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Abstract: Objectives: Impression materials could be a source of cross-contamination due to the
presence of microorganisms from blood and saliva inside the oral cavity. Nevertheless, routinely
performed post-setting disinfection could compromise the dimensional accuracy and other mechan-
ical properties of alginates. Thus, this study aimed to evaluate detail reproduction, dimensional
accuracy, tear strength, and elastic recovery of new experimentally prepared self-disinfecting dental
alginates. Methods: Two antimicrobial-modified dental alginate groups were prepared by mixing
alginate powder with 0.2% silver nitrate (AgNO3 group) and a 0.2% chlorohexidine solution (CHX
group) instead of pure water. Moreover, a third modified group was examined by the extraction of
Boswellia sacra (BS) oleoresin using water. The extract was used to reduce silver nitrate to form silver
nanoparticles (AgNPs), and the mixture was used as well in dental alginate preparation (BS + AgNP
group). Dimensional accuracy and detail reproduction were examined as per the ISO 1563 standard
guidelines. Specimens were prepared using a metallic mold engraved with three parallel vertical
lines 20, 50, and 75 µm wide. Detail reproduction was evaluated by checking the reproducibility
of the 50 µm line using a light microscope. Dimensional accuracy was assessed by measuring the
change in length between defined reference points. Elastic recovery was measured according to ISO
1563:1990, in which specimens were gradually loaded and then the load was released to allow for
recovery from the deformation. Tear strength was evaluated using a material testing machine until
failure at a crosshead speed of 500 mm/min. Results: The recorded dimensional changes between
all tested groups were insignificantly different and within the reported acceptable values (between
0.037–0.067 mm). For tear strength, there were statistically significant differences between all tested
groups. Groups modified with CHX (1.17 ± 0.26 N/mm) and BS + AgNPs (1.11 ± 0.24 N/mm)
showed higher tear strength values compared to the control (0.86 ± 0.23 N/mm) but were insignifi-
cant from AgNO3 (0.94 ± 0.17 N/mm). All tested groups showed elastic recovery values that met
both the ISO standard and ADA specifications for elastic impression materials and tear strength
values within the acceptable documented ranges. Discussion: The CHX, silver nitrate, and green-
synthesized silver nanoparticles could be promising, inexpensive alternatives for the preparation of
a self-disinfecting alginate impression material without affecting its performance. Green synthesis
of metal nanoparticles could be a very safe, efficient, and nontoxic method, with the advantage of
having a synergistic effect between metal ions and active chemical constituents of plant extracts.

Keywords: irreversible hydrocolloid gels; Boswellia sacra; tear strength; elastic recovery; detail
reproduction

1. Introduction

Alginates were originally developed in the 1930s, and they are among the regularly
used dental materials in every dental practice for making diagnostic casts and digital
models [1]. Alginates are available in the form of powder, which undergoes polymerization
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and gelation when mixed with water to turn into a gel and then elastic material. This
process of transformation of the powder to gel is employed to make a replica of the teeth
and soft tissues in dental clinics. Alginates have the advantages of being inexpensive, easy
to use, of hydrophilic nature, and acceptable by patients [2]. The powder is formed of
soluble sodium alginates, filler particles (diatomaceous earth), a calcium sulfate reactor,
fluoride as an accelerator, and sodium phosphate as a retarder [3].

Although dental alginates are not as good as elastomers in the reproduction of surface
details and dimensional stability due to imbibition and syneresis, the optimization of these
properties is still required to be able to serve its purpose. The dimensional accuracy of an
impression material directly affects the fit and retention of the indirect restoration, and
consequently the final clinical outcome. Moreover, precise surface detail reproduction is
very crucial in the construction process of working casts and virtual replicas, and, therefore,
significantly detailed final restoration [4,5].

Mechanical properties of alginate such as elastic recovery and tear strength can define
the quality of the impression and the final restoration [6]. Elastic recovery is the ability of an
elastic material to return to its original shape after being deformed inside the mouth with
negligible permeant deformation. The higher the elastic recovery of a material, the more
precise the final restoration will be [7]. Moreover, tear energy is very important, especially
in taking impressions in thin areas. High tear energy accounts for the high resistance of the
impression to rupture and distortion, especially in areas with existing undercuts [8].

