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Abstract: Hypodontia (dental agenesis) is a genetic disorder, and it has been identified that the
mutation C175T in PAX9 could lead to hypodontia. Cas9 nickase (nCas9)-mediated homology-
directed repair (HDR) and base editing were used for the correction of this mutated point. This
study aimed to investigate the effect of HDR and the base editor ABE8e in editing PAX9 mutant.
It was found that the chitosan hydrogel was efficient in delivering naked DNA into dental pulp
stem cells (DPSCs). To explore the influence of the C175T mutation in PAX9 on the proliferation
of DPSCs, hydrogel was employed to deliver PAX9 mutant vector into DPSCs, finding that the
PAX9-containing C175T mutation failed to promote the proliferation of DPSCs. Firstly, DPSCs stably
carrying PAX9 mutant were constructed. Either an HDR or ABE8e system was delivered into the
above-mentioned stable DPSCs, and then the correction efficiency using Sanger sequencing and
Western blotting was determined. Meanwhile, the ABE8e presented significantly higher efficiency
in correcting C175T compared with HDR. Furthermore, the corrected PAX9 presented enhanced
viability and differentiation capacity for osteogenic and neurogenic lineages; the corrected PAX9 even
possessed extremely enhanced transcriptional activation ability. In summary, this study has powerful
implications for studies into base editors, chitosan hydrogel, and DPSCs in treating hypodontia.

Keywords: hydrogel; hypodontia; dental agenesis; dental pulp stem cells; PAX9; ABE8e

1. Introduction

Hypodontia (dental agenesis) is a condition of tooth loss, and the agenesis of perma-
nent teeth is a clinically challenging problem in humans. Hypodontia describes the absence
of one to six teeth, excluding third molars, and the global incidence is 1.6–9.6% [1]. Tooth
development is under strict genetic control, and paired box 9 (PAX9) is a transcription factor
that is expressed in the mesenchyme during the early stages of tooth development [2–5].
The PAX9 gene is located in chromosome 14, and PAX9 mutations are related to congenital
tooth missing cases. Among PAX9 mutations, the heterozygote transition of C175 to T cre-
ates a stop codon at arginine 59 (Arg59) in the protein, which is located in the DNA-binding
pair box of exon 2 [6,7]. Therefore, this mutation in PAX9 causes dental hypoplasia.

Human dental-pulp-derived stem cells (DPSCs) are mesenchymal stem cells with
plastic adhesion and fibroblast-like morphology. Studies have shown that they express
specific markers CD90 and CD73 of mesenchymal stem cells [8]. DPSCs are a highly hetero-
geneous population with different cloning and expression markers, as well as differences in
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proliferation and differentiation abilities [9]. DPSCs can differentiate into various lineages
such as odontoblasts, adipocytes, and neurons in vitro [10].

Correcting mutated genes in stem cells is an attractive therapy for hereditary dis-eases
which requires the delivery of gene repair tools to these cells [11,12]. To a large extent
benefitting from nanocarriers, nonviral vector systems are promising alternative to virus-
based gene delivery counterparts [13]. The nanocomplex revealed good biocompatibility
and transfection efficiency. It has been found that hydrogel could also enhance vector
retention and increase gene delivery [14,15].

Hydrogel is a three-dimensional (3D) cross-linked molecular network established by a
covalent bond or noncovalent interaction. The network’s noncovalent interaction mainly
includes physical entanglement, hydrogen bonds, hydrophobic interaction, coordination
interaction, and so on [16]. Many properties of hydrogel, such as strength, toughness, and
adhesive ability, could be well controlled to realize its application in tissue engineering,
biomedicine, biosensors, and other fields. Furthermore, hydrogels can hold a large amount
of water. Therefore, researchers try to synthesize hydrogels for studying a series of natural
polymers and synthetic polymers [17]. By introducing glycerol or mixed nanoparticles into
the hydrogel network, excellent self-healing properties and adhesion can be obtained [18].
Therefore, hydrogel provides an interesting and ambitious approach to deliver PAX9
modification systems into stem cells.

Because of their superior properties, hydrogels are widely used in many fields. The
rich water and 3D network structure of hydrogels make them have strong diffusivity and
provide a physiological simulation environment for cell/tissue metabolism, which has
excellent prospects in biomedicine, such as drug delivery, cell culture, tissue regeneration,
etc. [18]. Hydrogel could be applicated in cartilage tissue regeneration, corneal defect
healing [19], and wound healing acceleration [20]. A hydrogel with stable mechanical
properties and hemostatic activity is used for tissue adhesion [21]. A conductive self-
healing hydrogel with injectability, strain/motion sensing capability, and its application
in nerve regeneration has been proved [22]. Furthermore, hydrogel could also be used in
DPSCs research. A shear-thinning, ROS-scavenging hydrogel has been combined with
DPSCs to promote spinal cord repair [23]. It was also reported that multicellular spheroids
formation on hydrogel could enhance osteogenic/odontogenic differentiation of DPSCs
under magnetic nanoparticles induction [24].

