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Abstract: Hydrogels have many useful physicochemical properties which, in combination with their
biocompatibility, suggest their application as a drug delivery system for the local and prorogated
release of drugs. However, their drug-absorption capacity is limited because of the gel net’s poor
adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption
capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge
surface area. In this review, composite hydrogels (physical, covalent and injectable) with included
hydrophobic and hydrophilic nanoparticles are considered as suitable for use as carriers of anti-
cancer chemotherapeutics. The main focus is given to the surface properties of the nanoparticles
(hydrophilicity/hydrophobicity and surface electric charge) formed from metal and dielectric sub-
stances: metals (gold, silver), metal-oxides (iron, aluminum, titanium, zirconium), silicates (quartz)
and carbon (graphene). The physicochemical properties of the nanoparticles are emphasized in
order to assist researchers in choosing appropriate nanoparticles for the adsorption of drugs with
hydrophilic and hydrophobic organic molecules.

Keywords: hydrogels; nanoparticles; anticancer chemotherapeutics; cancer cell cultures; cytotoxicity

1. Introduction

Cancer is a socially significant disease that is the second leading cause of death
worldwide after cardiovascular diseases. For instance, in 2020, almost 10 million people
died of oncological disease [1]. In developed countries, the incidence rate of cancer is
steadily increasing (around 3–5% per year), this is a silent pandemic [1,2]. Conventionally,
chemotherapy and/or radiotherapy are used in clinical practice for the treatment of neo-
plasms, but some cancer types are resistant to them and because of this, it is necessary to
search for new treatment approaches [3,4]. The main problem is that the chemotherapeutics
attack all dividing cells, including those of the immune system, which lead to immuno-
suppression and as a result, there is risk for the patient to die from a banal bacterial or
viral infection [5,6]. This problem can be mitigated if chemotherapeutics are administered
locally so that their concentration is high in cancer tissue and low in healthy tissue [7,8].
Another problem is that the intracellular concentration of chemotherapeutics fluctuates
depending on the frequency of administration (injectable or oral), and this requires the
administration of higher concentrations, at which the toxic effect is particularly strong. To
avoid this problem, a chemotherapeutic depot should be used so that its concentration over
time is maintained at an optimal therapeutic level [9]. For this purpose, different types
of chemotherapeutic carriers, such as nanoparticles [10–12], hydrogels [13,14], composed
nanoparticle–hydrogels [15], micelles [16] and liposomes [17], can be used.

Some problems concerning anticancer therapy can be solved by using hydrogel as
a local depot for chemotherapeutics, in particular in the treatment of neoplasms with a
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superficial localization such as skin cancer, for oral administration in gastric or colon cancer,
or of intra-body tumors by injectable hydrogels [18–20]. Local administration of effective
but highly toxic drugs, such as platinum derivatives, can provide concentrations high
enough for effective treatment and minimize their toxic effect on healthy tissues [21]. In
addition, the use of gel-depot ensures a uniform penetration of chemotherapeutic agents
into the cancer tissue over time, avoiding particularly toxic peak concentrations [22].

To perform its role as a depot, the hydrogel must be able to retain the chemotherapeutic
agent and release it gradually as its concentration in the cancer tissue decreases [23].
Chemotherapeutic molecules can be incorporated into the free state, linked by covalent
bonds to a biodegradable gel network, or adsorbed onto nano- or micrometer-sized particles
(composite gels) [24]. One major advantage of hydrogels is that no convection (caused by
different temperatures or concentration gradients) occurs in them, but only the diffusion of
molecules is possible, which is, however, slowed down due to the high viscosity caused by
the structuring of water molecules into associates around the filaments of the gel network
(which are much larger than dynamic nanoassociates in pure water) [25].

A major disadvantage of using hydrogels as a depot for anticancer chemotherapeutics
is that most of them are poorly soluble in water [7]. For this reason, incorporation of
a chemotherapeutic in the molecular state is inefficient, but can be rectified by mixing
a suspension of crystals with the aqueous solution of the polymer (in sol-state before
gelation). Another approach to incorporate hydrophobic chemotherapeutics is to use non-
homogeneous gels with a hydrophilic network containing hydrophobic domains that arise
under certain conditions or are hydrophobic segments of the block copolymer chain [26].
Even for relatively well water-soluble chemotherapeutics, hydrogels do not have significant
adsorption capacity because the gel network is composed of linear macromolecules that
lack a significant surface area (unlike nanoparticles) necessary for physical adsorption via
noncovalent interactions [27]. One possible solution is gels with pH-dependent polymer
unit charges that can electrostatically bind oppositely charged chemotherapeutic molecules
and release them upon pH change, but this approach faces the following difficulty, that
most often, both components have no ionizable groups with pKa in the physiological pH-
range and in addition, the pH changes only minimally (in cancer tissue, the pH is lowered
by lactic acid accumulation as cells are energized by glycolysis rather than by oxidative
phosphorylation). A specific case is that of the covalent binding of a chemotherapeutic,
but this is only applicable if the gel network is degraded, for example by enzymes after
injection into cancer tissues [28].

Another approach is the incorporation into the gel of nano- or micrometer-sized parti-
cles with adsorbed chemotherapeutic molecules that are gradually released spontaneously
(according to the equilibrium constant and their local concentration), or induced (e.g., by
thermal or photothermal action). The high surface area/mass ratio of the nanoparticles
provides a sufficiently large physical adsorption, and their electrical charge (intrinsic or
added by the chemical modification of their surface) causes pH-dependent electrostatic
adsorption during gel preparation and desorption into the cancer tissue. For adsorption of
hydrophobic chemotherapeutics, the particle surface can be chemically modified to become
hydrophobic, and after adsorption, coated with a surfactant (low molecular weight or
polymeric) so that the composite particles become water-soluble for incorporation into the
hydrophilic gel network [28].

Recent studies have demonstrated that nanoparticles interact with biological media
(blood plasma, intra- and extracellular liquid) by forming a protein corona on their sur-
face [29,30]. This alters the physicochemical properties of nanoparticles and should be consid-
ered when nanoparticles carrying chemotherapeutics are applied in cancer therapy [31]. The
effect of the protein corona depends strongly on the type of plasma proteins (especially the
proteins with the highest concentration, such as albumin, globulins—mainly IgG, fibrinogen,
apolipoproteins, transferrin, complement factors, etc.) that cover the nanoparticles when they
enter the blood after resorption upon systemic administration: enteral (peroral, sublingual, rec-
tal) or parenteral (intravenous, intramuscular, subcutaneous, etc.). The structure and amount
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of plasma proteins can vary depending on the patient’s comorbidities (as many diseases and
conditions can lead to changes in plasma proteomics), family background (genetic factors),
lifestyle, geographical factors, etc. It has been proven that people with different diseases
and medical conditions (such as diabetes, hypercholesterolemia, rheumatism, hemophilia
A and B, thalassemia, breast cancer, hemodialysis, pregnancy, smoking, etc.) form different
“personalized protein coronas” [32–34]. Consistent with the concept of personalized medicine,
the “personalized protein corona effect” must be taken into account when chemotherapeutic
nanoparticles are applied in human medicine.

This review is focused on composite hydrogels containing particulate carriers of
anticancer chemotherapeutics, which are differentiated according to: (a) the type of gel—
physical (reversible heat-induced gelation) and chemical (irreversible gelation by covalent
intermolecular bonds); (b) the type of particles (metallic, metal-oxides, (alumo)silicates,
graphene oxide); (c) the mode of binding the chemotherapeutic molecules to the particles
(physical adsorption by electrostatic or van-der-Waals forces, or chemical by covalent
bonds); (d) the mode of release into the cancer tissue (spontaneous physical desorption
or pH-induced, thermal, photothermal, or enzymatic or pH-induced degradation of the
carrier particles). The review is not intended to cover the entire literature in this area, but to
focus on physicochemical mechanisms that are typically under-recognized by the authors
of numerous published papers, and in this sense it is a complement to the broad-based
review addressing the analytical techniques for quantitative drug detection, which are
employed to characterize and evaluate drug release from hydrogels [35].

2. Anticancer Agents Used in Chemotherapy

Based on their mechanism of action, chemotherapeutics can be divided into the
following groups [36] (Figure 1 and Table 1).

Table 1. pKa and solubility of some anticancer chemotherapeutics.

Chemotherapeutic Abbreviation pKa
Solubility

in Water, 25 ◦C Refs.

Methotrexate MTX 4.7 1 mg/mL [37–39]

Camptothecin CPT 4.7 0.0027 mg/mL [40,41]

Cisplatin CIS 5.4 7.2 1 mg/mL [42,43]

Vinblastine VBT 5.4 7.4 10 mg/mL [44–46]

5-Fluorouracil 5-Flu 8.0 12.2 mg/mL [47–49]

Bleomycin BMC 7.3 7.5 20 mg/mL [50,51]

Doxorubicin DOX 8.9 9.9 50 mg/mL [52–54]

Paclitaxel PCT 10.0 ≤0.0001 mg/mL [55–58]

Docetaxel DCT 10.7 0.0019 mg/mL [59,60]

6-Mercaptopurine 6-MCP 11.2 0.734 mg/mL [61–63]

Cyclophosphamide CPM 12.1 40 mg/mL [64,65]

2.1. Antimetabolites

Antimetabolites are inhibitors of important enzymes that take part in nucleic acids
synthesis. Therefore, cell division is blocked.

