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Abstract: Niosomes are multilamellar vesicles that effectively transfer active ingredients into the
skin’s layers. To improve the active substance’s penetration across the skin, these carriers are
frequently utilized as topical drug delivery systems. Essential oils (EOs) have garnered significant
interest in the field of research and development owing to their various pharmacological activities,
cost-effectiveness, and simple manufacturing techniques. However, these ingredients undergo
degradation and oxidation over time, leading to a loss of functionality. Niosome formulations have
been developed to deal with these challenges. The main goal of this work was to create a niosomal
gel of carvacrol oil (CVC) to improve its penetration into the skin for anti-inflammatory actions and
stability. By changing the ratio of drug, cholesterol and surfactant, various formulations of CVC
niosomes were formulated using Box Behnken Design (BBD). A thin-film hydration technique using
a rotary evaporator was employed for the development of niosomes. Following optimization, the
CVC-loaded niosomes had shown: 180.23 nm, 0.265, −31.70 mV, and 90.61% of vesicle size, PDI, zeta
potential, and EE%. An in vitro study on drug release discovered the rates of drug release for CVC-Ns
and CVC suspension, which were found to be 70.24 ± 1.21 and 32.87 ± 1.03, respectively. The release
of CVC from niosomes best fit the Higuchi model, and the Korsmeyer–Peppas model suggests that
the release of the drug followed the non-Fickian diffusion. In a dermatokinetic investigation, niosome
gel significantly increased CVC transport in the skin layers when compared to CVC–conventional
formulation gel (CVC-CFG). Confocal laser scanning microscopy (CLSM) of rat skin exposed to the
rhodamine B-loaded niosome formulation showed a deeper penetration of 25.0 µm compared to the
hydroalcoholic rhodamine B solution (5.0 µm). Additionally, the CVC-N gel antioxidant activity was
higher than that of free CVC. The formulation coded F4 was selected as the optimized formulation
and then gelled with carbopol to improve its topical application. Niosomal gel underwent tests for
pH determination, spreadability, texture analysis, and CLSM. Our findings imply that the niosomal
gel formulations could represent a potential strategy for the topical delivery of CVC in the treatment
of inflammatory disease.

Keywords: carvacrol; essential oil; niosomes; confocal laser scanning microscopy; anti-inflammatory;
dermatokinetics; in vitro drug release studies

1. Introduction

Due to their low cost and simple manufacturing processes, the utilization of EO con-
stituents for biomedical applications has attracted global interest [1]. Their numerous
qualities, such as viricidal, bactericidal, fungicidal, local anaesthetic, anti-inflammatory,
and analgesic properties, have made them widely utilized for centuries. Because they are
relatively safer for the skin than synthetically made traditional drugs, EO are often chosen
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as priority [2]. The components derived from plants still have the potential to cause aller-
gies, but they are used in much lower concentrations than directly applying the oils to the
skin, making them a safer option [3]. EOs are mostly made up of volatile substances such as
aliphatic, aromatic, terpenoids and phenolic compounds. However, these chemicals could
slowly deteriorate and oxidize, which would reduce their functionality [4]. Additionally,
the bioavailability, flavour, and colour of the other ingredients may change in response
to one another [5]. EOs are substances that, from a physiological standpoint, rapidly
evaporate and/or decay even while the temperature is milder than the room temperature.
This is because their boiling temperatures are extremely low, and they break down when
directly exposed to light or oxygen, in general. Additionally, EO formulations frequently
result in skin sensitivity and irritation [5]. The plant species Thymus vulgaris, Origanum
vulgare, Ocimum gratissimum, Carum copticum, Oliveria decumbens, Trachyspermum ammi,
Monarda didyma, Nigella sativa, Origanum onites, Origanum syriacum, Plectranthus amboinicus,
Lavandula multifida, and Satureja thymbra are the primary sources of thymol (2-isopropyl-
5-methylphenol; C10H14O), an isomeric form of carvacrol (5-isopropyl-2-methylphenol;
C10H14O) [6,7]. Carvacrol and thymol have similar chemical structures and biological
functions, which may indicate that they have related action mechanisms and therapeutic
benefits. The CVC possesses a wide range of therapeutic activity, including those of an
immunomodulator, an antioxidant, an antiseptic, an anti-diabetic, a cancer prophylactic
agent, an anti-inflammatory compound, an anti-spasmodic molecule, and a growth pro-
moter [8–15]. CVC is a promising drug for the treatment of local skin damage [16,17].
However, its pharmaceutical use is severely constrained by its lower bioavailability as a
result of its poor water solubility, high volatility, and instability [10]. CVC exhibited anti-
inflammatory activity by reducing cyclooxygenase-2 (COX-2) and inhibiting interleukin-1β
(IL-1β), and potentially induced interleukin-10 (IL-10) release [18]. The release of IL-10
would result in an anti-inflammatory impact because IL-10 is an anti-inflammatory cy-
tokine that inhibits several cell surface molecules, such as the MHC class II proteins and
co-stimulatory molecules [19,20]. Many strategies have been put up to overcome this
solubility and bioavailability. One of the flexible approaches involves encasing the EOs in
other nanoparticles, such as liposomes [21], niosomes [22], graphene oxide [23], and others.
Niosomes can extend drug retention duration, increase solubility, and improve targeted
delivery [24].

