most abundant in fruits, nuts, and tea leaves. Salts of gallic acid are known as
gallates. Gallic acid possesses valuable medical properties, such as antioxidant, nephro-
toxic, and anti-cancer characteristics [2–4]. Among other applications, this compound was
commonly used as an ingredient in medieval writing inks, due to the formation of color
complexes [5]. Gallic acid can form strong complexes with metal ions, of which the color
and, therefore, the stoichiometry, depends on the pH. With Fe3+, pale yellow, brownish,
and violet complexes are known, with a stoichiometry of 1:1, 1:2, and 1:3, respectively [6,7].
The stability constant of Fe3+ with gallic acid complexes is logβ = 25.8 [8].

The interesting properties of gallic acid have promoted the compound as an attractive
candidate for introduction into polymer networks to obtain new multifunctional mate-
rials [9,10]. Guo and co-workers grafted gallic acid to hyaluronic acid chelate iron(III)
and combined it with Ce6, applying this system in melanoma synergistic therapy [11].
Kim et al. presented an interpenetrating polymer network consisting of chitosan and
poly(2-hydroxyethyl methacrylate), surface-modified with gallic acid. The hydrogel ob-
tained possessed antioxidant properties, and could serve as a material for creating biomed-
ical devices [12]. Another application—an antibacterial liquid bandage—was presented by
Supaphol et al., with gallic acid–copper iodide nanoparticles being loaded into
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poly(vinyl alcohol) [13]. The combination of hydrogel properties such as softness and sorp-
tion capacity, with the properties of gallic acid such as antioxidant and anti-inflammatory
qualities, make such materials an excellent candidate for wound dressing [14–17]. The
combination of gallic acid with hydrogels that serve as drug delivery systems are also
worth mentioning [18,19]. Gels based on gallate analogues were investigated in terms of
pH effect on the mechanical properties of gels, their ability to create crosslinks in a water
environment, and their self-healing properties; this was mostly PEG analogs [20–22].

One very interesting feature is the stimulus-responsiveness of hydrogel materials.
Materials that can change volume quickly and reversibly upon environmental changes are
called smart or “intelligent”. A change in volume can be triggered by an external stimulus
such as temperature, pH, ionic strength, UV light, an electric field, etc. [23–28]. One of
most well-investigated thermosensitive polymers is pNIPA [29–31]. pNIPA hydrogel has a
low critical soluble temperature (LCST = 32 ◦C); below this, the gel is in a swollen state,
whereas, above it, the gel contracts and loses water [32]. The temperature of the volume
phase transition can be shifted by introducing monomers with different hydrophilicity
into the pNIPA network. A more hydrophilic additive will shift the temperature to higher
values, while at the same time increasing the swelling ratio. A drop in LCST temperature
and decrease in swelling ratio can be changed by introducing monomers more hydrophobic
than NIPA. For example, acrylic acid (AA) monomers introduced to the pNIPA network will
increase the volume-phase temperature: a 7 mol% addition of AA, for instance, increased
LCST to 40 ◦C [33], whereas the addition of 5 mol% dopamine methacrylamide to pNIPA
gel decreased LCST to 28 ◦C [34]. Another common trigger is pH. Changes in volume
are usually related to protonation/deprotonation of hydroxyl groups, and shrinking and
swelling relate to osmotic pressure changes along with a change of charge on the polymer
network [35]. There are limited specific systems where the pH-sensitivity depends on
another mechanism, for example, on an oxidation/reduction reaction that changes the
hydrophilicity of the polymer network such as in quinine-modified hydrogels [36], or as
presented in this work where pH affects the stoichiometry of complexes and, therefore, al-
ters the crosslinking points’ functionality. More demanding hydrogels are sensitive to more
than one external stimulus. Such materials can be obtained, for instance, by the creation of
interpenetrating polymer networks [37], a double network [38], or copolymers [39,40], etc.
Stimulus-responsive materials that trigger mechanical action are particularly interesting
due to their potential to act as actuators, artificial muscles, or soft robots [41–46]. The ability
to form complexes between metal ions and appropriately designed polymer networks, with
different stoichiometry, and its effect on swelling ratio, can be utilized to trigger volume
changes by different stimuli [34,47,48].