2.1.1. Inhibitors of Pyrimidine Synthesis

These antimetabolites are structural analogues of thymine (a pyrimidine nitrogen base
included in the DNA) that inhibit the enzyme thymidylate synthase, which leads to a decrease
in the concentration of thymidine nucleotides in the cell nucleus. Examples of pyrimidine
antimetabolites are 5-fluorouracil, capecitabine and others [47,48]. 5-fluorouracil is slightly
soluble in water (solubility = 12.2 mg/mL) and has a weakly basic pKa (pKa = 8.00) [49].
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Figure 1. Chemical structures and abbreviations of some chemotherapeutics used as anticancer drugs
by composition of hydrogel with included nanoparticles.
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2.1.2. Inhibitors of Purine Synthesis

A major example is 6-mercaptopurine, which is one of the first antitumor agents used
for chemotherapy, and in particular for the treatment of acute lymphocytic leukemia (white
blood cells cancer). 6-mercaptopurine is a structural analogue of hypoxanthine and is a
substrate for the enzyme hypoxanthine/guanine phosphoribosyl transferase, resulting in
the formation of 6-thioinosinic acid (TIMP), which blocks the purine biosynthesis in the
cell nucleus [61,62]. 6-mercaptopurine is insoluble in water and has a weakly basic pKa
(pKa1 = 7.77) [63].

2.1.3. Folic Acid Antimetabolites

They are structurally analogous to folic acid (vitamin B9, which is important for DNA
synthesis and, respectively, for cell division). These antimetabolites inhibit the enzyme dihy-
drofolate reductase, which transforms folate into an active coenzyme—tetrahydrofolate [37].
One such antimetabolite is methotrexate for instance, which is slightly soluble in water
(solubility = 1 mg/mL) and has an acidic pKa (pKa = 4.70) [38,39].

2.1.4. Antimetabolites of Urea

The main representative is hydroxyurea, which blocks the enzyme ribonucleotide
reductase (a key enzyme for DNA replication, which converts ribonucleotides to desoxyri-
bonucleotides) [66].

2.2. Chemotherapeutics, Directly Modifying the DNA Structure
2.2.1. Alkylating Agents

These chemotherapeutics form reactive alkyl radicals that bind covalently the nitrogen
at position 7 in guanine (a purine nitrogen base included in the DNA) within and between
adjacent DNA chains, resulting in the disruption of DNA replication and transcription.
One such alkylating agent is cyclophosphamide [64]. Cyclophosphamide is slightly soluble in
water (solubility = 40 mg/mL) [65].

2.2.2. Platinum Compounds

Such chemotherapeutics are cisplatin, carboplatin and others. They bind covalently
to the nitrogen at position 7 in guanine, leading to DNA damage in the tumor cells and
blockage of cell division [42]. Cisplatin is slightly soluble in water (solubility = 1 mg/mL)
and has an acidic pKa (pKa1 = 5.37) [43].

2.3. Microtubule Inhibitors

Microtubules are non-membranous cell organelles that are part of the cytoskeleton
along with microfilaments and intermediate filaments. Microtubules consist of the protein
tubulin [67]. Microtubules play a key role in the cell division, as the form the mitotic
spindle [68].

2.3.1. Inhibitors of Microtubule Polymerization

These chemotherapeutics bind to the protein tubulin, inhibiting the formation of micro-
tubules (microtubule polymerization). This results in the blockage of mitosis, as the proper
chromosomal segregation is impossible without a functional mitotic spindle. Microtubule
polymerization inhibitors are vinca alkaloids such as vinblastine, vincristine and others [44,45].
Vinblastine is insoluble in water and has a weakly acidic pKa (pKa1 = 5.4) [46].

2.3.2. Inhibitors of Microtubule Depolymerization

These anticancer agents block the microtubule depolymerization, which breaks the
equilibrium between polymerization and depolymerization. The excessive stability of
microtubules makes them nonfunctional and the spindle apparatus cannot form properly.
Examples of microtubule depolymerization inhibitors are taxanes such as paclitaxel, docetaxel
and others [55,56]. Paclitaxel is practically insoluble in water (solubility < 0.1 µg/mL) and
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has a basic pKa (pKa = 10.00) [57,58], while docetaxel is also insoluble in water and has a
basic pKa (pKa = 10.70) [59,60].

2.4. Antibiotics
2.4.1. Anthracyclines (Topoisomerase II Inhibitors)

Anthracyclines are inhibitors of the enzyme topoisomerase II, which plays an impor-
tant role in the DNA replication dealing with the tangles and supercoils of a DNA helix.
Such anthracyclines are doxorubicin, epirubicin and others [52,53]. Doxorubicin is soluble
in water (solubility = 50 mg/mL) and has a basic pKa (pKa = 8.93) [54].

2.4.2. Bleomycin

This chemotherapeutic, during its metabolism in the body, forms ROS (superoxide and
hydroxyl radicals), which attack the 3′-5′-phosphodiester bonds between the nucleotides in
the DNA, resulting in DNA strand breakage [50]. Bleomycin is slightly soluble in water
(solubility = 20 mg/mL) and has a weakly basic pKa (pKa1 = 7.30) [51].

2.5. Topoisomerase I Inhibitors

One such inhibitor is camptothecin that blocks the enzyme topoisomerase I, which is
essential for DNA replication. This leads to damage of the DNA structure and finally to
apoptosis (programmed cell death) of the cell [40]. Camptothecin is practically insoluble in
water (solubility = 2.5 µg/mL) and has an acidic pKa (pKa = 4.7) [41].

3. Types of Hydrogels

A hydrogel can be defined as a quasi-solid body composed of a three-dimensional
(3D) network of hydrophilic macromolecules and water. The weight content of the polymer
is drastically less (down to two-three orders of magnitude) than that of the water included
in the gel, but should be sufficient to form intermolecular bonds (cross-linking), depending
on which types of gels can be divided into physical gels with non-covalent (hydrogen,
electrostatic and van-der-Waals forces: London dispersion, permanent and charge-induced
dipoles) bonds, and chemicals with covalent intermolecular cross-linking. Convection is
absent in hydrogels because the water molecules are structured around the strands of the
gel network; only diffusion is possible, allowing them to be used for the delayed release
of incorporated drug substances. Hydrogels made from natural polymers of animal and
plant origin, such as collagen (a linear protein with a triple polypeptide helix) or amylum
(a carbohydrate with a highly branched chain), have been known for centuries, while
chemically synthesized ones were developed after 1960 [69]. The advantages of hydrogels
as a depot for local application of medicinal substances are due to their tunable physico-
chemical properties, biocompatibility and the possibility for controllable degradation; due
to that, they are intensively investigated as local drug delivery systems [70,71]. Since anti-
cancer chemotherapeutics are poorly or practically insoluble in water (Section 2), hydrogels
forming hydrophobic domains that serve as a sink for various hydrophobic drugs are of
particular importance [72].

3.1. Thermo-Reversible Physical Hydrogels

Such are the classical gels of natural and synthetic hydrophilic polymers, which, after
heating and cooling, form a hydrogel that can be repeatedly destroyed and re-formed
by thermal action, respectively, when raised above and lowered below the critical gelling
temperature. The initial heating is necessary to break the intra-molecular bonds defining the
native conformation of the macromolecule, e.g., the triple helix of collagen, and transition
the polymer chain to a random coil state, which creates the conditions for the formation of
random bonds with adjacent chains forming the gel network upon cooling.

The phase state of the polymer solution is determined by the concentration of the poly-
mer and the properties of the solvent (temperature, pH, ionic composition, water-soluble
low molecular weight organic compounds such as alcohols, etc.) [73]. The interactions
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(intra- or intermolecular) between the polymer units are determined by the thermodynamic
properties of the polymer and the solvent (mainly water molecules in the case of hydro-
gels) expressed by Gibbs free energy ∆G = ∆H − T∆S (enthalpy ∆H and entropy ∆S at
temperature T), with the three components of ∆G (polymer–polymer, polymer–water and
water–water) determining the temperature range of the hydrogel existence. The balance
of forces depends on the ability to form hydrogen bonds (electrostatic H-atom sharing
between two electronegative atoms such as O and N, O . . . H-O in particular) and the
presence of whole (Coulomb) and partial (polarized covalent bonds) electric charges, that
associate water molecules and determine negative enthalpy ∆H values for hydrophilic
groups, or the inability for such bonds; in the last case, only van-der-Waals forces are
operative and the orientational order of water molecules around the hydrophobic groups
increases (lowering the entropy term ∆S).