On the other hand, dental impressions and gypsum casts poured against them are consid-
ered sources of cross-contamination from saliva and blood inside the oral cavity. Sterilization
by heat cannot be performed in cases of alginate due to its nature; therefore, only cold chemical
disinfection can be applied [9]. The ideal disinfection technique must not negatively affect the
physical and mechanical properties of the material and gypsum to produce an accurate final
appliance [10]. Commonly used chemical disinfectants include alcohols, aldehydes, sodium
hypochlorite, iodide compounds, and quaternary ammonium salts [11].

Spraying and immersion techniques are the two mainly used cold methods for the dis-
infection of alginate. However, these techniques present several shortcomings, as spraying
provides only a surface decontamination effect, whereas immersion is not optimum for
alginate due to its hydrophilic nature [10,11]. For hydrocolloids, the time and method of
application of a disinfectant depend on the ability of the material to withstand the proce-
dure without negatively affecting its properties [12]. On the other hand, if the disinfectant
concentration, PH, or contact time is not enough in spraying or immersion, the effectiveness
of disinfection will be compromised, particularly for hydrocolloids, where bacteria and
viruses can penetrate through the porous structure and grow inside the impression [10,13].

A new approach of incorporating chemical antiseptics into the alginate powder or mix-
ing water has shown to be effective in eradicating pathogens, without adversely affecting
the impression properties [14,15]. Moreover, it could be postulated that the impregnation
of decontaminators into the impression would lead to disinfection throughout the material
and not just superficially as in conventional techniques [16,17].

Chlorhexidine (CHX) has profound antibacterial and antifungal potentials with great
efficacy even at low concentrations. CHX can affect both aerobic and anaerobic bacteria and
even destroy DNA and RNA viruses [18]. Furthermore, silver nitrate is a common silver
salt, which is widely used in medicine due to its antibacterial properties. Silver nitrate
efficacy could be related to the ability of silver ions to bind to the bacterial cell wall and
DNA, causing bacterial inactivation and inhibition of their replication [19]. Recently, using
plant extracts for the green synthesis of silver nanoparticles (AgNPs) is attracting high
attention due to their role in reducing and stabilizing nanoparticles, in addition to being
environmentally friendly and with enhanced therapeutic potentials [20]. Currently, green
protocols for the synthesis of AgNPs by plants or microorganisms are evolving rapidly as a
novel field of science that is known as green nanotechnology [21].

Disinfection of dental impressions has been a subject of interest and concern for many
years. The main requirement for a disinfectant agent or technique is to be efficient in
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eliminating pathogens without negatively affecting the properties of the impression. The
challenges associated with disinfecting irreversible hydrocolloids due to imbibition and
syneresis have raised our interest in developing self-disinfecting dental alginate by mixing
the powder with 0.2% CHX and 0.2% AgNO3 (CHX group and AgNO3 group). In addition,
a Boswellia sacra plant extract was used in the green synthesis of AgNPs, and the mixture
was used as well for the preparation of a third modified alginate group.

In our former study, UV-visible (UV–vis) spectroscopy, scanning electron microscopy
(SEM), and energy-dispersive X-ray analysis (EDX) confirmed the biosynthesis of Ag-
NPs using the Boswellia sacra extract in a simple, inexpensive, and ecologically friendly
way. The chemical analysis of the Boswellia sacra (BS) extract revealed the presence of
41 different organic compounds that acted as reducing and stabilizing agents for the
green synthesis of AgNPs. Moreover, the groups modified with CHX, AgNO3, and the
BS + AgNPs showed significantly enhanced antimicrobial activity compared to the control
against Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Escherichia coli (E. coli),
methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (S. aureus), and
Micrococcus luteus (M. luteus), whereas the BS + AgNPs and CHX groups were signifi-
cantly different against almost all strains, in which the CHX-modified alginate reported
significantly higher results, except for with MRSA and E. coli [22,23].