Niosome is a biocompatible bilayer system based on non-ionic surfactants and choles-
terol (as a lipid) [25]. The amphiphilic non-ionic surfactant self-assembles to produce
niosomes in aqueous fluids. Niosomes also have several benefits, such as the ability
to encapsulate both hydrophilic and hydrophobic components, improved therapeutic
performance, long storage times, easy surface modification, biodegradability, and non-
immunogenicity [26]. Entrapping EOs in the hydrophobic areas of niosomes can increase
their permeability and stability qualities, lowering their potential for skin irritation [27].
These nonionic surfactant vesicles enhance the potential of the entrapped drug when
applied topically by modifying the properties of the stratum corneum, facilitating the trans-
dermal transport of trapped substances and decreasing trans-epidermal water loss [28].
Niosomal formulations have been created for a variety of targeted drug delivery purposes
throughout the past decade [29]. To produce small-sized niosomes with maximal encapsu-
lation efficiency for any given drug, however, the size and drug encapsulation efficiency of
the niosomes must be optimized by altering the formulation (surfactants and lipids) [30,31].
Niosomal formulations of compounds containing CVC oil have been developed for anti-
inflammatory and other studies, but a CVC-loaded niosomal formulation has not yet been
developed [32–36]. The primary objective of this study was to investigate the potential
of CVC for the development of niosomes. Niosome efficacy can be affected by many
factors related to formulation and processing. Investigation into these aspects of niosome
preparation would thus significantly improve the formulation. The quality by design (QbD)
strategy involves the design and development of a product with manufacturing procedures
that meet predetermined product criteria [37]. To ensure that selection criteria for desired
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responses are established for a range of vesicle sizes (<200 nm), polydispersity index (PDI)
(<0.3), and entrapment efficiency (>70%) for formulation optimization, response surface
methodology (RSM) was employed [38]. For the preparation of niosomes in drug delivery,
a variety of nonionic surfactants, including polysorbates, alkyl esters, and alkyl ethers, are
usually used. An important factor influencing the physicochemical properties of niosomes,
such as bilayer rigidity, vesicle size, stability, and drug release rate, is the type of surfactant
used [39]. Tween 80 and Span 80 have undergone testing as drug delivery systems, and
specifically, they can be used to create highly stable niosomes [40]. In this formulation of
niosomes, tween 80 was used as a surfactant. The stabilization of niosomes that have both
hydrophilic and lipophilic domains was accomplished using the surfactant Tween 80. Its
longer aliphatic tail causes adsorption on the drug’s surface and allows its hydrophilic
portion to potentially reach the aqueous phase. This would completely cover the surface
and lessen the interfacial friction between hydrophobic drug vesicles [41]. The larger unsat-
urated side chain of the tween 80’s oleate component may increase the poorly water-soluble
drug CVC’s ability to be enclosed more densely in niosome bilayers [42]. The developed
niosomal formulation was incorporated into the gel for better retention time. The vesicle
morphology, in vitro drug release, CLSM, dermatokinetic and optimized gel formulation
texture analysis was also assessed. It can be anticipated that, the use of quality-by-design
approach to optimise the CVC-loaded niosomal gel formulation is a novel approach that
can help to ensure the formulation’s quality, safety, and efficacy. Furthermore, using a topi-
cal niosomal formulation can improve carvacrol skin penetration and absorption, making
it more beneficial for inflammatory skin disorders that require targeted therapy without
systemic absorption. This approach may lead to the development of a more efficient and
effective treatment for inflammatory skin disorders.

2. Results and Discussion
2.1. Optimization of Carvacrol-Loaded Niosomes (CVC-Ns)

The formulation optimization of the CVC-Ns was carried out utilizing a Box–Behnken
experimental design with three parameters and three levels. Different independent vari-
ables’ individual and combined effects on the responses were assessed. Table 1 displays
the minimum (−1), average (0), and maximum (+1) levels of the three factors (drug as A,
surfactant as B, and cholesterol quantity as C). Table 1 displays the data of the evaluation
of the 17 different compositions of CVC-loaded niosomes from the BBD design.