The chemical nature of the polymer and the composition of the solvent define a tem-
perature range limited by low and high critical solution temperatures (LCSTs and HCSTs),
beyond which the chains are in a random coil conformation (then, the polymer chain
occupies 1–3% of the volume of the globule) [74]. As the solvent quality deteriorates, in
particular by temperature variation, the size of the polymer globule (defined by the aver-
aged values of the radius of gyration Rg = 〈Rg

2〉1/2 or the distance h = 〈h2〉1/2 between the
ends of a linear chain) decreases due to the dominance of polymer–polymer over polymer–
water interactions, and the polymer chains may even collapse into a globule. When the
polymer concentration is high enough, intermolecular bonds are formed in addition to
intramolecular bonds, leading to the formation of a gel network in the temperature range
∆T = HCST − LCST; the gel breaks down to a polymer solution when the temperature
exceeds the upper threshold (∆T > HCST). Polymer network formation in the gel-forming
∆T temperature range is due to two factors acting in sequence: (a) interweaving of the
polymer chains in an unfolded conformation (random coil at T > HCST or T < LCST) due
to the high concentration of the polymer solution (the average distance between adjacent
chains is less than their gyration radius) and (b) shrinkage of the chains due to solvent
deterioration as the temperature increases (at HCST > T > LCST), when polymer–polymer
interactions predominate.

The balance of forces for some polymers in aqueous solution defines a state of sol
at room temperature or below (T < 25 ◦C), a region of gel existence at physiological
temperatures (T ≈ 37 ◦C) and reversibly breaking down to a polymer solution when heated
above. This offers the advantageous option of injecting the polymer solution into the cancer
tissue where the gel forms; such thermosensitive gels are termed injectable [75–78]; an
example of such a polymer is poly(N-isopropylacrylamide) [79]. The gel–sol transition
at T > HCST allows the gel to be destroyed if necessary, for example by photothermal
irradiation with infrared light.

A second type of thermo-reversible physical hydrogels is presented by the chemically
synthesized block copolymers with a chain composed of segments with different affinities
to water molecules. The choice of copolymers of a different chemical nature in the synthesis
provides additional possibilities to achieve suitable physicochemical properties in aqueous
solution. For the injectable gels, block copolymers have undoubted advantages over
homogeneous (linear or branched) chain polymers, since the choice of the length of the
hydrophobic segments allows for achieving a suitable gelation temperature (solution at
room temperature and gel at physiological temperature), and the length, flexibility and
charge of the hydrophilic segments determine the pH-dependent gelation and an acceptably
high in sol-state viscosity, which is an additional problem in injection.

The most common copolymers are linear chain copolymers of the ABA or BAB type,
where A and B are hydrophilic and hydrophobic polymers, respectively. In these, the
formation of a physical gel is governed by the same factors as in the homogeneous polymers
discussed above: high polymer concentration and chain shrinkage as the solvent quality
deteriorates, in particular by temperature change. Since hydrophobicity is determined by
the total area of atomic groups unable to form hydrogen bonds, increasing the length of the
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polymer chain segments made of hydrophobic groups, such as methylene groups (-CH2-),
allows for reaching the gel-state at 37 ◦C and sol-state at T ≤ 20 ◦C.

The most commonly used hydrophilic polymer is oxipolyethylene (-CH2-CH2-O-)n),
which, depending on the molecular mass M, is referred to as polyethylene glycol (PEG, low
molecular weight, M ≤ 3000 g/mol), synthesized without catalyst, electrically neutral) or
polyethylene oxide (PEO, high molecular weight, synthesized with a complex metal-organic
catalyst and therefore containing bound Ca2+ or Zn2+ ions that impart a weak positive
charge to the chain [80]). The presence of an oxygen atom in the chain backbone determines
the high flexibility of the PEG/PEO chain due to increased conformational freedom around
the C–O–C bonds, and hydrophilicity is determined by the strong hydration of the oxygen
atoms in the ethylene oxide units [81]. The most commonly used block copolymers are ABA
and BAB of (A) hydrophilic PEG and (B) hydrophobic polypropylene glycol (PPG, (-CH2-
CH(CH3)-O-)n), and its additional methylene group (-CH3) determines the hydrophobicity
of the PPG segments. Some hydrophobic chain polymers used for the synthesis of block
copolymers are shown on Figure 2.

For medical practice, it is important that the sol–gel transition (inducted by the jump
from room temperature to 37 ◦C) does not take place in the needle while the polymer
solution is injected by syringe, this can be avoided by using pH as a second factor required
for gel network formation (sol-state at pH ≤ 5 and gel-state at pH 7.4) [19,82–84]. For this
purpose, block-copolymers with hydrophobic segments containing chargeable groups with
a constant pKa allows to alter the degree of ionization at transfer to pH 7.4, and by that, the
hydrophobicity are used. pH-dependence can be achieved by introducing charged groups
into the polymer units with an appropriate dissociation constant (then the hydrophilic
segments behave as a polyelectrolyte).
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Polymers with carboxyl groups (pKa ≈ 4) are suitable for this purpose because the
pH-dependent dissociation (COOH↔ COO−) emerges in the pH range 3–5, so that at a
low pH, the polymer chain is electrically neutral and at pH 7.4, it is negatively charged.
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The presence of closely disposed ionizable groups (each unit of the chain can carry one
or more COO− groups that leads to a high liner charge density) results in a shift of pKa
towards the alkaline region due to the increased local concentration of H3O+ cations and to
an anticooperative effect: the curve of the degree of ionization as a function of pH becomes
flatter. An example of such a polymer is carboxymethyl cellulose (CMC), which is produced
by the chemical modification of natural cellulose (poly-1,4-D-glucose by its chemical nature)
at a degree of substitution DS = 0.8–1.2 of the hydroxylic groups of the glucose units with
methyl-carboxyl groups (–CH2COOH). At degree of substitution DS ≈ 1 (one charge per
glucose unit) and pH 7, the high density of negatively charged groups COO− leads to
condensation of counterions from the medium (for instance Na+ cations), which reduce
the effective charge of the chain. A feature of CMC is the high chain rigidity, which is
caused by the highly constrained conformational freedom between adjacent glucose units
due to the β-1,4-linkage between them (the rotation round C–O–C bonds between the
C-1 and C-4 atoms is impossible). This is in contrast to the natural polymer amylose
(chemically identical to cellulose), with a flexible chain due to α-configuration at C1 atom
in the α-1,4-linkage that allows for rotation between the glucose units.

Other chargeable polymers are those congaing groups of tertiary amines that can
obtain a pH-dependent positive charge: ≡N ↔ ≡NH+. Such polymers are convenient
for injectable gels because the ionization constant of ≡N groups allows for altering their
charge in the physiological pH range. An example of such thermo- and pH-dependent
injectable gels is the triblock copolymer PAAm-PEG-PAAm [85]. At 20 ◦C and pH 6.8, the
polymer is in a solution-state, but becomes a gel at the physiological 37 ◦C and pH 7.4
(viscosity increases with more than five orders of magnitude (form 0.1 to 104.7 Pa·s) at
a polymer concentration of 12.5 wt%. The pH is the most important factor for the sol–
gel phase transition: at 25 ◦C, the relatively small decrease of the H+-concentration from
pH 6.8 to pH 7.4 leads to a drastic increase in the viscosity with four orders of magni-
tude, while the temperature increases from 25 to 37 ◦C—with only a half order. These
parameters are achieved using the appropriate polymer concentration and amphiphilic
structure of the triblock copolymer: two long-chain hydrophobic PAAm (poly(amidoamine)
segments with dual (pH and temperature) functionality and a medial hydrophilic PEG
segments. The pH and temperature increase caused the growth of the hydrophobicity of
PAAm segments because of the pH-determined partial deionization of the ≡NH+ groups
(half of them are charged at pH 7.4 and 20 ◦C), and additionally by a thermos-induced
shift of their ionization constant from pKa 7.4 to pKa 6.8 at temperature increasing from
20 to 40 ◦C. The increased hydrophobicity of PAAm segments leads to the formation
of a gel network by van-der-Waals contacts between the approaching chain parts of the
next macromolecules, which are entangled with the segments of adjacent polymer chains
(due to the high concentration of the polymer solution).