Therefore, based on these findings and the fact that the green synthesis of metal
nanoparticles using the Boswellia sacra extract showed promising synergistic antimicrobial
effects between metal ions and the phytotherapeutic agents of the plant extract, this study
aimed to assess the impact of these self-disinfection modifications of alginate on detail
reproduction, dimensional changes, tear strength, and elastic recovery.

2. Results and Discussion
2.1. Results
2.1.1. Detail Reproduction

Only the 50 and 75 µm lines were reproduced in all tested groups, while the 20 µm
line did not appear in almost all specimens. As per the ISO 1563 criterion, which assesses
the ability of alginate impression material to reproduce the entire length of the 50 µm line,
all the specimens passed the test (100% score 1, 0% score 0).

2.1.2. Dimensional Accuracy

Data showed parametric distribution, and thus, the mean and standard deviation
values of the dimensional changes of the tested materials are represented in Figures 1 and 2.
The results indicated that the mean dimensional changes in mm were −0.038 ± 0.051
(AgNO3), −0.067 ± 0.036 (BS + AgNPs), −0.042 ± 0.046 (CHX), and −0.033 ± 0.054
(control) for the vertical dimension, whereas the mean values in the horizontal dimension
were −0.048 ± 0.052, −0.051 ± 0.022, −0.043 ± 0.077, and −0.037 ± 0.038 for AgNO3,
BS + AgNPs, CHX, and control, respectively. The results showed a statistically non-
significant difference in dimensional changes between the four tested materials in the X
(p-value = 0.619) and Y (p-value = 0.958) axes.

2.1.3. Tear Strength

One-way ANOVA followed by Tukey’s post hoc test for pairwise comparison was
used to compare the three different groups. Tear strength means and standard deviation
values in N/mm are illustrated in Figure 3. The results revealed that there was a statistically
significant difference between the tear strength of the tested materials (p-value = 0.002).
Bs + AgNPs, AgNO3, and CHX showed comparable and significantly highest mean tear
strengths of 1.11 ± 0.24 N/mm, 0.94 ± 0.17 N/mm, and 1.17 ± 0.26 N/mm, respectively.
The control (0.86 ± 0.23 N/mm) was insignificantly different from AgNO3 but was signifi-
cantly lower than CHX and BS + AgNPs.
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2.1.4. Elastic Recovery

The means and standard deviations of percentage recovery from deformation are
represented in Figure 4. A one-way analysis of variance (ANOVA) indicated that there
was a statistically significant difference in the elastic recovery of the four tested groups
(p-value = 0.001). The AgNO3 group had a mean elastic recovery of 98.0% ± 0.3, which
was insignificantly different from the BS + AgNPs (97.8% ± 0.8) and CHX (97.7% ± 0.7).
The three modified groups were significantly higher than the control (96.9% ± 0.5).
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2.2. Discussion

The present study was conducted on alginate hydrocolloid impression material, as it
is a widely used dental material due to its attractive properties, such as acceptable detail
reproduction, ease of manipulation, and low cost [1]. Disinfection of alginate impressions
is a mandatory step to cease the spread of infectious diseases. Spraying and immersion
techniques currently used for the disinfection of impression materials are far from ideal
in alginate cases. Therefore, in the present study, some properties of alginate mixed
with different disinfectant liquids instead of pure water were tested (CHX, AgNO3, and
Boswellia sacra extract mixed with green-synthesized silver nanoparticles).

The antimicrobial activity of the modified groups was tested in our previous study
using agar diffusion assays against S. aureus, methicillin-sensitive and resistant; S. mutans;
M. luteus (four Gram-positive strains); one Gram-negative bacterium (E. coli); and a yeast
(C. albicans). The results showed that CHX, AgNO3, and BS + AgNP groups were signifi-
cantly more active than the control group against all tested strains. On the other hand, the
antimicrobial activity of BS + AgNPs was comparable to the CHX group against C. albicans
and MRSA. In addition, CHX was significantly more active compared to the other tested
groups against S. mutans, S. aureus, E. coli, and M. luteus. Therefore, this study aimed to
understand the impact of this new approach on the physical and mechanical properties
after already exhibiting a profound antimicrobial efficacy [23].