Herein, we present a thermosensitive hydrogel based on pNIPA, modified with gallic
acid, to yield a both temperature- and pH-sensitive gel. Modifying the polymer network
with gallate groups permitted the use of nontoxic iron(III) as a cross-linking agent. The
pivotal role of iron ions lies in creating complexes with polyphenol groups attached to the
polymer chain. The stoichiometry of iron:gallate complexes depends on the environmental
pH. Not only do the volume and temperature of the volume phase transition change, but
so does the hydrogel color. In an optimal composition, the hydrogel is sensitive to pH due
to complex ratio changes, and to temperature due to the presence of NIPA. In this work,
we obtained a hydrogel that had a wide temperature window in which the volume could
be changed drastically. Additionally, compared with a previous report [34], the pH and
temperature triggered significantly higher volume changes.

2. Results and Discussion

The scheme of synthesis of p(NIPA-X%APMA) gels and their modification with gal-
lic acid (p(NIPA-X%APMA)-Gal) is presented in Figure 1A. To verify that the polymeric
network was successfully modified, 1H NMR spectra were recorded. To this aim, the
p(NIPA-5%APMA)-Gal gel sample was prepared by swelling the pieces of dry polymeric
network in D2O. A typical gel spectrum for (NIPA-5%APMA)-Gal gel is shown in Figure 1B.
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Characteristic signals for NIPA (f), APMA (b and d), and gallic moiety (a), were well visible.
However, no distinctive signals from the BIS could be observed, as the mole fraction of
the cross-linker was kept at a low level (1%), and the signals overlapped with the much
larger ones. Importantly, the area (integral) of the signal corresponding to the two aromatic
protons of the gallate groups (a) were almost two times smaller than the area of the b and
d signals associated with the four protons of APMA monomers. This suggested that the
modification of APMA monomers in the polymer network was close to quantitative. The
presence of the gallate groups in the polymeric network of the gel was also confirmed
using electrochemical methods. Voltammograms obtained for p(NIPA-5%APMA) and
p(NIPA-5%APMA)-Gal gels are shown in Figure 1C. The p(NIPA-5%APMA)-Gal showed
an electrochemical response typical for gallic acid (grey line), whereas the hydroxyl groups
were irreversibly oxidized; this was also in agreement with the literature [49,50]. Overall,
the electrochemical process was a two-electron two-proton process, split into two steps
(marked in Figure 1 as E1 and E2). The first peak corresponded to irreversible oxida-
tion of the hydroxyl group to semiquinon radical form, with one proton lost (E1). The
second peak related to one-electron irreversible oxidation and dehydrogenation of the
semiquinone radical to quinone (E2). The observed voltametric response meant that the gal-
late groups were in the reduced state. The unmodified hydrogel (black dashed line) gave no
faradaic response.
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havior was investigated. Polymeric hydrogels based on poly(N-isopropylacrylamide) 
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Figure 1. (A) Scheme of the synthesis of p(NIPA-APMA) gels and their modification with gallic
acid to obtain p(NIPA-APMA)-Gal hydrogels. (B) 1H NMR spectra of p(NIPA-5%APMA)-Gal gel.
(C) Cyclic voltammograms recorded for the gel before modification p(NIPA-APMA) (black dashed
line), after modification with gallic acid p(NIPA-APMA)-Gal (green line), and in 0.1 mM solution of
gallic (grey line) acid; scan rate 50 mV·s−1.