In the review [13] the sol–gel phase transition of PAAm-PEG-PAAm copolymer
(described in Refs. [19,85]) is explained by the transition of PAAc segments from a hy-
drophilic to hydrophobic state at an increase in pH from low to high values (pH 3.0→ pH
7.4). However, this explanation is incorrect because PAAm is wrongly written as PAAc
(poly(acrylic acid) instead (poly(amidoamine); the confusion comes from the fact that in
the literature, as least three polymers with quite different structures are designed by the ab-
breviation PAA (Figure 2). Furthermore, the assertion that a hydrophilic polymer segment
with acid groups, such as (poly(acrylic acid), became hydrophobic at ionization (COOH
↔ COO−), is principally erroneous, since upon dissociation of a proton from the carboxyl
groups they have become even more hydrophilic as the partial charge of the oxygen atom
(due to the high electron-affinity, leading to the polarization of the C–O and C–H covalent
bonds) becomes a whole (Coulomb) charge, and this leads to an even stronger orientation
of the dipole H2O molecules, the closest of which are strongly electrostatically bonded to
this oxygen atom and form hydrogen bonds with the second layer water molecules, i.e.,
when the acidity of the polymer solution is reduced from pH 3 to pH 7, the hydrophilic
segments become even more hydrophilic, but not hydrophobic.
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3.2. Irreversible Chemical Hydrogels

This type of hydrogel is produced by the covalent cross-linking of chains of one
type of hydrophilic polymer or with chains of another type (copolymers) of hydrophilic
or hydrophobic polymer, resulting in a thermo-irreversible gel network. The pore size
depends on the length of the polymer chains and the polymer concentration. An example
of a small pore hydrophilic gel is poly(acrylamide) (PAM) (used in biochemical studies
for the electrophoresis of proteins denatured with the surfactant sodium dodecyl sulfate),
with small pores that do not allow for the translational movement of globular proteins in a
native conformation.

When the gel network is a co-polymer of hydrophilic and hydrophobic filaments
(amphiphilic gel), if the latter have sufficient length, they adopt a collapsed ball conformation—
domains—in which hydrophobic chemotherapeutics can be embedded as free molecules or
adsorbed onto nanoparticles with a hydrophobic surface [86]. An example of one such gel is
a co-polymer of hydrophilic poly(acrylamide) (PAM) and hydrophobic poly(methacrylate)
(PMC) [87].

There are several polymerization techniques: free-radical, esterification and photo-
polymerization. Free-radical polymerization is only acceptable for externally applied gels,
as this type of polymerization always leaves a residual free monomer radical that is highly
toxic to tissues. Photopolymerization is used as a second stage of the polymerization of
a hydrogel previously formed by free-radical polymerization, so a co-network between
poly(methacrylate) (MA) chains crosslinked by ethylene glycol dimethacrylate (EGDMA)
is obtained [88].

In Table 2, the most commonly used polymers for hydrogels are given.

Table 2. Polymers used for hydrogels. The abbreviations repeat those used by the authors of the cited
references.

№ Polymer Abbreviation

1 gelatin G
2 hyaluronic acid HA
3 alginate ALG
4 chitosan CS
5 dextran DEX
6 oleopolyol OA
7 poly(N-isopropylacrylamide) PNIPAm
8 Poly (N, N-diethyl acrylamide) PDEA
9 polyacrylonitrile-polyamide PAN-PA

10 poly(acrylic acid) PAAc
11 poly(amidoamine) PAAm
12 poly(methacrylic acid) PMAA
13 poly(N-isopropylacrylamide-co-acrylamide PNIPAAm
14 poly(N-vinylpyrrolidone) PVPON
15 poly(N-isopropylacrylamide-co-acrylamide) PNIPAAm-co-AAm
16 poly(β-aminoester urethane) PAEU
17 acrylamide-methylenebisacrylamide-green tea AM-MBA-GT
18 poly(polypropylene glycol) PPG
19 poly(ethylene glycol) PEG
20 methoxypoly(ethylene glycol) mPEG
21 polyethyleneimine PEI
22 carboxymethyl cellulose CMC
23 poly lactic-co-glycolic acid PLGA
24 poly(ethylene glycol) -oleic acid OA-PEG
25 prepare aminated guar gum AGG
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Table 2. Cont.

№ Polymer Abbreviation

26 polyethyleneimine PEI
27 poly vinyl alcohol PVA
28 poly(N-isopropylacrylamide) PNIPAM
29 poly(β-amino ester) PBAE

30 poly(N-isopropylacrylamide-co-maleic
anhydride)]@strach

PNIPAAm-co-MA
@starch

31

poly(ethylene
glycol)-block-poly(N-isopropylacrylamide-
co-maleic anhydride)2-graft-poly(ethylene

glycol)

PEG-b-(PNIPAAm-
co-PMA)2-g-PEG

32 N,N′-(dimethylamino)ethyl
methacrylate-co-maleic anhydride DMAEMA-co-MA

33 poly(N-isopropylacrylamide-co-itaconic
anhydride)- P(NIPAAm-co-IA)-PEG

34

poly[(2-succinyloxyethylmethacrylate)-b-
(N-isopropyl

acrylamide)-b-
dimethylaminoethylmethacrylate)

P(SEMA-b-NIPAM-
b-DMAEMA)

35 glycidylmethacrylate-grafted-maleated
cyclodextrin P(GMA-g-MACD)

36
poly(D,L-lactide-co-glycolide)-b-

poly(ethylene
glycol)-b-poly(D,L-lactide-co-glycolide)

PLGA-PEG-PLGA

37
sodium alginate- poly(acrylamide-

co-N-vinylcaprolactam-co-
acrylamidoglycolic acid)

SA-PAVA

38 poly (N-vinyl pyrrolidone/dextran) PVP-DEX

39
Strychnos potatorum L. (SPL)

polysaccharide-based dual-responsive
semi-IPN-type

SPL-DMA

40 N-fluorenylmethoxycarbonyl-di-
phenylalanine Fmoc-FF

41 poly(N-isopropylacrylamide-co-acrylamide) NIPAAm-co-AAm
42 poly(N-isopropyl-acrylamide-acrylic acid) PNA

3.3. Biodegradability of Hydrogels

The biodegradability of the hydrogels has an essential role in the increasing use
of hydrogels as a drug delivery system. In the term “biodegradability”, all types of
in vivo degradation are included: from simple hydrolysis to enzymatically catalyzed
degradation. In the biodegradation process, the polymers that form the hydrogels are
degraded to monomers by breaking chemical bonds. There are three main mechanisms
of biodegradation [89]: (a) Solubilization. A great number of water-soluble polymers are
determined as biodegradable due to their ability to dissolve in water. Such polymers are
dextran (DEX), poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), polyvinyl alcohol
(PVA), etc. [90,91]; (b) Hydrolysis. Another mechanism of biodegradation of the polymers
is the hydrolysis of ester bonds between the monomers with the formation of an alcohol
and a carboxylic acid, as well as amide bonds between the monomers with the formation
of an amide and a carboxylic acid. Chemical hydrolysis is characteristic for polylactic-co-
glycolic acid (PLGA), poly(amidoamine) (PAA) poly(ethylene glycol)-oleic acid (OA-PEG),
poly(β-amino ester) (PBAE), etc. [92]; (c) Enzymatic degradation. In the human body, there are
special enzymes—hydrolases (class III enzymes), which catalyze hydrolytic bonds (carbon–
oxygen (C–O), carbon–nitrogen (C–N), carbon–carbon (C–C), phosphorus–nitrogen (P–N)
bonds, etc.) and cleavage involving water. For example, hyaluronic acid (HA) is degraded
by the hydrolase hyaluronidase [93]. Other polymers that undergo enzymatic hydrolysis
and/or pH-sensitive hydrolysis/gelation are chitosan, gelatin, etc. [94,95].
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Some polymers used for the composition of hydrogels cannot undergo degradation.
Such non-biodegradable polymers are cellulose derivatives (for instance: carboxymethyl
cellulose, CMC), poly(methacrylate) (PMA), etc. [96].

4. Nanoparticles as Carriers of Anticancer Chemotherapeutics

As carriers of anticancer chemotherapeutics, particles of nano- and micrometer sizes
and made of different materials can be used: metals, metal-oxides, (alumo)silicates, carbon
(graphene and graphene oxide), carbonates, polymeric, denatured proteins, liposomes,
etc., or composed of different substances [97,98]; the subjects of this review are the first
five types, i.e., solid-state particles. The high dispersity of nanoparticles (determined
by their small size) provides a huge specific surface area, reaching hundreds of square
meters per gram, and consequently a huge adsorption capacity at the particle/medium
interface. In this review, particles are classified according to their constituent substance,
since their structure and properties (hydrophilicity/hydrophobicity, surface electric charge,
bulk electric polarizability, smoothness/roughness/porosity at the molecular level, etc.)
determine their specific adsorption capability (capacity per one unit surface area) for
anticancer chemotherapeutics.

The adsorption onto the nanoparticles in aqueous medium emerges because of the
difference in the chemical potentials of the two phases (solid and liquid) and leads to the
formation of a boundary layer in which the concentration of the adsorbate (small ions,
uncharged small molecules, big organic molecules, etc.) is altered compared to the bulk;
the dissolved molecules are in competition with water molecules (the main component of
the solution) on the particle surface. The adsorption per unit area depends on the physic-
ochemical properties of the solid/liquid interface, the main ones are the hydrophilicity
(the affinity to the water molecules) and the surface electric charge. Hydrophilics are the
surfaces that are able to form hydrogen bonds (-O . . . H–OH) with the water molecules
such as metal oxides/silicates/carbonates (Section 4.2).