Chitosan, the deacetylated form of chitin, is used in a broad range of applications in
biomedicine because it has proved to be nontoxic, biocompatible, and biodegradable [25–27].
Because of the active amino groups and hydroxyl groups in its polycationic structure,
chitosan is easy to modify. It can effectively bind negatively charged domains, such as
drugs, DNA, and RNA, to transport these substances into cells [28–30]. Positively charged
chitosan can bind to a negatively charged CRISPR/Cas9 system through electrostatic
interactions, forming stable peptides [30]. In addition, due to the negative charge on the
cell and nuclear membranes, the interaction with positively charged chitosan leads to the
absorption of transporters and nuclear migration [31].

The clustered regularly interspaced short palindromic repeats/Cas9 nuclease (CRISPR/
Cas9) system is a widely accepted and efficient gene-editing technology [32,33]. Some
studies used chitosan to transport CRISPR/Cas9 delivery systems to cells for genome
editing [34]. For example, it was reported that chitosan nanoparticles were employed to
load the CRISPR/Cas9 system and transport it to fibroblasts for editing the gene BMPR2
that causes hereditary pulmonary hypertension (PAH) [35]. In another study, chitosan
was used to coat nanoparticles that were based on polylactic acid glycolic acid (PLGA). It
transported the CRISPR/Cas9 system to HEK-293 cells, which inhibited the expression
of green fluorescent protein (GFP) by up to 80% [36]. There are currently a variety of
Cas9-based technologies in use, such as homology-directed repair (HDR) and the adenine
base editors (ABEs) for the treatment of genetic diseases [37,38]. The double nicking by
gRNA pair-guided Cas9 nickase (nCas9) reduces off-target mutagenesis by 50- to 1000-
fold compared with wild Cas9 [39]. On the other hand, Liu et al. assembled nCas9
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and the adenine deaminase TadA into ABE8e, which could convert A•T to G•C [40–42].
Furthermore, the catalytic deamination effect of advanced ABE8e increased more than
1000-fold compared with its ABE counterparts [43].

To explore the application of gene editing in the treatment of tooth agenesis, it was
first proved that the PAX9 mutant failed to promote the proliferation of dental pulp stem
cells (DPSCs). Then, the in vitro PAX9 mutant models were generated based on the C175T
mutation for the exploration of gene correction. The ABE8e demonstrated substantially
improved editing efficiencies compared with HDR. Furthermore, hydrogel enhanced the
delivery of ABE8e into DPSCs and finally raised the correction of PAX9 mutant and
improved the proliferation and differentiation of DPSCs. This study provides an innovative
approach for gene therapy by employing nanoparticles to deliver the advanced gene editor
ABE8e to stem cells.

2. Results
2.1. Preparation of Hydrogel Based on Chitosan

To transport the CRISPR/Cas9 system into DPSCs using chitosan hydrogel in this
study, chitosan hydrogel was first synthesized (Figure 1A). The deacetylated chitosan
solution was prepared by dissolving it in acetic acid solution at room temperature. The
pH of the deacetylated chitosan solution was adjusted to neutral and it was refrigerated.
After dialysis for 1–3 days, the hydrogel was centrifuged to remove the unconjugated
water to prepare the chitosan hydrogel. SEM was used to evaluate the surface morphology,
pore morphology, and pore size distribution of the chitosan hydrogel (Figure 1B). The
chemical structures of chitosan hydrogel were determined by FTIR (Figure 1C). Compared
with chitosan reported in the previous literature [44], it is obvious that the characteristic
peaks (O-H) in the chitosan hydrogel shifted from 3290 cm−1 and became broad after the
chitosan hydrogel formation. The shift in partial IR absorption bands (e.g., amide bond and
CH2 bending) to a low wave number—the peaks shifted from 1584 to 1566.06 cm−1 and
from 1414 to 1409.7 cm−1—suggest hydrogen bonding among amino groups and hydroxyl
groups, which are exposed on the chitosan molecular chain.