Table 1. Responses observed in BBD for development and optimization of CVC-Niosome formula-
tions with a summary of parameters for responses (Y1, Y2, Y3) by Design Expert Software.

Formulations
Independent Variables Dependent Variables

A B C Y1 Y2 Y3

1 5 120 7.5 205.05 0.291 78.49
2 10 120 5 180.98 0.259 88.97
3 10 150 7.5 186.98 0.285 77.95
4 10 120 5 180.23 0.265 90.41
5 10 120 5 181.07 0.261 89.48
6 10 150 2.5 185.89 0.281 78.62
7 15 120 7.5 208.95 0.294 76.38
8 5 120 2.5 204.62 0.286 81.64
9 15 90 5 206.99 0.279 82.84
10 15 120 2.5 208.95 0.283 80.51
11 15 120 5 181.28 0.262 89.55
12 5 150 5 200.01 0.272 84.18
13 10 90 2.5 195.54 0.279 79.98
14 5 90 5 199.94 0.279 81.55
15 10 120 5 181.08 0.26 90.01
16 10 90 7.5 191.08 0.288 76.08
17 15 150 5 205.54 0.271 83.17

A, drug (mg); B, surfactant (mg); C, cholesterol (mg); Y1, vesicle size (nm); Y2, PDI; Y3, EE (%).
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As indicated in Table 2 and the above-mentioned equation, the CVC-loaded noisome
vesicle size ranged from 180.23 to 206.99 nm. Figures 1A and 2 show 3D and contour
plots that illustrate the effect of factors on size. The sizes of the niosomes slightly increase
when the drug concentration (A) rises. The rise in the concentration of the drug (A) being
trapped in the surfactant (B) and cholesterol (C) may be the cause of the size increase [43].
Our research found that the outcomes are consistent with previously published findings:
the size increases as the drug concentration in the formulation increases [44]. As per the
above equation, surfactant concentration had a negative impact on the size of the vesicles,
as increasing the concentration of the surfactant reduces the size of the droplet until the
concentration of the surfactant reaches a certain threshold, after which the size of the vesicle
increases due to the formation of aggregates by the excess surfactant [45]. Cholesterol,
on the other hand, is an important factor responsible for the formation of vesicles: as
cholesterol levels rise, vesicle size decreases. This may be because cholesterol above a
certain concentration can disrupt the bi-layered structure of vesicular membranes, resulting
in drug loss from vesicles [40].

Table 2. Results of regression analysis of Responses Y1, Y2 and Y3.

Quadratic Model R2 Adjusted R2 Predicted R2 SD %CV p-Value

Response (Y1) 0.9882 0.9731 0.8162 1.85 0.9395 <0.0001

Response (Y2) 0.9777 0.9490 0.7883 0.0026 0.7818 <0.0001

Response (Y3) 0.9890 0.9749 0.8673 0.7946 0.9582 <0.0001
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Figure 1. (A) Representation of 3D plots of independent variables impacting the dependent variable.
Effect of drug conc. (A), surfactant conc. (B) and cholesterol (C) on the PDI (Y3). (B) Representation
of 3D plots of independent variables impacting the dependent variable (PDI). Effect of drug conc.
(A), surfactant conc. (B) and cholesterol (C) on entrapment efficiency (%) (Y2). (C) Representation
of 3D plots of independent variables impacting the dependent variable (EE%). Effect of drug conc.
(A), surfactant conc. (B) and cholesterol (C) on the vesicle size (Y1).
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According to the equation below, the size’s interaction terms is displayed by the
following equation:

Vesicles size = +166.43 + 2.60A − 1.89 B − 0.367 C − 0.380 AB − 1.0723.40 AC + 1.39 BC + 19.61 A2 + 2.59 B2 + 6.36 C2.

All seventeen trials’ PDI values ranged between 0.259 and 0.294. Figures 1B and 2
show 3D and contour plots that illustrate the effect of factors on PDI. The experimental
data indicated that the remainder of the independent variable’s surfactant and cholesterol
had a negative effect on PDI, indicating that PDI decreased with increasing surfactant
concentration until a certain level, as shown in the equation below.

PDI = +0.2614 + 0.001 A − 0.0020 B − 0.0036 C − 0.0003 AB + 0.001 AC − 0.001 BC +0.0101 A2 + 0.004 B2 + 0.018 C2

Cholesterol is an essential factor responsible for vesicle formation: as cholesterol levels
rise, vesicle size decreases, resulting in a decrease in PDI. This may be because cholesterol
above a certain concentration can disrupt the bi-layered structure of vesicular membranes,
resulting in drug loss from vesicles [45].