The surface electric charge appears because of the adsorption of small ions from the
medium or dissociation of the ionizable groups of nanoparticles [99]. Depending on the
solid substance, the potential-determining ions can be metal cations M+ (in case of metal in a
solution of its salt) or OH− anions and protons H+ (existing as hydroxonium cations H3O+)
in case of oxides; the electrolytes that do not charge the surface are called independent. The
electrically charged surface attracts the counterions (ions with the opposite sign) and repels
the co-ions of both charge-determining and indifferent electrolytes; as a result, an electrical
double layer (EDL) is formed on the solid/water interface as a capacitor with another
plate consisting of two parts: dense (the counterions are adsorbed on the solid surface)
and diffuse (the rest of counterions are dispersed in the vicinity of the surface because of
thermal motion). The difference in the ion concentrations (increased for the counterions
and decreased for the co-ions, compared to the bulk), and consequently the electrostatic
potential in the diffuse layer of the EDL, decrease exponentially (quasi-exponentially at a
surface potential above 25 mV) with the distance from the solid surface; the thickness of
the EDL is defined as the distance upon which the local electric potential is e-times (≈2.72)
smaller than that on the solid surface.

Two main methods are commonly used to calculate the surface charge density:
(a) potentiometric titration (measuring the pH at the addition of the acid or base), and
(b) free electrophoresis that gives the electrokinetic potential ζ [mV] calculated from the
measured electrophoretic mobility µ = (εε0/η)ζ = v/E (the velocity v [µm/s] of the par-
ticles in the direct electric field with strength E [V/cm]) in liquid with relative dielectric
permittivity ε (ε0 is the electric constant of SI) and viscosity η for water ε = 80 and η = 1
mPa·s at 20 ◦C). These two techniques give quite different values for the charge density
because in the pH-titration, all charges are accessible to the potential-determining ions, but
in electrophoresis, the ζ-potential reflects only the charges above the shear plane (which
distinguishes between the hydrodynamically mobile and immobile water molecules in the
boundary layer); by that, the counterions that are moved together with the nanoparticle in
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the electric field remain electrophoretically ‘invisible’, such are ions specifically adsorbed
by chemical bonds to the surface molecules of the solid phase and the counterions in the
dense part of the EDL (electrostatically adsorbed on the surface). As a result, the potentio-
metrically obtained surface charge density is higher than the electrophoretic one, even in
the case of particles with a molecularly smooth surface because the counterions in the dense
layer of the EDL are moved together with the nanoparticle (the counterions in the diffuse
layer are moved in the opposite direction). The difference between the potentiometric and
electrophoretic charge density is large in the case of oxides, owing to the presence of a
gelatinous surface layer that has chargeable groups and is permeable to ions [100,101].

The dispersity of the nanoparticles, as their main property which determines their
specific surface area (m2/g) and their regular distribution in the hydrogel, is limited by the
tendency to aggregate in aqueous solutions and fall in sediment (coagulation). According to
the aggregational stability (preservation of the nanoparticles’ individuality) the dispersed
systems are distinguished into two classes: lyophilic (formed by spontaneously dispersing
the substance in the liquid medium) or lyophobic (using energy to split the solid-state
body forming an additional surface or chemical reactions to synthesize the nanoparticles).
The lyophilic dispersion systems are thermodynamically stable (∆G = ∆H − T∆S < 0)
due to the small difference in the surface energies of the two phases (the particles and
the liquid); such are the aqueous suspensions of clays (alumosilicate hydrophilic plates),
surfactants (amphiphilic molecules with hydrophilic and hydrophobic parts), polymers
with hydroxylic groups such as the cellulose (polyglucose) and other polysaccharides,
proteins in native conformation, etc.

The lyophobic dispersion systems are thermodynamically instable (∆G > 0) because
of the large difference in the surface energies of the two phases (the solid particles and
the liquid medium), but they can be kinetically stable when the interparticle repulsion
is stronger than the attraction (dispersion stability); then, the diffusion dominates over
the sedimentation (caused by the gravitation) due to the small size of the nano- and
colloid particles. A characteristic property of the lyophobic dispersion systems is that
the particles aggregate when an electrolyte is added; the aggregation emerges when the
ionic strength (determined by the concentration and squared valency of the ions) reaches
some critical value; then, the EDL thickness decreases and the electrostatic repulsion
between the colliding particles becomes weaker than the van-der-Waals attraction. The
repulsion occurs when the ionic atmospheres (diffuse parts of EDL) of neighbor particles
are intersected; other stabilizing factors are adsorbed polymers (used for the stabilization
of metal nanoparticles) and the gel-like layer on the surface of oxides in aqueous medium.

The sols (colloidal solutions) and suspensions of solid-state nano- and colloid particles,
with both hydrophobic and hydrophilic surfaces, are lyophobic as a rule, i.e., aggregation
emerges with increasing electrolyte concentration (potential-determining or indifferent
ions) and/or adsorption of molecules with opposite electric charge. The oxides occupy
an intermediate position between the lyophobic and lyophilic particles: in some cases,
even in media with high ionic strength (compressed EDL) their sols/suspensions remain
dispersion stable because of the steric repulsion of the surface gel layers, with a thickness
that grows with the surface charge density (pH-determined swelling moving away from
the isoelectric point).

When choosing nanoparticles as anticancer drug carriers, both hydrophilicity/
hydrophobicity and electric charges of adsorbents and adsorbates must be taken into
account to ensure adsorption of the chemotherapeutic molecules and dispersion stability
of the suspension before hydrogel formation. The solid-state particles considered in this
review are separated into two classes: metal and dielectric (semiconductors have not been
used so far) because of the presence or absence of free charges determines the adsorption
ability of the nanoparticles; the dielectric particles are presented by oxides (metal-oxides,
silicates, alumosilicates) and carbon (graphene and graphene oxide).

The particles are defined as nanoparticles when at least one dimension is on the
nanometric scale or as a colloid when the size is submicrometric or micrometric; the
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distinction is made on the understanding that the surface atoms/molecules are different
from those in the particle bulk because of uncompensated field-force, and this difference
spans several atom/molecular layers. The particle size and shape determine the ratio of
the surface (energetically different) to the bulk atoms/molecules; therefore, the needle- and
disk-shaped particles with a nanometrically small size are defined as nanoparticles even
when their big size is (sub)micrometric.

4.1. Metal Nanoparticles

The main difference of metal nanoparticles from dielectric ones is the free movement
of electrons throughout the particle volume (electron gas). As a result, the electric field of
the adsorbed molecules (created by their Coulomb and partial charges) does not penetrate
in depth, but it is compensated in a thin layer of the metal surface (skin effect) in which the
concentration of electrons is increased or decreased depending on the sign of the charges
of the adsorbed molecules. The close distance between the charges of the metal and the
molecules leads to a strong electrostatic attraction causing strong adsorption. This effect is
enhanced by the intramolecular electron polarizability of anticancer chemotherapeutics,
with molecules that are most often composed of benzene and heterocyclic compounds with
conjugated double bonds (Section 2), with π-electrons that are delocalized and can move
within the molecule.

The second feature of metal nanoparticles is that some atoms from their surface can
be released into the medium in the form of positively charged ions, while the electrons
remaining in the volume determine the negative charge of the particle. When a metal is
placed in an aqueous medium, the direction of ions is always from the metal to the solution,
but once equilibrium is reached, it is compensated by an opposing flow; the exchange
current (the number of ions leaving or embedding in the crystal lattice per unit time per unit
surface area) is different for different metals. The electric potential of a metal nanoparticle is
determined by the concentration of its cations in solution (at high concentrations of salts of
the same metal, the nanoparticle can become positively charged). As a result, an electrical
double layer (EDL) is created at the metal/solution interface: the charge of the particle is
compensated by ions of opposite sign (cations in excess of electrons in the metal) of the
same type (potential determining) or another (indifferent, predominantly Na+ in biological
tissues), which plays an important role in the adsorption of chemotherapeutics having
a single or multiple elementary (Coulomb) electric charges; the surface electric potential
of the particle facilitates or hinders adsorption due to electrostatic attraction or repulsion
depending on the net electric charge (determined by the pH and the nature of the ionized
groups) of the molecules. The surface charge density of the particles can be calculated from
the ζ-potential (close to the surface potential), which is proportional to the electrophoretic
mobility (velocity of the migration of charged particles in a direct electric field with a given
strength) measured by the method of microelectrophoresis.