2.2. Hydrogel Improved Plasmid Delivery into DPSCs

Firstly, the DPSCs characteristics were confirmed through flow cytometry assessment.
The DPSCs were positive for the mesenchymal markers CD90 and CD73 and negative for
the hematopoietic markers CD45 and CD34 (Figure 2A). It was reported that transfection
of DPSCs using lipofectamine is poor [45], and nanoparticles have potential to improve
transfection of stem cells. The influence of Lipofectamine™ 3000, lentiviral vector, and
chitosan hydrogel on delivering the GFP-expressing vector into DPSCs was first explored.
Through the detection of fluorescence using microscope (Figure 2B) and flow cytometry
assessment (Figure 2C,D), it was found that hydrogel could markedly improve the trans-
fection. Then, Cell Counting Kit-8 (CCK-8) assay was utilized to detect the influence of
hydrogel on cell viability, finding that the polypeptides presented mild influence on DPSCs
viability (Figure 2E).
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2.3. C175T Mutation Eliminates the Role of PAX9 in Promoting DPSCs Proliferation

PAX9 is expressed in the mesenchyme during tooth development; the point mutation
of C175T creates a stop codon in the original position of Arg59, meaning early termination
of translation [4]. According to the coding sequence (CDS) of PAX9, the vector carrying the
PAX9 CDS with C175T mutation (Figure 3A,B, Scheme S1A) was constructed. To evaluate
the function of PAX9, the chitosan hydrogel was used to deliver the vector carrying the
wild or mutated PAX9 CDS into DPSCs. Seventy-two hours post delivery, the total cellular
protein was extracted, and the protein level of PAX9 was measured using Western blotting.
The results show that the wild PAX9 vector overexpressed PAX9 in DPSCs, while the
mutated PAX9 vector failed to express PAX9 in DPSCs (Figure 3B, Scheme S1B). Then
CCK-8 assay was conducted to detect the influence of modified PAX9 on the proliferation of
DPSCs, finding that mutated PAX9 had no effect on the promotion of DPSCs proliferation
(Figure 3C).

2.4. Correction of Mutated PAX9 Using nCas9-Mediated HDR

To correct the C175T mutation in PAX9, chitosan hydrogel was used to deliver the HDR
correction system into DPSCs stably carrying PAX9 with the C175T mutation. According to
the position of the C175T mutation, theoretically, it is suitable for repair by HDR and ABE8e.
Then, the PAM-out gRNA pairs for repairing PAX9 mutant using HDR were designed
(Figure 4A). To increase HDR accuracy, PAM blocking and gRNA blocking in the HDR
template were introduced through synonymous mutation. The PAM blocking was TGG
> TGA at the end of one gRNA, and the gRNA blocking was the mutation of another
gRNA sequence in the HDR template (Figure 4B). PAX9 was sequenced and determined the
protein level of PAX9 72 h post delivery of HDR; the Sanger sequencing showed that HDR
corrected the C175T mutation to some extent (Figure 4C). To further validate the correction
efficiency, the PAX9 protein levels were detected using Western blotting, finding that PAX9
protein level increased mildly (Figure 4D). The results indicate that HDR could correct the
C175T mutation, but it is not very efficient; so, to improve the correction efficiency, it is
necessary to find more effective solutions.
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GFP expression plasmids were delivered using Lipofectamine™ 3000 or hydrogel. (B) The fluorescence
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cence intensity. (D) Mean fluorescence index of fluorescence intensity from flow cytometry assessment.
(E) CCK-8 assays for evaluating the influence of hydrogel on DPSCs. The assay was conducted at 24, 48,
96, and 120 h post delivery. All data are from experiments performed in triplicates; ns, not significant;
** p < 0.01, *** p < 0.001.
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and mutated PAX9 plasmids. The mutated PAX9 contains the point mutation C175T. *, stop codon.
Green rectangle indicates Exon 1, 3, 4. Orange rectangle indicates Exon 2. (B) Sequence of PAX9mut
in vector. Green oscillogram indicates base A. Red oscillogram indicates base T. Blue oscillogram
indicates base C. Black oscillogram indicates base G. (C) Western blotting assays for evaluating the
expression of PAX9 in DPSCs. Mock vectors, PAX9mut vectors, and PAX9 vectors were delivered
to DPSCs using hydrogel. (D) CCK-8 assays for evaluating the influence of C175T in PAX9 on the
proliferation of DPSCs. Error bars represent mean ± SD (n = 3). ** p < 0.001, *** p < 0.0001.
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2.5. Correction of Mutated PAX9 Using Cas9-Mediated ABE8e