Impression materials should have sufficient flow during impression taking to precisely
replicate details of soft and hard oral tissue; consequently, it is crucial to have an optimum
low viscosity [24]. The results of detail reproduction showed that all the specimens met the
ISO requirement of recording the entire length of the 50 µm line. This may be attributed to
the sufficient flow and the non-altered viscosity of the alginate impression before gelation
even with the use of different mixing solutions other than pure water [24]. The results were
in agreement with Omidkhoda et al. [25], who showed that adding silver nanoparticles
to alginate for self-disinfection did not compromise the surface detail reproduction and
flow properties.

The American Dental Association’s specification number 18 and the International
Organization for Standardization’s 1563:1990, which are concerned explicitly with den-
tal alginate, have neither specific requirements nor any limits on dimensional change
values [26,27]. Dimensional accuracy measurements of alginate can be performed using
several methods, including digital calipers, micrometers, dial gauges, and microscopes [28].
In this study, an optical microscope was used due to its high precision (0.0005 mm) to cal-
culate the extent of dimensional changes after mixing alginate powder with three different
antiseptic solutions (0.2% CHX, 0.2% AgNO3, and BS + AgNPs).

It has been reported that a range between 0.027- and 0.083-mm marginal discrepancy
and/or a maximum value of 0.050 mm for a single unit is considered clinically acceptable
for the fabrication of most indirect restorations [29,30]. Auspiciously, the results obtained in
the vertical (between 0.038 and 0.067 mm) and horizontal dimensions (between 0.048 and
0.051 mm) for all tested groups were within the reported values and with no significant
differences among all tested groups. This is in agreement with Mathew et al. [31] and Is-
mail et al. [32], who modified alginate material with hydrogen peroxide and povidone (PVP)
iodine powder and found no changes in the dimensional accuracy of the tested groups.

The dimensional deviation between the metallic mold and alginate specimens was
almost insignificantly different between all groups in the X and Y axes. The results obtained
were negative for all the tested groups in the vertical and horizontal dimensions. Based
on the findings, it could be hypothesized that CHX, Ag, and AgNPs consumed part of the
mixing water ratio, which is crucial for the dissolution of the calcium sulfate reactor [33].
Dissolution of this reactor is important for the release of calcium ions that replace either
the sodium or the potassium ions of the alginate to form an insoluble calcium alginate
gel [34,35]. It was found that a reduction in the concentration of calcium ions increases
the swelling capability of alginate beads and consequently causes the expansion of the
material [36].
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The tear strength of dental alginate is very important to be considered in areas with
undercuts or insufficient thickness to resist tearing [37]. There is no defined protocol or
specified values for the tear strength of impression materials in the ISO standard 1563 [27]
or specification no. 18 of ANSI/ADA [26,38,39]. Tear strength evaluation in this study
was performed using V-shaped specimens with a thickness of 4 mm to be similar to the
clinically recommended thickness of the alginate impressions (4 to 6 mm range) [40].

The results of all the tested groups were within the acceptable documented range in
the literature, which varies from 0.4 to 1.2 N/mm [38,40,41]. BS + AgNPs, AgNO3, and CHX
showed comparable and significantly highest mean tear strengths of 1.11 ± 0.24 N/mm,
0.94 ± 0.17 N/mm, and 1.17 ± 0.26 N/mm, respectively. The control (0.86 ± 0.23 N/mm)
was insignificantly different from AgNO3 but was significantly lower than the other two
modified groups. The elastic recovery of all tested groups (control 96.9%± 0.5, BS + AgNPs
97.8% ± 0.8, CHX 97.7% ± 0.7, and AgNO3 98% ± 0.3) met ISO 4823 [42] (≥96.5%) for
elastomeric impression materials and ANSI/ADA specification no. 18-1992 (≥95%) [26]
for hydrocolloid impression materials. The three modified groups recorded significantly
improved elastic recovery values compared to the control.