The third feature of metal nanoparticles with a pure (non-oxidized) surface is that it
is hydrophobic due to its inability to form hydrogen bonds with water molecules (unlike
metal oxides that have a hydrophilic surface). This creates favorable opportunities for the
adsorption of hydrophobic chemotherapeutics, but this also requires avoiding aggregation
of the nanoparticles. This can be achieved by the chemical modification of the surface
(e.g., by oxidation or grafting of short-chain hydrophilic polymers), but most often by
the adsorption of polymers already dissolved in the medium during the synthesis of
the metal nanoparticles (in the case of classical gold and silver sol, a gelatin solution is
used), or before their separation from the metal matrix is used for this purpose [102,103].
Suitable polymers are those with hydrophilic and hydrophobic groups (contacting the
metal surface and the aqueous medium, respectively), which are adsorbed practically
irreversibly thanks to multiple contacts secured by the flexibility of the polymer chain. The
polymer layer provides water solubility and prevents aggregation of the nanoparticles due
to steric repulsion (inability of the chains to interpenetrate each other). On the surface
of the nanoparticles, free areas remain available for the adsorption of the relatively small
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molecules of the chemotherapeutic, since the surface is covered with polymer patches [104],
the degree of occupation depends on the length and flexibility of the polymer chain (when
it is stiffer, the free areas are larger). This means that the choice of polymer to stabilize metal
nanoparticle suspensions should be based on the chemical nature and the way the units
are linked (chemical grafting or physical adsorption), the hydrophilicity and flexibility of
the chain (an example is the drastic difference between the rigid-chain cellulose and the
flexible-chain amylose, two polymers composed of identical glucose units); molecular mass
(chain length) is the second factor determining the steric repulsion between particles.

The chemical nature of nanoparticles and the equilibrium constant between the ion
fluxes to/from the metal surface determine the physicochemical properties of nanoparticles,
the most important of which are corrosion resistance and electrical charge. The exchange
ion current at the silver/water interface is very high, and this determines their negative
charge in water or physiological solution (0.15 M NaCl), whereas it is immeasurably low for
the gold surface. By this reason, in aqueous medium, the gold nanoparticles are electrically
neutral if they are prepared in oxygen-free (vacuum or inert gas) atmosphere; however,
they acquire a small pH-dependent surface charge when they are synthesized in the
presence of oxygen (atmospheric or dissolved in aqueous medium). Especially significant
is the negative charge when the gold nanoparticles are synthesized in a water solution
of oxygen-containing anions; then, the ζ-potential can reach some decade of millivolts
(at neutral pH) and the sol of small gold nanoparticles can be kinetically stable due to the
interparticle electrostatic repulsion, without need of additional stabilizers, as polymers
angst aggregation. The emergence of a surface electric charge on gold nanoparticles is
caused by the coordination of the oxygen donor atoms by back-bonding on the metal
surface [105,106]. In particular, colloidal gold nanoparticles isolated by electrolyte-induced
precipitation in citrate and tannic acid buffers have a negative surface charge due to the
binding of the oxyanions: CO3

2−, H2PO4
1−, SO4

2− [107]. The ζ-potential diminishes with
the concentration of NaCl because the indifferent Cl− anions compete with the oxyanions;
this leads to the aggregation of the gold seeds because of the reduced electrostatic repulsion
(caused by both decreased surface electric potential and diminished EDL thickness) and
allows for tuning the final size of the gold nanoparticles [108]. It can be noted that the ζ-
potential of gold nanoparticles usually reported by the authors is not the original potential
of the gold surface, but it reflects rather the charge of the adsorbed polyelectrolytes; when
the adsorbed polymer is electrically neutral, the measured ζ-potential is diminished because
of the additional hydrodynamic friction (caused by the polymer chains) when the particles
migrate in the applied direct electric field.

The use of gold nanoparticles is driven by the corrosion resistance of gold (Au0) on the
one hand, but on the other hand, the strong affinity of Au0 for sulfur (S) offers the possibility
of chemical surface modification by coupling with sulfur-containing compounds as water-
soluble alkanethiolates HS(CH2)nR (n ≥ 10), where the nature of group R determines the
properties of the chemically modified surface: hydrophobic or hydrophilic with a positive
or negative charge) [109,110]. The gold nanoparticles and hybrid core/shell particles
(covered with a gold layer) [111] are most often used for biomedical applications [112–117],
including as carriers of anticancer chemotherapeutics [118], an example are the hybrid
Au–Fe-nanoparticles (magnetic Fe3O4-core and Au-shell) [119–121]).

For the above reasons, in composite hydrogels (composed from polymers, as shown in
Table 2) those most commonly used as carriers for anticancer chemotherapeutics (Table 1)
are nanoparticles from gold ore and silver (Table 3).
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Table 3. Hydrogels with silver and gold nanoparticles for the delivery of anticancer
chemotherapeutics. The abbreviations of the drugs and the gel-forming polymers are given in
Tables 1 and 2, respectively.

N Polymers
Nanoparticles

Drug Loading Releasing Cytotoxicity Ref.
Metal Size

1 CMC silver sphere
10 nm DOX noncovalent pH 60% [122]

2 SA-PAVA silver sphere
20 nm 5-Flu noncovalent pH – [123]

3 PVP-DEX silver sphere
12 nm DOX noncovalent pH – [124]

4 SPL-DMA silver sphere
20 nm

DOX
5-Flu noncovalent pH 85% [125]

5 PAAc gold sphere
5 nm DOX noncovalent pH – [126]

6 PEG gold sphere
13 nm DOX noncovalent pH in vivo [127]

7 Fmoc-FF gold sphere
226 nm

DOX
5-Flu noncovalent T – [128]

8 NIPAAm-co-AAm gold sphere
150 nm DOX noncovalent NIR 30% [129]

9 PNA gold cubic
50 nm DOX noncovalent NIR 75% [130]

10 PEG-CS gold rod
54 nm PCT noncovalent NIR in vivo [131]

11 ALG gold – CIS noncovalent T in vivo [132]

12 ALG gold sphere
100 nm CIS noncovalent – 66% [133]

13 PNIPAAm gold sphere
50 nm 5-Flu noncovalent Ph, T 70% [134]

4.2. Oxide Nanoparticles

Solid-state oxide nanoparticles used in hydrogels as carriers of anticancer chemothera-
peutics are chemical compounds of oxygen with metals, silicon and carbon. The surface
properties of the particles are determined by the property of oxygen to bind with oxygen
and hydrogen atoms from the aqueous environment forming hydrated boundary layers; the
binding is by chemisorption, occurring mainly as specific chemical reactions with the forma-
tion of valent bonds with an energy of 40–400 kJ/mol and, therefore, is irreversible. Water
molecules can only be removed by heating at a high temperature in anhydrous atmosphere.
As a result of the chemisorption, a strong two-dimensional film of a chemical compound is
formed on the particle surface, which does not penetrate deep into its solid phase. Examples
are the surface oxides of carbon and graphite: (≡C)2O, (=C=O)2, (–C=O)2O, where the four-
valent carbon atoms are covalently bound with the divalent oxygen atoms. In an aqueous
medium, the first layer of water molecules is adsorbed irreversibly by chemical adsorption
and the second by physical adsorption; the last is low-energy (4–40 kJ/mol) and therefore
reversible, for example on quartz (silica): (–Si–O–Si–)O (dehydrated)→ (–SiOH–O–SiOH–)
(chemically adsorbed water)↔ (–SiOH . . . OH2–O–SiOH . . . OH2–) (physically adsorbed
water H2O), where the every four-valent Si atom is covalently bound with two O atoms
and the hydroxyl groups SiOH form hydrogen bonds H . . . OH2 with the water molecules
in the second layer of the hydrated boundary layer. Analogously, two hydration layers are
formed on the surface of metal oxide (MO) nanoparticles in aqueous media; in the first
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layer, chemisorbed water molecules are irreversibly bonded via covalent bonds with the
metal atoms on the solid surface (MOH), and the second is formed via reversible physical
adsorption with hydrogen bonds. The majority of nanoparticles are initially hydrated, as
they are synthesized in aqueous media by hydrolysis and polycondensation, while those
synthesized in atmosphere are dehydrated, e.g., aerosil (Al2O3) particles synthesized by
flame pyrolysis.

Thus, the presence of oxygen atoms in the structure of oxide nanoparticles provides
chemical adsorption of the first layer of water molecules and the hydrophilicity of the
surface by physical adsorption of water molecules from the medium. An example of this
transition is the carbon structures: the surfaces of diamond, carbon, carbon black, graphite
and graphene are hydrophobic owing to the inability of carbon atoms to form hydrogen
bonds, but oxigraphene is hydrophilic due to the presence of oxygen atoms. Hydrophilicity
is a determining factor in the selection of carrier particles for water-soluble anticancer
chemotherapeutics. The second criterion is the electrical charge on the surface: it must be
opposite for that of the adsorbed organic molecules for them to adsorb electrostatically.
Since oxides are dielectrics (there are no free charges in the volume of the particles),
the contribution of electrostatic forces is not as great as for adsorption on a metal surface.
Surface roughness matters because the electric charges of oxide nanoparticles are not evenly
distributed but are located on fixed centers. As a consequence, the chemical adsorption
occurs predominantly on protruding bumps (where the solid-phase force field is stronger)
and the physical adsorption is stronger in depressions (grooves, pores) where more of the
surface atoms from different directions attract the adsorbed molecules.