Owing to the high efficiency of ABE8e in correcting base A to G in the DNA context [40],
chitosan hydrogel was also employed to deliver ABE8e to DPSCs stably carrying PAX9
with the C175T mutation (Figure 5A). Seventy-two hours post delivery of ABE8e system,
PAX9 was sequenced, and the Sanger sequencing showed that ABE8e corrected the C175T
mutation remarkably (Figure 5B). In addition, to explore the correction efficiency of ABE8e,
the protein level of PAX9 was determined 72 h post delivery of HDR or ABE8e system
using Western blotting. The results show that ABE8e presented more efficient correction
compared with HDR (Figure 5C). The results indicate that ABE8e mediated significantly
more efficient correction of C175T compared with HDR.
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evaluating the expression of PAX9 72 h after ABE8e delivery into DPSCs by hydrogel.

2.6. Hydrogel-Delivered ABE8e Improves the Proliferation and Differentiation of DPSCs

Chitosan hydrogel was used to deliver the ABE8e editing system into DPSCs. Seventy-
two hours post plasmid delivery, the cells were reseeded and photographed forty-eight
hours later, showing that the ABE8e correction group showed more cells compared with
DPSC delivered with mock plasmids (Figure 6A). Furthermore, the CCK-8 assay showed
that hydrogel-ABE8e-modified DPSCs showed higher viability (Figure 6B). Furthermore,
hydrogel-ABE8e-modified DPSCs demonstrated improved differentiation capacity into
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osteogenic (Figure 6C) and neurogenic lineages (Figure 6D). Considering that the BMP4
promoter is the downstream transcription target of PAX9 [46], the dual luciferase assay was
conducted to test the transactivation ability of PAX9. The gene-editing vectors with BMP4
promoter–reporter construct were cotransfected into the DPSCs. The results of relative
luciferase activity show that the modified PAX9 by ABE8e possessed extremely enhanced
transcriptional activation ability (Figure 6E).
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the BMP4 promoter is the downstream transcription target of PAX9 [46], the dual lucifer-
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DPSCs. (B) CCK-8 assays for evaluating the influence of modified PAX9 on DPSCs proliferation. 
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Figure 6. Impact of hydrogel-delivered ABE8e on DPSCs functions: (A) Photos of proliferated DPSCs.
(B) CCK-8 assays for evaluating the influence of modified PAX9 on DPSCs proliferation. The assay
was conducted at 24, 48, 96, and 120 h post delivery. All data are from experiments performed in
triplicates. (C) Alizarin red staining after osteogenic induction for 21 days. (D) Immunofluorescence
staining after neurogenic induction for 7 days (green: TuJ1). (E) Dual luciferase assays for the
evaluation of the influence of PAX9 on the transactivation of the BMP4 promoter. Error bars represent
mean ± SD (n = 3); ns, not significant; * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Discussion

Tooth development is strictly genetically regulated, and PAX9 mutations could cause
dental hypodontia. In the PAX9 mutation, the heterozygous transition from C175 to T
produces a stop codon at arginine 59 (Arg59) in the protein [4]. This mutation prevents
the translation of PAX9 and attenuates its ability to activate transcription, thereby causing
missing teeth.

The delivery of gene therapy tools to stem cells via nonviral vectors would be an
at-tractive alternative to the treatment of hypodontia. This strategy eliminates the risk of
multiple viral vectors mentioned above [47,48]. It was recently reported that gene-editing
tools could mediate efficient base editing in primary and immortalized cells [49], so it was
tried in immortalized stem cells. However, the transfection efficiency of stem cells is very
low. According to reports, hydrogel could improve transfection efficiency and therefore
serves as a particularly potential DNA delivery vector [15].

Hydrogels are highly hydrophilic three-dimensional network gels formed by hydrophilic
polymers which have been studied for more than 100 years [50]. Hydrogels can be divided
into natural hydrogels and synthetic hydrogels. One component of water gel can obtain more
robust physical or chemical characteristics by combining different raw materials. In addition,
hydrogels have different sizes (microgel, nanogel, etc.). With the progress of technology, self-
healing injectable hydrogels, robust viscous hydrogels, and even conductive hydrogels for
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nerve injury repair have entered the research stage. Researchers are trying to use various
drugs and bioactive factors to enhance the function of hydrogels. Developing hydrogels with
higher biological activity and function is of great significance. Some medicines are injected into
the desired position in the solution state and then become a gel, which allows the drug to be
administered with minimal invasion and eliminates the need for surgery to implant prefabri-
cated materials. The network has good biocompatibility [51,52], swelling [53], and mechanical
characteristics similar to the soft tissue extracellular matrix [54], making it widely used in tissue
engineering, drug, and gene delivery, as well as cell morphogenesis [55–57]. Hydrogel has the
characteristics of easy production, biocompatibility, and large cargo capacity [58,59]. Therefore,
hydrogel is very advantageous for us to safely transport gene therapy systems with large
molecular weight. In our study, the GFP expression plasmid delivery indicated that hydrogel
enhanced plasmid transfection into DPSCs.