Next, the influence of modifying p(NIPA-x%APMA) with gallic acid on swelling
behavior was investigated. Polymeric hydrogels based on poly(N-isopropylacrylamide)
(pNIPA gels) are commonly known to be thermosensitive and exhibit a drastic swelling
transition at their lower critical solution temperature (LCST) of ca. 32 ◦C. At temperatures
below 32 ◦C, the gels are swollen, whereas at temperatures higher than 32 ◦C, the gels
dehydrate to the collapsed state [32]. Figure 2A presents the swelling ratio as a function of
temperature for gels containing different amounts of APMA monomer. Increasing amounts
of APMA monomer in the gel network strongly increased the swelling ratio and shifted the
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volume phase transition temperature (VPTT) to higher values. The measurements were
performed in neutral pH; in these conditions the amine groups in the polymer network
were practically fully protonated (pKa of APMA is around 9 [51]). The ionized groups
were very hydrophilic and created an osmotic pressure in the hydrogel, which resulted in
high water absorption and shifted VPTT to higher values. For p(NIPA-2.5%APMA) and
p(NIPA-5%APMA), the VPTT was ca. 41 ◦C and 52 ◦C, respectively, whereas
p(NIPA-7.5%APMA) gel practically lost its thermosensitivity in the investigated tempera-
ture range. After modification of the gels with gallic acid, amino groups were converted
into amide groups and both swelling ratio and temperature decreased significantly, see
Figure 2B. At neutral pH, added moieties (gallate groups) were less hydrophilic than ion-
ized amine groups. The modification of the network with gallic acid led to a drop in the
osmotic pressure due to the vanishing of protonated amine groups (from APMA units)
and, therefore, diminished the repulsive interaction between polymer chains. Altogether,
it led to a decrease in the VPTT value compared with hydrogels unmodified with gallic
acid. The temperatures shifted to ca. 38 ◦C, 42 ◦C, and 45 ◦C for p(NIPA-2.5%APMA)-Gal,
p(NIPA-5%APMA)-Gal, p(NIPA-7.5%APMA)-Gal, respectively.
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Next, the ability of the gallate groups attached to the polymer network to form
complexes with Fe(III) ions was investigated. Gallic acid is known to form complexes
with Fe(III) with stoichiometry depending on the pH of the solution, with the color of
the complexes changing with complex stoichiometry [6]. Figure 3 shows photography of
pNIPA-5%APMA-Gal hydrogels with Fe(III) in different pH. p(NIPA-5%APMA)-Gal-Fe gel
in pH = 3 exhibited a pale yellow–grey color, and the complex gallate group-Fe(III) ion had
a stoichiometry of 1:1. When the pH was changed to 5, in turn, the complex stoichiometry
changed to 2:1 and the gel became violet. For pH = 10, p(NIPA-5%APMA)-Gal-Fe gel
exhibited a burgundy color, which meant that the stoichiometry of the gallate-iron(III)
complex changed to 3:1. The scheme of complex formation is shown in Figure 3. UV-Vis
spectra were recorded for the swollen gel samples and compared with respective spectra of
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complexes of gallic acid and Fe(III) in aqueous solution at room temperature 21 ◦C. A blue
shift was observed for the gels, the wavelengths for maximum of absorption being shifted
to lower wavelengths compared with the solution. Moreover, the color of the gel at pH = 3
was pale, and in this case, a peak was barely visible. However, based on comparison of the
spectra it was concluded that similar complexes were formed between Fe(III) and gallate
groups from the polymer network in the gel and gallic acid in the solution.
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Lastly, the effect of the Fe(III) ion complexation by the polymer network on the
properties of the gels was studied. Due to the formation of Fe(III) complexes with gal-
late groups of different stoichiometry, depending on the pH, it was expected that the
resulting material would be pH- and thermosensitive. First, the swelling behavior of
p(NIPA-X%APMA)-Gal-Fe(III) gels was studied as a function of temperature at the selected
pH values of 3, 5 and 10, with predominant complexes of stoichiometry of 1:1, 1:2 and
1:3, respectively. The obtained results are presented in Figure 4. It was evident that for
each p(NIPA-X%APMA)-Gal-Fe(III) gel, both the swelling ratio and the VPTT decreased
with increasing pH, in the order 3, 5, 10. At pH = 3, complexes with 1:1 stoichiometry
predominated and no additional physical cross-links were formed. In addition, positive
charges were introduced into the polymeric network, leading to an increase in the swelling
ratio and VPTT compared with gel without Fe(III) (see Figure 2B). Increasing the pH to
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5 resulted in the formation of complexes with a stoichiometry of 1:2, meaning that two
gallate groups were involved in each complex and an additional physical crosslink point
appeared (the gel shrank and turned violet). Alkalization to pH 10, in turn, led to a further
decrease in the swelling ratio and shifted the VPTT to a lower value. This was explained
by the creation of complexes with a stoichiometry of 3:1, meaning that Fe(III) created
physical crosslink points that involved three gallate groups. Therefore, the increase in pH
caused increases in the functionality of the physical crosslink points from two, to four,
to six. The shift in VPTT for different complexes creates the opportunity to generate a
larger pH-triggered change in volume. From this point of view, the most interesting ranges
of temperature are those where the gels with 3:1 complexes shrink (after volume phase
transition), while those with 2:1 and 1:1 complexes swell (before volume phase transition).
These conditions allow the largest pH-dependent volume changes to be achieved. This
temperature range for p(NIPA-2.5%APMA)-Gal-Fe is narrow, and the volume changes are
relatively small. For p(NIPA-5%APMFAA)-Gal-Fe and p(NIPA-7.5%APmA)-Gal-Fe gels,
the temperature range and volume changes are significantly wider. Once again, optimal
hydrogel composition is where the widest temperature window, and the biggest volume
changes, are observed. However, for p(NIPA-5%APMA)-Gal-Fe, the volume changes are
largest around the temperature of the human body (~38 ◦C), and so this gel was selected
for further study.
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To visualize how pH affects the hydrogel structure, the morphology of three samples
of p(NIPA-5%APMA)-Gal-Fe were examined. The samples were conditioned at pH 3, 5
and 10, then lyophilized and investigated using SEM. The obtained images are presented
in Figure 5. The pore structure of the gel sample was well visible. The pore size was the
biggest for p(NIPA-5%APMA)-Gal-Fe conditioned at pH = 3 (Figure 5A). There were no
additional cross-linking points and the gel was in an expanded state, the average pore
size diameter was equaled at 21.25 ± 4.39 µm. For p(NIPA-5%APMA)-Gal-Fe hydrogel
at pH = 5, the diameter of the channels decreased to an average value of 8.9 ± 1.53 µm as
a result of additional cross-linking points appearing, arising from the interaction of iron
ions with two gallate groups. The smallest pores were observed for the gel conditioned
at pH = 10 (Figure 5B); their average size was 3.48 ± 1.15 µm, as expected for a gel where
three gallate groups attached to a polymer chain interacted with one iron(III) ion. These
results were in good agreement with data obtained from swelling behavior experiments,
see Figure 4B.
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Next, the influence of complex stoichiometry on the mechanical properties of the
gels was quantitively determined by rheological measurements. Figure 6A presents the
storage modulus (G′) and loss modulus (G′ ′) as a function of the shear strain (γ) for a
fixed frequency of 10 rad s−1. The linear viscoelastic region (LVR), where G′ and G′ ′ are
independent of the shear strain, was seen for all pH; for p(NIPA-5%APMA)-Gal-Fe at
pH = 5 and 10, the LVR were narrowed. In spite of this, the storage modulus in this region
was significantly higher than the loss modulus, indicating a soft solid-like state. With
increasing shear strain, G′ decreased, while G′ ′ initially increased, to further decrease
after the crossover point. This behavior is called weak-strain overshoot behavior (type III
behavior) [52,53]. The increase in G′ ′ indicates the crushing of the internal structure of
materials; the critical strain (deformation γc at which G′ ′ starts to increase) increased in
the order pH = 10, 5, and 3, at 0.251%, 0.634%, and 4.000%, respectively. These γc values
are marked with dashed lines in Figure 6A. Decreasing critical strain could be related to
increasing cross-linking density. This finding was in agreement with UV-Vis, swelling ratio
and SEM investigations. For the gels, the highest crosslinking density was obtained at
pH = 10, where 3:1 complexes between gallate groups and Fe(III) were formed and the value
of γc was the smallest, while the lowest crosslinking density was at pH = 3, where complex
stoichiometry was 1:1 and γc had the greatest value. In addition, the storage modulus
increased with increasing pH, indicating that the gels became more robust. Figure 6B
presents G′ and G′ ′ at different angular frequencies, and constant amplitude γ = 0.2%
chosen from the linear viscoelastic region from Figure 6A. For all the obtained hydrogels,
the storage modulus was larger than the loss modulus, indicating the solid-like and elastic
nature of p(NIPA-5%APMA)-Gal-Fe gels. The storage modulus changed slightly over the
measured frequency range, which is typical of covalently cross-linked gels, whereas the
loss modulus changed significantly. For p(NIPA-5%APMA)-Gal-Fe, G′ ′ first decreased
with increasing frequency, then increased. The nature of the metal–ligand crosslinking
coordination bond has dynamic, not covalent, nature [54,55]. Nevertheless, the G′ and
G′ ′ dependence indicates that Gal-Fe are strong bonds providing additional high stability
crosslinks near permanent crosslinks [56]. As was shown by Amstad et al., the relaxation
time is longer for pyrogallol-modified PEG hydrogels, which are stronger than catechol
analogs [57]. Figure 6C shows that the loss factors (of p(NIPA-5%APMA)-Gal-Fe) for lower
frequencies were below 0.1 for all mono, bis, and tris complexes, which is typical for gel-like
materials. At pH 10, the competition between ligand gallate groups and hydroxyl groups
and iron(III) can take place [54]. When frequencies increase, more viscous-like behavior is
predominant for all pH, with G′ ′ approaching G′ presumably, deformation of the robust
polymer structure is responsible for this response [58].
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3. Conclusions