The electrical properties of oxide nanoparticles (metal, silicate, carbonate) in aqueous
media are determined by the ionization of hydroxyl groups or H+ proton joining, in particular,
the surface of metal oxides is negatively charged:-MOH↔MO− + H+, or positively: -MOH
+ H+↔MOH2

+, depending on the molar concentration of hydroxonium ions H3O+ in the
aqueous medium (pH = −log [H3O+]) [135,136]. Analogously, charges on the surface of
quartz≡SiOH are produced by the ionization or adsorption of H+ cations. On the uncharged
hydroxyl groups of oxides in aqueous media, metal-hydroxy complexes can be adsorbed: of
the type Mz+(OH)z−1

+ (cations) or Mz+(OH)z+1
− (anions), which charge the surface positively

or negatively, respectively. In this way, the H+, OH−, Mz+(OH)z−1
+ and Mz+(OH)z+1

− ions
are potential-determining for the surface of oxide nanoparticles, and the ions with the highest
concentration are indifferent in biological tissues: Na+, K+ and Cl−.

Fe3O4 iron oxide (magnetite) particles have ferromagnetic properties (they acquire a
magnetic moment in an external magnetic field, unlike Fe2O3 particles that are superpara-
magnetic). The ferromagnetic properties do not affect the surface electrical properties of
the particles, but their ability to magnetize makes them very convenient for manipulation
in the preparation of composite particulate carriers of anticancer chemotherapeutics, in
in vitro and in vivo experiments, and for manipulation in patients.

The isoelectric point (or point of zero charge) of particles with a pH-dependent surface
charge is observed at pH, either when all surface groups are uncharged (when there is only
one kind of surface center) or when the two kinds of charges are equal (1/2 positive and
1/2 negative), as are amphoteric surfaces, in particular those of oxides. In the absence of
the specific adsorption of indifferent ions, the isoelectric point coincides with the point of
zero charge, otherwise they diverge to a lower or higher pH depending on the type (cation
or anion) of ions adsorbed specifically (involving chemical forces in addition to electrical
ones). In Table 4, the isoelectric points of oxide nanoparticles used as carriers of anticancer
chemotherapeutics are given.

In Tables 5–7, composite hydrogels with included metal oxide, silica and graphene
nanoparticles are given; in the case of hybrid particles, the covering substances (the shell)
are mentioned because they determine their adsorption ability.
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Table 4. Isoelectric point (IEP) of some oxide nanoparticles.

Oxide-Nanoparticles IEP Ref.

1 SiO2 2 [137]
2 Mesoporous silica 2–3 [138]
3 Cr2O3 3 [139]
4 SnO2 3.8 [140]
5 Fe3O4 5.0 [141]
6 γ-Fe2O3 5.5 [142]
7 TiO2 6.4 [143]
8 CuO 6.5 [144]
9 α-Fe2O3 6.7 [139]
10 ZrO2 7.0 [145]
11 CeO2 8.0 [146]
12 γ-Al2O3 8.5 [147]
13 α-Al2O3 9.2 [148]
14 Mn2O3 9.8 [149]
15 NiO 10 [150]
16 ZnO 10.3 [151]
17 MgO 12–12.7 [152]

Table 5. Hydrogels are composed of metal oxide nanoparticles for the delivery of chemotherapeutics:
magnetic (Fe3O4, consisting also of iron(II) oxide FeO and iron(III) oxide Fe2O3), zinc oxide (ZnO),
copper oxide (CuO), manganese oxide (MnO) nanoparticles. The abbreviations of the drugs are given
in Table 1, and those of the (co)polymers are given in Table 2 (repeating the abbreviations used by the
authors in the corresponding references); T—temperature.

N Polymers
Nanoparticles

Drug Loading Releasing Cytotoxicity Ref.
Metal Size

1 G,
ALG Fe3O4

sphere
25 nm DOX noncovalent pH 60% [153]

2 PNIPAAm-co-
MA@starch Fe3O4

sphere
70 nm DOX covalent pH – [154]

3 PEG-b-(PNIPAAm-co-
PMA)2-g-PEG Fe3O4

sphere
100 nm DOX noncovalent pH – [155]

4 DMAEMA-co-MA Fe3O4
sphere
130 nm MET covalent pH 65% [156]

5 P(NIPAAm-co-IA)-
PEG Fe3O4

sphere
168 nm DOX noncovalent pH 90% [157]

6 P(SEMA-b-NIPAM-b-
DMAEMA) Fe3O4

sphere
22 nm DOX noncovalent pH 80% [158]

7 PEI, CMC Fe3O4
sphere
15 nm DOX noncovalent pH – [159]

8
poly(γ-GA-co-γ-

GAOSu)-g-PEG-FA,
γ-PGA

Fe3O4
sphere
43 nm DOX noncovalent pH 70% [160]

9 OA-PEG Fe3O4
sphere
234 nm DOX noncovalent – 50% [161]

10 ALG, G Fe3O4
sphere
113 nm DOX noncovalent magnetic 80% [162]

11 Agar Fe3O4
sphere
10 nm DOX – T 85% [163]

12 ALG Fe3O4
sphere
700 nm DOX – pH 90% [164]

13 AGG Fe3O4
sphere
16 nm DOX noncovalent – – [165]
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Table 5. Cont.

N Polymers
Nanoparticles

Drug Loading Releasing Cytotoxicity Ref.
Metal Size

14 PVPON Fe3O4
sphere
20 nm DOX noncovalent pH – [166]

15 PAAc Fe3O4
sphere
70 nm DOX noncovalent pH – [167]

16 G, PVA
PLGA Fe3O4

sphere
2–10 µm DOX noncovalent – 55% [168]

17 Chitosan Fe3O4 sphere DOX noncovalent pH – [169]

18 DEX Fe3O4
sphere
20 nm DOX noncovalent pH – [170]

19 PBAE Fe3O4
sphere
20 nm PTX noncovalent T 55% [171]

20 mPEG Fe3O4
sphere
20 nm PTX noncovalent T – [172]

21 ALG Fe3O4 sphere 5-Flu noncovalent pH – [173]

22 CS
PAAc Fe3O4

sphere
98 nm 5-Flu noncovalent pH – [174]

23 mPEG–LUT Fe3O4 sphere 5-Flu noncovalent pH
T – [175]

24 AM-MBA-GT Fe3O4
sphere
10 nm 5-Flu noncovalent pH

T – [176]

25 P(GMA-g-MACD) Fe3O4
sphere
20 nm 5-Flu noncovalent pH 55% [177]

26 CMC ZnO sphere
20 nm DOX noncovalent T 60% [178]

27 PVA-oxidized starch CuO sphere
45 nm DOX noncovalent T 70% [179]

28 Cellulose-PAA MgO rod DOX noncovalent pH 70% [180]

29 PMAA
PVPON mMnO

sphere
cubic

2.4 µm
DOX noncovalent pH 40% [181]

Table 6. Hydrogels are composed of silica nanoparticles for the delivery of anticancer chemotherapeutics.
The abbreviations of the drugs and the (co)polymers are given in Tables 1 and 2, repeating those used by
the authors in the corresponding references; T—temperature; NIR—near infrared radiation.

N Polymers
Nanoparticles

Drug Loading Releasing Cytotoxicity Ref.
Type Size

1 PEG
PPG mSiO2

sphere
60 nm DOX noncovalent dissolution in vivo [182]

2 HA mSiO2
sphere
45 nm DOX covalent enzymatic 90% [183]

3 Peptide mSiO2
sphere
90 nm DOX noncovalent T – [184]

4 PNIPAAm-
co-AA Au-SiO2

sphere
326 nm DOX noncovalent NIR 90% [185]

5 PMAA SiO2 sphere DOX noncovalent pH 80% [186]

6 PMAA SiO2
sphere
100 nm DOX noncovalent pH – [187]
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Table 6. Cont.

N Polymers
Nanoparticles

Drug Loading Releasing Cytotoxicity Ref.
Type Size

7 HA mSiO2
sphere
200 nm DOX noncovalent pH

enzymatic 80% [188]

8 PAN-PA SiO2
sphere
20 nm DOX noncovalent pH – [189]

9 HA-
azobenzene mSiO2

sphere
150 nm DOX noncovalent T 90% [190]

10 ALG mSiO2
sphere
130 nm DOX covalent – 90% [191]

11 PEG, PPG, HA SiO2
sphere
198 nm CIS noncovalent T 71% [192]

12 CS, PVA, OA SiO2
sphere
50 nm CIS noncovalent pH 65% [193]

13 PEG-PAEU mSiO2
sphere
157 nm CPT noncovalent pH 80% [194]

14 CS, CMC, HA NH2-
mSiO2

sphere
300 nm

CYT
MTX covalent pH 90% [195]

15 PNIPAm LAM plate 5-Flu noncovalent T – [196]

16 CS MM plate
270 nm DOX noncovalent pH 88% [197]

17 CS MM plate
140 nm DOX noncovalent pH 66% [198]

18 ALG MM plate
142 nm DOX noncovalent pH 75% [199]

19 PLGA-PEG-
PLGA MM plate DOX noncovalent T in vivo [200]

Table 7. Hydrogel are composed of graphene oxide or graphene nanoparticles for the delivery
of anticancer chemotherapeutics. The abbreviations of the drugs are given in Table 1, and those
of the (co)polymers are given in Table 2 (repeating the abbreviations used by the authors in the
corresponding references); NIR—near infrared radiation.