Human dental pulp mesenchymal stem cells (hDPMSCs) are composed of a variety
of subtypes, including DPSCs, periodontal ligament stem cells (PDLSCs), apical papillary
cells (SCAP), and alveolar bone marrow stem cells (ABMSCs), obtained from different types
of dental tissue [7]. Gronthos et al. isolated and identified DPSCs for the first time. They
have powerful proliferative properties and can differentiate into bone [60], dentin [61], and
nerve [62], with high angiogenic and neurogenic potential. In addition, preclinical/clinical
studies have demonstrated the therapeutic potential of DPSCs for the regeneration of
various tissue diseases, including ischemic brain injury, infarcted myocardium, muscular
dystrophy, and dental caries [63].

In this research, DPSCs stably carrying PAX9 with the C175T mutation were established.
The dental pulp is essential for maintaining teeth, providing nutrition and oxygen supply,
innervation, reactive/restorative dentin formation, and immune response [64]. Caries not only
destroy the rigid structure of teeth but also cause pulp necrosis in severe cases. Current dental
pulp treatment schemes cannot achieve pulp regeneration. The most common method for
treating pulp necrosis is to remove damaged pulp tissue, which can lead to loss of tooth vitality
and increase tooth fragility. However, DPSCs isolated from dental pulp tissue exhibit mes-
enchymal stem-cell-like characteristics and are fibroblast-like adherent cells characterized by
colony-forming activity, self-renewal, and multiple lineage differentiation potentials. Like other
mesenchymal stem cells, DPSCs have received considerable attention in regenerating damaged
dental pulp tissue due to their pluripotency, high fertility, and viability after cryopreserva-
tion [65]. DPSC can be easily isolated from discarded teeth and stored in stem cell banks for a
long time, improving the convenience and operability of its application [66]. DPSC has a high
proliferation and migration ability and the immune regulation and angiogenesis/neurotrophic
effects of secretors [67]. DPSC is nonimmunogenic and does not trigger an allogeneic immune
response [68]. Several studies have isolated highly proliferative dental pulp cells from adult
dental pulp tissue and differentiated them into odontoblasts and mineralization in vitro [69].

The regeneration of dental pulp tissue is essential in dentistry, but it is currently difficult
to achieve. Researchers developed a three-dimensional (3D) cell culture system based on
double injectable network (DN) hydrogel for dental pulp regeneration. Due to the kinetic
properties of cross-linking, DN hydrogel has ideal injectability under physiological conditions,
good mechanical properties, and longer degradation time. The characteristics of DN hydrogel
promote the tooth differentiation and mineralization of hDPSCs in vitro [70]. Hydrogel wound
dressing shows good application potential in hemostasis, promoting tissue regeneration,
epithelial regeneration, and other functions required in wound healing [71,72]. Hydrogel
dressing can seal the wound, accelerate hemostasis [73], and reduce the pressure of wound
temperature and vasodilation on peripheral nerve fibers [74].

Moreover, hydrogel wound dressing has good deformability and is helpful for wound
repair [75]. Due to the ability to cover the postoperative site and maintain the continuous
release of drugs, hydrogels even have great potential in preventing tumor recurrence [76].
Through the engineering design of hydrogels, precise control of RNA therapy can be
achieved from the hydrogel loading and controlled release of RNA [50]. Furthermore,
chitosan is widely used, owning to its biocompatible and degradable nature [77]. Chitosan-
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based carriers have attracted increasing interest as a safe delivery system for drug, plasmid
DNA, and RNA.

DNA double-strand breaks (DS) produced after treatment with ZFN, TALENs, or Cas9
are mainly repaired through three main mechanisms: nonhomologous terminal joining (NHEJ)
and HDR [78]. However, during the DNA terminal junction process of NHEJ, insertion or
deletion (indel mutation) can be introduced into the DNA sequence of the DSB region. In
addition, MMEJ is a variant of NHEJ based on the appearance of microhomology that is
classified as highly error-prone [78,79]. The HDR pathway requires donor recombination to
restore the correct DNA sequence [80]. This precise modification is desirable for targeted
genomic engineering. The paired gRNA in PAM-out orientation mediates HDR efficiently,
while the gRNA in PAM-in orientation could hardly mediate HDR [81]. Therefore, the gRNA
in PAM-out orientation was employed to mediate HDR. To prevent mutations after repair,
synonymous mutations were introduced in the gRNA sequence, that is, the gRNA blockade.
The combined use of nCas9 and paired gRNA improves HDR efficiency, but only achieves
mild gene repair [82].