The significantly higher elastic recovery and improved tear strength could be due
to the presence of CHX ions, Ag ions, and silver nanoparticles that may have acted as
filler particles and improved the mechanical properties. It has been hypothesized that tear
strength and elastic recovery could be affected by certain factors, including the degree of
cross-linking of the set alginate [43]. Moreover, a slight reduction in water amount could
result in a material with a strong matrix and more tear resistance. This may be due to the
role of water as a plasticizer and the presence of excess ions that can cross-link alginic chains
more effectively; as a result, the final strength and elastic modulus could be improved
while the setting time could be shortened [44].

This is in agreement with Fayez et al. 2016 [39] and Zarb et al. [45], who stated that
any modifications of the given powder–liquid ratio, mixing technique, and filler content
could result in alterations in the properties of the gel, tear energy, and elastic recovery.
Several researchers also investigated the antimicrobial efficacy of metal oxide nanoparticles
incorporated into alginate impression materials. They reported that these nanoparticles
could be considered effective self-disinfecting agents for alginate impression materials with
no adverse effect on the physical and mechanical properties [46,47].

One of the limitations of this study was that the impressions were taken with a
standardized stainless-steel mold that does not fully resemble the behavior of the oral
tissues, with regard to fluid absorption and the intrinsic free energy of teeth and oral soft
tissues. Moreover, a future setup to examine the ability of alginate to flow and record fine
details in the presence of saliva is currently being designed.

3. Conclusions

Within the framework of our former work and this study, CHX, AgNO3, and BS + Ag-
NPs could be considered promising additives for effective self-disinfecting alginate without
compromising its physical and mechanical properties. Detail reproduction and accuracy
of alginate were not negatively impacted by the different self-disinfection modifications.
Elastic recovery was improved by the addition of CHX, AgNO3, and BS + AgNPs. In
addition, all groups were within the acceptable range for tear strength, with CHX and
BS + AgNPs showing significantly higher tear strength values compared to the control
group. Future work involving different concentrations of several metal ions and B. sacra
is planned with testing their effect on the stability, setting time, hydrophilicity, and flow
of alginate.

4. Materials and Methods
4.1. Materials

Conventional fast-set alginate (Pluradent GmbH and Co., Bornheim, Germany), su-
perior Hojari Frankincense, Boswellia sacra gum (Dohfar mountains, Oman; imported by
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Jeomra Verlag, Georg Huber, Germany), silver nitrate ≥ 99.0% (Sigma-Aldrich, St. Louis,
MO, USA, 209139-25G), and chlorohexidine (Caymen Chemical, Biomol GmbH, Hamburg,
Germany) were used.

4.2. Methods

Control dental alginate and three modified antiseptic solutions were prepared to be
used for mixing alginate instead of normal distilled water as follows:

BS + AgNP group:Boswellia sacra (BS) resin was washed, dried, and frozen at −16 ◦C
overnight to facilitate the grinding of the resin into a fine powder without being softened
inside the blender. Afterward, the powder was soaked in distilled water for 3 days, filtered
using Whatman’s paper 1, and stored at 4 ◦C until usage. For preparation and reduction of
the silver nanoparticles (AgNPs), a given amount of the above extract was added to 60 mL
of 0.2% AgNO3 solution and stirred at a speed of 800 rpm. The mixture was incubated for
3 days at room temperature in the darkness with the solution color turning from white to
dark brown, signifying the formation of AgNPs.

0.2% CHX group: An amount of 2 gm of chlorohexidine powder was added to 1000 mL
distilled water and vortexed for 15 min until complete dissolution of the powder in the water.

0.2% AgNO3 group: An amount of 2 gm of 99% silver nitrate powder was added to
1000 mL of distilled water and mixed using a vortex mixer for several minutes.

Control group: Pure distilled water was used for alginate preparation without
any additives.