N Polymers
Nanoparticles

Drug Loading Releasing Cytotoxicity Ref.
Type Size

1 CS, PMAA graphene
oxide – DOX noncovalent pH 75% [201]

2 PEI graphene
oxide

sphere
320 nm DOX noncovalent pH in vivo [202]

3

Acrylated-
CS NIPAM

PEG-
diacrylate

graphene
oxide

sphere
320 nm DOX noncovalent NIR 75% [203]

4 CS graphene
oxide

sphere
20 nm DOX noncovalent pH 40% [204]

5 CS-cellulose graphene
oxide – DOX noncovalent pH in vivo [205]

6 PDEA graphene sphere
15 nm DOX noncovalent pH in vivo [206]

7 –
(aerogel)

graphene
oxide

sheet
200 nm

DOX
PTX noncovalent pH – [207]
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4.3. Choice of Nanoparticles as Carriers of Anticancer Chemotherapeutics

The adsorption of chemotherapeutics onto oxide nanoparticles occurs via hydrogen
bonding, electrostatic and van-del-Waals forces. Therefore, the choice of particles should
be based primarily on their hydrophilicity/hydrophobicity and the presence of ionizable
groups with integer (Coulomb) charges in the chemotherapeutic molecule. For insoluble or
poorly water-soluble organic molecules, metal (especially gold) nanoparticles are suitable,
whereas for water-soluble ones, oxide nanoparticles (metal oxides, silicates, carbonates) are
suitable. In the case that water-soluble chemotherapeutics have ionizable groups, the pH
should be chosen so that the surface centers of the particles (charged positively or nega-
tively) and the chargeable groups of the organic molecules have opposite electric charges to
condition the electrostatic adsorption on the surface. The contribution of electrostatic forces
in the case of the ion-induced dipole type is usually negligible for small molecules, but may
be significant for chemotherapeutics with organic molecules that are composed of bonded
benzene nuclei because the adjoined double bonds allow for the migration of π-electrons
over significant distances (the induced dipole moment is equal to the charge × distance).

5. Cytotoxicity of Nanoparticles

Separately, nanoparticles (without any chemotherapeutics) are demonstrated to have a
toxic effect not only on cancer cells, but also on normal ones. There are various mechanisms
involved in the cytotoxicity of the nanoparticles.

5.1. Direct Mechanical Interaction

The flat particles with a nanometric thickness (such as graphene oxide and montmo-
rillonite), when performing a Brownian motion can hit the cell membrane and disrupt its
integrity by their sharp edges, leading to a decrease in the transmembrane ion gradient, and
by that indirectly blocking the action of Na+-K+-ATPase and ATP synthesis, respectively;
this has been demonstrated on bacterial colonies of Escherichia coli [208]. This effect may ex-
plain the antibacterial effect of montmorillonite (bentonite, widely used for human weight
loss), the oral administration of which leads to the disruption of the normal intestinal flora
(dysbacteriosis) [209].

5.2. Free Radicals Generation and Oxidative Stress

Oxide nanoparticles (some metal oxide nanoparticles such as copper oxide, zinc oxide
and others, as well as graphene oxide nanoparticles) can generate reactive oxygen species
(ROS) such as superoxide anion-radical O2

–•, perhydroxyl radical HO2
–•, hydrogen per-

oxide H2O2, hydroxyl-radical HO• and singlet oxygen 1O2 [210,211]. These free radicals
cause lipid peroxidation of the cell membrane phospholipids, damage to the DNA [212],
depolymerization of the polysaccharides as well as protein oxidation. Under physiological
conditions, there are two types of antioxidant systems: (a) non-enzymatic: ascorbic acid
(vitamin C), α-tocopherol (vitamin E), β-carotenoids, glutathione, etc.; and (b) enzymatic:
superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx) that neutral-
ize and inactivate free radicals. When the balance between the free radicals formation and
their neutralization by biological antioxidant systems is disturbed, oxidative stress occurs,
leading to severe cell damage [213,214].

Copper oxide nanoparticles have been shown to have the highest cytotoxic effect in
comparison with zinc oxide, ferric oxide and titanium dioxide [215,216]. It is also demon-
strated that graphene oxide nanoparticles can generate ROS induced by visible light [217]
and cause oxidative stress, which suggests their antibacterial activity [218]. Graphene oxide
nanoparticles have a genotoxic effect: DNA fragmentations and chromosomal aberrations
are observed [219].

5.3. Disruption of the Cell Communication

Graphene oxide nanosheets (hydrophilic) and aggregates of graphene (hydrophobic),
when partially covering the cell membrane (being adsorbed on it), can hinder the transport
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processes to/from the cell, and isolate the cell biologically from the environment. This puts
the cell in a trap, as it cannot acquire the substances necessary for its functioning, as well as
excrete the unnecessary products from its metabolism [220].

5.4. Heavy Metal Ions Release

Some metal oxide nanoparticles release heavy metal ions that have a cytotoxic effect
because of enzyme inhibition; the effect is caused by electrostatic and/or coordinated bind-
ing of the strongly charged metal cations (with a valency that is from two to six, for example:
copper Cu2+, gadolinium Ga3+, chromium Cr2+, Cr4+, Cr6+), with the negatively charged
reactive center of some enzyme macromolecules, or destruction of their 3D structure
(denaturation). For example, zinc oxide/graphene oxide (ZnO/GO) hybrid nanoparticles
have been demonstrated to release zinc cations (Zn2+), which have an antibacterial effect
on E. coli culture, while the cytotoxic effect on the HeLa cell line was not significant; the
authors suppose that it is because of the difference in the Zn2+-dependent prokaryotic and
eukaryotic deaths [221].

5.5. In Situ Generation of Oxygen (O2) Nanobubbles

It has been recently shown that reduced graphene oxide/zinc peroxide-silver (rGO)/
ZnO2-Ag) nanoframeworks with pH- and temperature-depending behavior can gener-
ate oxygen (O2) nanobubbles and, respectively, hydrogen peroxide (H2O2) through the
Fenton-like pathway [222,223]; as a result, this nanoframework has antibacterial activ-
ity against methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and
Escherichia coli.

6. Conclusions

Because of their biocompatibility, suitable physicochemical properties and biodegrad-
ability (via solubilization and chemical or enzymatic hydrolysis) of the majority of them,
hydrogels are widely used as a drug delivery system. Since their drug absorption capacity is
restricted due to the poor adsorption of hydrophilic and particularly hydrophobic molecules
by the gel polymers, different nanoparticles (metal, metal oxide, silicates, graphene oxide,
etc.) can be integrated into the hydrogels in order to enhance their absorption capacity.
These nanoparticles, owing to their high dispersibility conditioned by their small size, have
a huge specific surface area and consequently a huge adsorption capacity, which enable
them to adsorb and carry various chemotherapeutics (such as doxorubicin, paclitaxel,
etc.). Non-covalent bonds (hydrogen bonds, electrostatic and van-der-Waals forces) are
crucial for the adsorption of chemotherapeutics onto nanoparticles. Consequently, the
selection of particles should be primarily based on their hydrophilicity/hydrophobicity
and the presence of ionizable groups in the chemotherapeutic molecule. Metal (mainly
gold) nanoparticles are appropriate for insoluble or poorly water-soluble organic molecules,
while oxide nanoparticles (metal oxides, silicates, carbonates) are suitable for water-soluble
ones. If water-soluble chemotherapeutics have ionizable groups, the pH of the medium
should be selected to ensure that the surface of the nanoparticles and the groups of the
organic molecules have opposite charges to interact electrostatically.

In order to more effectively create composite hydrogels with higher cytotoxicity,
greater consideration must be given to the physicochemical mechanisms and particle
parameters discussed in this review, which have not been sufficiently addressed by the
authors when composing the particles, and therefore have often not achieved a satisfactorily
high cytotoxicity. As cytotoxicity depends on a number of parameters: type of hydrogel,
chemotherapeutic, type of particle (size, shape, charge, hydrophilicity/hydrophobicity),
in vitro or in vivo experiment, type of cell line, it is necessary to conduct studies where only
one of these parameters varies in order to be able to draw fully relevant conclusions about
which type of hydrogel, chemotherapeutic and particle is most suitable for the treatment of
a given type of cancer.
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