It was documented that the base editor ABE could target genomic DNA under the
guidance of gRNA, finally achieving the replacement of A•T base pairs to G•C base pairs.
For the C175T mutation in PAX9, the advanced ABE, ABE8e, was used to edit A175 on the
complementary strand and convert it to C during DNA replication to achieve the repair.
Because ABE8e might edit all base A in the gRNA coverage, and T170 and T178 are both in
the gRNA coverage of repairing C175T. Theoretically, the corresponding A to T170 and T178
on the complementary strand could be converted to G to varying degrees by ABE8e. That
is, T170 and T178 might be converted to C170 and C178, which could be detected by the
next deep sequencing. Western blotting was used to find that after modification by ABE8e,
the m protein levels of PAX9 were significantly increased, so the conversion of T170C and
T178C should not affect the expression of PAX9. Furthermore, the dual luciferase assay
showed that the corrected PAX9 possessed elevated transactivation activity. The isolation
method of dental pulp stem/progenitor cells from a single human adult colony has been
further characterized, demonstrating self-renewal ability, pluripotent differentiation, and
in vivo differentiation into odontoblasts to form tubular dentin. Hydroxyapatite/tricalcium
phosphate was transplanted into immunocompromised mice [61,83]. Transplantation of
human DPSCs into chicken embryos yields a neuronal shape [84]. Transplantation of
positive DPSCs into immunosuppressed mice in rhesus monkeys can promote endothelial
cell proliferation, neural cell recruitment, and endogenous maturation by increasing ciliary
neurotrophic factor signaling to regulate the local microenvironment of neural progenitor
cells (CNTF), vascular endothelial growth factor (VEGF), and fibroblast growth factor [85].
These studies have shown that neurogenesis is crucial for dental pulp regeneration. Human
adult progenitor cells/stem cells are potential cell-derived diseases for treating nervous
system diseases. They can self-renew, have a long proliferative life, and differentiate into
neurons, chondrocytes, and adipocytes cultured in vitro [64].

It was reported that DPSCs demonstrated multipotent differentiation capacity into
osteogenic, neurogenic, chondrogenic, and adipogenic lineage [86,87]. Therefore, the
regulatory effects of hydrogel-delivered ABE8e on the proliferation and differentiation (in-
cluding osteogenic and neurogenic differentiation) of DPSCs was investigated. Interestingly,
hydrogel-ABE8e-modified DPSCs presented higher viability and improved differentiation
capacity into osteogenic and neurogenic lineages. In addition, BMP4 promoter is the
transcription target of PAX9 [46]. To further validate the efficiency of hydro-gel-delivered
ABE8e on C175T correction, the dual-luciferase assay was conducted to test the transac-
tivation ability of PAX9, finding that the modified PAX9 also enhanced transcriptional
activation ability.

4. Conclusions

In conclusion, the chitosan hydrogel-based nanomedicine was employed to deliver
HDR and ABE8e systems to stem cells for the correction of PAX9 mutant. CRISPR/Cas9-
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based gene editing and stem cells are potential in treating hypodontia induced by
genetic mutation.

5. Materials and Methods
5.1. Preparation and Characterization of Chitosan Hydrogel

The chitosan (Sigma-Aldrich, Burlington, MA, USA) solution (ultrasonic dissolution)
was dissolved to a concentration of 1% in 25 mM acetic acid solution under room tem-
perature. Then, the solution was filtered to remove undissolved particles. The pH of
the deacetylated chitosan solution was adjusted by adding 1% NaOH solution, stirred
well, and then refrigerated for 1–3 h. The obtained solution was dialyzed with 5–8 KD
dialysis bag for 1–3 days, and then the hydrogel was centrifuged to remove unconjugated
water to prepare the chitosan hydrogel for low-temperature storage. The dried chitosan
hydrogel was obtained by drying the hydrogel in a freeze dryer. The chitosan structure
of hydrogel was analyzed using a scanning electron microscope (SEM) (ZEISS, Göttingen,
Germany). Additionally, the characterization was analyzed using Fourier transform in-
frared (FTIR) spectroscopy, and the detector was deuterium triglycine sulphate (DTGS) KBr
optics. The SEM and FTIR detections were conducted in the Beike 2D materials Co., Ltd.
(Suzhou, China).