4.2.1. Detail Reproduction and Dimensional Accuracy

Surface detail reproduction of alginate impression materials was determined according
to ISO specification 1563 but with a slight modification of the specified metallic mold to
allow measurements of the dimensional accuracy in the X and Y axes [27]. A stainless-steel
mold was used, which was engraved with three vertical orientation lines (20, 50, and
75 µm depth and 25 mm length, Figure 5) and two horizontal lines. For detail reproduction
assessment, the different alginate groups were prepared and placed inside the mold, and
then covered with a metal plate with 1 kg weight on top to simulate the impression-taking
process and allow for the outflow of excess material. After gelation, the surface of each
specimen (n = 6 for each group) was examined using a stereomicroscope (Wild Lecia
M8, Heerbrugg, Switzerland) at 10× magnification. Detail reproduction was examined
according to the ISO specification number 1563, in which the alginate impression materials
had to reproduce the full length of the 50 µm line over the full 25 mm length. A score of
one was set to a line that was fully and continuously reproduced, and otherwise, a zero
score was given.
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For dimensional change examination, the samples of the detail reproduction test were
photographed using the stereomicroscope (Wild Lecia M8, Heerbrugg, Switzerland) com-
bined with a digital camera (Leica DFC 420 C, Leica Mikrosysteme, Wetzlar, Germany) at
18× magnification. The vertical dimension between reference points (X, X′) and horizontal
dimensions between X′ and Y in each specimen were measured using Leica LAS AF LITE
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4.10.0 software (Figure 6). Dimensional changes were assessed by calculating the difference
between reference points of the master model and its replica, shortly after impression
making [48]. The value for dimensional change was calculated as an average of three
measurements and was recorded to the nearest 0.1 mm.
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4.2.2. Tear Strength

A tear strength test was performed according to ISO standard 1563:1990 [27] for
irreversible hydrocolloid impression materials. A polymeric mold was printed using a 3D
printer (Renkforce RF100, Conrad, Hirschau, Germany) with dimensions of 10 cm length,
2 cm width, and 4 mm thickness at the tearing point (Figure 7). The mold was placed over
a glass plate and filled with the freshly mixed alginate prepared for each group. The filled
mold was then covered with a second glass plate and a weight of 500 gm was added over
the top to ensure uniform alginate thickness. After setting, the specimens were inspected
for defects, excess material was trimmed, and the thickness of each sample was recorded
using a digital caliper (Mitutoyo GmbH, Neuss, Germany). Each specimen was fixed to the
grips of a Zwick materials testing machine (Zwick Zmart Pro, ZwickRoell GmbH & Co.
KG, Ulm, Germany) and subjected to tensile load at a crosshead speed of 500 mm/minute
until rupture. Tear strength was calculated according to the following equation:

Tear strength =
Force required for tearing

Thickness of sample
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4.2.3. Elastic Recovery

Elastic recovery was evaluated using a split cylindrical mold (20 mm in length and
a 12.5 mm interior diameter), surrounded by a fixation ring as recommended by ISO
1563:1990 (Figure 8) [26]. Alginate powder was mixed with the designated liquid for each
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group and allowed to set inside the mold (n = 10). After the setting time recommended by
the manufacturer, the samples were inspected and measured using a digital caliper by the
same practitioner for standardization. A Zwick material testing machine (Zwick Zmart Pro,
Zwick Roell GmbH & Co. KG, Ulm, Germany) was used to gradually deform each sample
by 20% of the original length (L) for 5 s, and then the samples were gradually unloaded
to allow for recovery from the deformation. After 40 s as a recovery time, samples were
measured again and the recovery from deformation was calculated as percentages by using
the following formula:

Elastic recovery =

(
∆L
L
− 1

)
× 100

where L is the original length and ∆L is the length after deformation.
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The Shapiro–Wilk test was used to check normality, and results were presented as mean
and standard deviation (SD). All quantitative variables showed parametric distribution;
therefore, one-way analysis of variance (ANOVA) was used for comparison between the
groups. Tukey’s post hoc test was used for pairwise comparison between the groups when
the ANOVA test was significant. The significance level was set at p ≤ 0.05. Statistical
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