Gallic acid was introduced to thermoresponsive gels based on N-isopropylacrylamide
functionalized with amino groups. This was confirmed with 1H NMR spectroscopy and
the hydrogels were found to exhibit similar electrochemical properties as unbounded gallic
acid in aqueous solution. The gallate groups attached to the polymeric network were
shown to be able to create stable complexes with Fe(III) ions. The stoichiometry of the
complexes so formed depended on the pH, and this was reflected in the different colors of
the gels. In consequence, the temperature of the volume phase transition and the swelling
ratio decreased substantially with increasing pH and changing stoichiometry from 1:1
through to 1:2 to 1:3. This creates a potential to generate a larger change in volume caused
by pH. Interestingly, the volume changes exhibited by p(NIPA-5%APMA)-Gal-Fe gel were
largest at a temperature close to that of the human body (~38 ◦C). Moreover, note that the
pH sensitivity of the gels was not related to protonation or deprotonation of the acid/base
groups in the polymer network, which is the typical mechanism for such environmentally
sensitive hydrogel materials. Rather, in this case, changes in the stoichiometry of com-
plexes, which act as physical crosslinking points with different functions, were responsible
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for pH sensitivity. The formation of complexes of different stoichiometry also strongly
influenced the morphology and mechanical properties of the gel. Such modification of
thermoresponsive pNIPA gel with gallic acid opens new opportunities for the development
of pH- and thermosensitive gel materials.