5.2. Cell Culture

Human DPSCs were purchased from Lonza (Catalog #: PT-5025. Basel, Switzerland)
and cultured in α-modified Eagle’s medium (α-MEM) (Thermo Fisher Scientific, Waltham,
MA, USA). The media were supplemented with 10% fetal bovine serum (FBS, Thermo
Fisher Scientific), 100 IU/mL penicillin, and 100 µg/mL streptomycin (Thermo Fisher
Scientific). All cells were cultured in a 37 ◦C humidified atmosphere and 5% CO2.

5.3. Delivery of DNA by Chitosan Hydrogel

As previously reported [88], chitosan was dissolved in a 25mM acetic acid solution
to the concentration of 1%, and the pH was adjusted to 5.5–5.7. Then, both the chitosan
solution and 50 mM of sodium sulfate solution containing DNA of 100 mg/mL were heated
to 50–55 ◦C separately. Subsequently, equal volumes of both solutions were quickly mixed
under high vertexing for 30 s to obtain nanoparticles. In total, 60–70% confluent DPSCs
were incubated with nanoparticles in Opti-MEM, low-serum medium (Thermo Fisher
Scientific) for 4 h in a 6-well plate, and then replaced with full growth α-MEM medium.

5.4. GFP Expression Plasmid Delivery by Lipofectamine® 3000 or Lentiviral Vector

For the exploration of delivery efficiency, DPSCs were transfected with GFP expres-
sion plasmids using Lipofectamine® 3000 transfection reagent (Thermo Fisher Scientific) in
6-well plates. DPSCs were also transduced with lentiviral vector expressing GFP expression
in the MOI of 10. 3 days later; the visualization images were taken at GFP channel using a
Zeiss microscope (Axio Observer 7, Göttingen, Germany). The fluorescence intensity was
monitored in FITC channel using flow cytometry assay (BD FACSCelesta, San Jose, CA, USA).

5.5. Generation of the PAX9 Mutant Vector

Total RNA from human DPSCs was extracted using TRIzol reagent (Thermo Fisher
Scientific), and the RNA was reverse-transcribed to cDNA using 2 µg of total RNA with
PrimeScriptTM RT Master Mix (Takara Bio, Shiga, Japan). The wild PAX9 CDS was obtained
through PCR, obtaining the 1049bp fragment. The primer sequences of picking PAX9
CDS are as follows: forward, 5′-TGG ATC CGA GCT CGGTAC CC-3′; reverse, 5′-GAG
CGC GGA AGC CGT GAC AG-3′. Then, the point mutations C175T was introduced to
generate mutated PAX9 CDS sequence through overlap PCR. For overlap PCR, the bridge
primers are as follows: forward, 5′-GAT ACA ACG AGA CGG GCT CGA-3′; reverse, 5′-
TCG AGC CCG TCT CGT TGT ATC ACG CCA GGA TCT TGC-3′. The underlined base in
the reverse primer is the part that overlaps with the forward primer; the italic base is for
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mutation G > A (C > T). The wild (PAX9wild) or mutated (PAX9mut) PAX9 CDS were
inserted into the pJET1.2/blunt cloning vector, followed by the insertion in expression
vector using digestion–ligation strategy.

5.6. Viability Assay

Briefly, DPSCs were seeded at a density of 1 × 104 per well in a 96-well plate and
transfected with hydrogel nanoparticles. Cellular viability of DPSCs was detected using the
CCK-8 assay kit (Sigma-Aldrich) at 24, 48, 72, 96, and 120 h post transfection. Briefly, CCK-8
assay solution was added to cells in culture and then they were incubated in a cell culture
incubator for 2 h at 37 ◦C. Subsequently, the absorbance values were measured at 450 nm
using a microplate reader (BioTek, Shoreline, VT, USA). Triple assays were analyzed.

5.7. Generation of Stable Cells

For the in vitro exploration of gene editing, the cells stably carrying PAX9wild or
PAX9mut CDS were first generated. PAX9wild or PAX9mut vectors were delivered into
DPSCs using the chitosan hydrogel. Three days later, the cells were transferred into ten-
centimeter dishes. The selection of stable cells was carried out with puromycin (Thermo
Fisher Scientific) at a concentration of 1 µg /mL for 1 week.

5.8. Western Blotting Analysis

To detect PAX9 expression with Western blotting, cell lysates were prepared, and the
amount of total protein was determined by the BCA Protein Assay Kit (Thermo Fisher Sci-
entific). Twenty micrograms of proteins were separated by ten percent SDS-polyacrylamide
gel (SDS-PAGE) and transferred onto a polyvinylidene fluoride (PVDF) membrane (Thermo
Fisher Scientific). The blocking of nonspecific binding sites in the membrane was conducted
by incubation with 5% nonfat milk for 1 h at room temperature. Subsequently, primary
antibody rabbit anti-PAX9 (Thermo Fisher Scientific) and then HRP-conjugated goat an-
tirabbit (Thermo Fisher Scientific) incubation was performed. Tubulin was employed as an
internal control. The Chemi-Doc XRS system (Bio-Rad, Hercules, CA, USA) was used to
visualize the bands.

5.9. Correction of PAX9 Mutant via HDR or ABE8e

For HDR and ABE8e editing, DPSCs were seeded in 24-well plates and transfected at
approximately 70% confluency using the Lipofectamine® 3000 transfection reagent. For HDR,
the sequences of paired gRNA in PAM-out direction are 5′-CGAGACGGGCTCGATCTTGCC-3′

and 5′-CAGCCGTGCGAGACCCGTAGC-3′; the sequences of paired gRNA in PAM-in direc-
tion are 5′-CCGCCAGCTACGGGTCTCGCA-3′ and 5′-CTTGCTGCCCCCGATGGCTCC-3′.
For ABE8e editing, the gRNA sequence is 5′-CCGTCTCGTTGTATCACGCCA-3′. For
HDR, 1 µg nCas9-double gRNA plasmid and a repair template were transfected per well,
the molar ratio for nCas9-double gRNA plasmid to the donor sequence was 1:21. For
ABE8e editing, 750 ng of ABE8e plasmid and 250 ng guide of RNA plasmid was transfected
per well.

5.10. Osteogenic Differentiation

According to published documents [80], osteogenic differentiation was induced. Os-
teogenic differentiation was performed 72 h post hydrogel delivery of ABE8e. DPSCs were
seeded into a 6-well plate at 2 × 103 cells/cm2 and cultured in an osteogenic induction
medium which consisted of 10% FBS and 10 mM β-glycerolphosphate (Sigma-Aldrich),
10 nM dexamethasone (Sigma-Aldrich), 50 mg/L L-ascorbic acid (Sigma-Aldrich), and 1%
penicillin/streptomycin. Then, 21 days later, cells were fixed with 4% paraformaldehyde
(PFA) and stained with 2% Alizarin red (Sigma-Aldrich). Finally, the cell pictures were
taken by the Zeiss microscope (Axio Observer 7).
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5.11. Neurogenic Differentiation

To induce neurogenic differentiation, DPSCs at passages 3–5 were seeded into a 6-well
plate at 1 × 104 cells/cm2 and cultured in a neurogenic induction medium for 7 days.
According to reports [80], the induction medium contained DMEM/F12: neurobasal 1:1)
supplemented with 0.5% (v/v) N2, 1% (v/v) B27 (Thermo Fisher Scientific), 100 µM cyclic
adenosine monophosphate (cAMP) (Thermo Fisher Scientific), 20 ng/mL basic fibroblast
growth factor (bFGF) (Thermo Fisher Scientific), and 1% penicillin/streptomycin. Finally,
the immunofluorescence analysis was performed by Zeiss microscope (Axio Observer 7).

5.12. Dual-Luciferase Assay

ABE8e vectors were cotransfected with a BMP4 promoter–reporter construct (p2.8BMP4-
Luc), and the phRL-TK plasmid (Promega Corp., San Luis Obispo, CA, USA) was used as
the internal control. According to the manuscript, cell extracts were prepared using the
Cell Culture Lysis Reagent (Promega Corp.) 72 h post transfection, and the extracts were
assayed using the Dual-Luciferase Reporter Assay System (Promega Corp.)

5.13. Statistical Analysis

All data were presented as mean± SD. The statistical significance of the difference
between groups was determined by ANOVA or Student’s t-test using GraphPad Prism
(version 9.2.0, GraphPad, San Diego, CA, USA). p < 0.05 was considered statistically
significant. All results were from experiments performed in triplicates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels9060436/s1, Scheme S1: (A) Schematic diagram of PAX9 or
PAX9mut expression vector: (B) Western blotting assays for evaluating the expression of PAX9 in
DPSCs. NC: DPSCs without treatment. Mock: mock vectors delivered to DPSCs using hydrogel.
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