4. Materials and Methods
4.1. Materials

N-isopropylacrylamide (NIPA), N-(3-aminopropyl)methacrylamide hydrochloride
(APMA), N,N′-methylenebisacrylamide (BIS), ammonium persulfate (APS), N,N,N′,N′-
tetramethylethylenediamine (TEMED), gallic acid (GA), N-(3-Dimethylaminopropyl)-N′-
ethylcarbodiimide (EDC), N-hydroxysuccinimide (NHS), dimethylformamide (DMF), tri-
ethylamine (TEA), sodium nitrate (NaNO3), chloric acid (HCl), sodium hydroxide (NaOH),
and D2O were purchased from Aldrich. All chemicals were used as received, except for
NIPA, which was recrystallized from the toluene-hexane mixture (90:10 v/v). All solutions
were prepared using high purity water obtained from a Hydrolab purification system
(water conductivity: 0.05 µS·cm−1).

4.2. p(NIPA-X%APMA)-Gal Gel Preparation

p(NIPA-X%APMA)-Gal gels were synthesized by free-radical solution copolymeriza-
tion. The total concentration of NIPA, APMA, and BIS was kept constant at 700 mM. BIS
concentration in all samples was fixed at 1 mol.%, while the concentrations of NIPA and
APMA were varied. The APMA concentration was either 2.5%, 5% and 7.5%. The pre-gel
solutions were degassed and the polymerization was initiated and accelerated by APS
(2 mM) and TEMED (32 mM) and carried out at 5 ◦C for 20 h. The gel was synthesized in
bulk and in glass rods with a known diameter of 500 µm. After this time, the gel was taken
from the forms and washed five times with water to remove unreacted reagents. After
synthesis, the gels were transparent and colorless. In the next step, hydrogels were cut
into pieces and dried. After drying, gel samples were immersed in DMF solution with
NHS (25 mM) and gallic acid (20 mM) to swell. Next, TEA (25 mM) and EDC (100 mM)
were added. The next day, samples were washed several times to exchange DMF for water
and to remove residues. The last step involved gel modification with iron ions. For this
purpose, p(NIPA-X%APMA)-Gal gels were immersed in degassed, 10 mM Fe(III) solution
(pH ca. 3). Volumes of the solution were chosen to provide a 50% excess of Fe(III) to the
gall groups. It was assumed that the incorporation of APMA monomer into the polymer
network and its modification with gallic acid had 100% efficiency. After 10 min, the iron
solution was replaced with a solution with pH = 3, 5, or 10, respectively, and gel samples
were equilibrated in these solutions. To maintain ionic strength at the same level, solutions
contained 1 mM NaNO3, except for solutions with pH = 3, (this was undertaken to avoid
the influence of the ionic strength on the degree of swelling).

4.3. Methods
4.3.1. Swelling Ratio Measurements

Modified rod-shaped gel samples were inserted into a water-jacketed cell filled with
appropriate solvent. The changes in the gel volume, caused by changes in temperature,
were determined directly from the changes in the sample diameter. The latter was measured
using an inverted optical microscope equipped with a digital camera (Zeiss Primo Vert,
Jena, Germany). During the experiments, temperature was controlled using a heated
circulating bath (PolyScience, Niles, IL, USA). The swelling ratio for the rod-shaped gels
can be defined as V/Vo = (d/do)3, where V and Vo represent the equilibrium volume of
the hydrogel and the initial gel volume, d denotes the diameter of the gel rod, and do is
the diameter of the capillary in which the gel was synthesized. The precision of gel rod
diameter measurement was better than 3%.
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4.3.2. Scanning Electron Microscopy

To visualize pores in the obtained gels, cross-sections of samples were analyzed using
a scanning electron microscope (SEM). The SEM images were taken with a Zeiss Merlin
(Zeiss, Jena, Germany) field-emission instrument. Before taking the micrographs, the
hydrogel samples were dried using the lyophilization method. The samples were first
frozen in liquid nitrogen to maintain their porous structure and then freeze-dried at −82 ◦C
under 0.05 mbar pressure in a Lyophilizer Labconco FreeZone apparatus (Labconco, Kansas
City, MO, USA). Before the imaging, the samples were coated with a 3 nm layer of sputtered
Au–Pd alloy using a Polaron SC7620 (Quorum, Hertfordshire, UK) mini sputter coater.

4.3.3. UV-Vis Spectroscopy

The spectra of complexes of modified hydrogel with iron(III) and solution of gallic acid
and iron(III) in different pH were recorded using a Thermo Scientific Spectrophotometer
Evolution 300 (Thermo Fisher Scientific, Waltham, MA, USA) in the range of 350–800 nm.

4.3.4. Electrochemical Characterization

The cyclic voltammograms were registered in a three-electrode system, in a custom-
built electrochemical cell enabling measurements to be conducted in a hydrogel without
external solution. The counter and reference electrodes were placed on the bottom, as a
circle and surrounding ring, the gel sample was placed on it, and the working electrode
pressed onto the gel from above. The working electrode was glassy carbon, while the
counter and reference electrodes were made of platinum. The hydrogels were soaked in a
0.001 M NaNO3 solution that served as a supporting electrolyte.

4.3.5. Rheological Measurements

An Anton Paar MCR302 (Anton Paar, Graz, Austria) rheometer was used for dynamic
shear rheology experiments using a set of 15 mm diameter parallel plates at a constant
temperature of 20 ◦C. First, dynamic oscillatory strain sweep experiments were performed
on the hydrogels to determine the limit of the linear viscoelastic region. The dynamic strain
sweep (γ) was performed at constant frequency, ω = 10 rad·s−1 in the range of 0.01% to
400%. Therefore, in all the frequency sweep tests, the strain amplitude (γ) was fixed at 0.2%
(within a linear viscoelastic range small enough to avoid the nonlinear response and large
enough to have a reasonable signal intensity), over a frequency range of 0.01–100 rad·s−1.
Temperature was controlled using a PolyScience circulating bath (PolyScience, Niles, IL,
USA). A cap was used to keep the desired constant temperature of hydrogel samples and
minimize water evaporation during rheological measurements.

4.3.6. NMR Studies
1H NMR spectra were obtained in D2O at 22 ◦C using a Bruker 300 MHz spectrometer

(Brucker, Billerica, MA, USA). The samples were dried at room temperature. Next the
samples were ground and swollen in D2O.
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