The following equation displays the EE interaction terms:

EE = +29.68 − 0.3700 A + 0.4338 B − 1.48 C − 0.5750 AB − 0.2540 AC + 0.8075 BC − 2.83 A2 − 3.92 B2 − 7.60 C2

According to the above-mentioned equation, the developed CVC-niosomes had an
entrapment efficiency that ranged from 76.08 to 90.41% (Table 2). As per the above equation,
the drug concentration increases, and the entrapment efficiency decreases. Figures 1C and 2
show 3D and contour plots that illustrate how factor variables influence the efficiency of en-
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capsulation. The encapsulation effectiveness of the independent factors varied significantly.
The effectiveness of the niosome’s encapsulation is favourably impacted by the factor
surfactant (B). The encapsulation efficiency increases with a rise in surfactant concentration
due to the formation of multiple layers of surfactant molecules around the vesicles and
resulting in extra space for incorporating the drug [46]. Moreover, the use of surfactant
tween 80 also helped in enhancing the solubilization of the drug molecule by incorporating
them [47]. To obtain stable niosomes, cholesterol is the most common additive added to the
formulation. It stabilizes bilayers, prevents leakage, and slows the permeation of solutes
contained within the aqueous interior of these vesicles. In the present study, the above
equation indicates that cholesterol has had a negative effect on entrapment efficiency. The
entrapment efficiency of the drug in niosomes was decreased by increasing the cholesterol
concentration from 2.5 to 7.5 mg. This may be because cholesterol above a certain concen-
tration can disrupt the bi-layered structure of the vesicular membranes, resulting in drug
loss from the vesicles [45].

2.2. Design Validation

To develop the ideal formulation with the lowest globule size, PDI, and highest
entrapment efficiency, BBD was used. Table 3 lists the predicted values for all responses
and variables derived from the design. Therefore, CVC-N formulations based on the runs,
process variables, and responses as shown in Table 2 were created, and the experimental
findings attained using the formulations were compared to the expected responses. The
fact that the experimental and predicted numbers were nearly closed supports the validity
of the optimization process [48].

Table 3. In vitro drug release kinetics of CVC-loaded niosomes.

Kinetic Models X-Axis Y-Axis CVC-Ns (R2)

Zero-order Fraction of drug released Time 0.9268
First order Log % drug remaining Time 0.9878

Higuchi matrix Fraction of drug release Square root time 0.9933
Korsmeyer–Peppas Log fraction of drug released Log time 0.9927

2.3. Optimized Composition

The optimized formula obtained from BBD for formulating CVC-loaded niosomes,
drug (9.76 mg), surfactant (131.02 mg), and cholesterol (4.62 mg). Optimized formulation
was further characterized for various parameters. The chosen formulation for the optimized
niosomes was formulation code F4, which contains the drug (mg) (A) 10, surfactant (mg)
(B) 120, and cholesterol (mg) (C) 5.

2.4. Characterization of CVC-Ns

For measurements of the vesicle size, Polydispersity Index (PDI), and zeta potential
(ZP), the optimal formulation of CVC-Ns was carefully developed based on the charac-
teristics of obtaining the ideal vesicle size and PDI with zeta potential. For the optimized
niosomal formulation, the vesicle size distribution (PDI) was 0.265 ± 0.11, and the mean
vesicle size was 180.23 ± 1.21 nm. Figure 3A,B, respectively, show the size and zeta po-
tential curve of the optimized formulation. The optimized zeta potential was found to be
−31.70 ± 1.11 mV; the zeta potential magnitude gives stability potential of the formulation.
All particles in suspension with a large negative or positive zeta potential will resist each
other and thus have a low tendency to aggregate [49].

Entrapment Efficiency and Drug Loading

The % entrapment efficiency and % drug loading of optimized CVC-Ns was found to
be 90.61 ± 2.14% and 60.40 ± 0.99%.
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2.5. Morphology of CVC-Ns

The optimized CVC-Ns formulation’s TEM picture displays the produced vesicles to be
well-defined sealed structures with uniform size distribution and spherical morphologies
(Figure 4). The spherical vesicles indicate that CVC is entrapped by niosomes. These
vesicles are spherical in shape and homogeneous. The other spots represent the small
amount of CVC entrapment in the niosomes [50].

2.6. In Vitro Release Study

The CVC-loaded optimized niosomal formulation represents a release of CVC through
the dialysis bag of 70.24 ± 1.21%, compared to the in vitro CVC release of CVC-suspension,
which was found to be 32.87 ± 1.03% (Figure 5A). More than 10–15% of the drug was
released in the early two hours, followed by a sustained release for the next 24 h. Initially,
the fast release was caused by the rapid release of CVC from the niosome surface, but later,
a slower release phase was discovered. The delayed phase in drug release was controlled
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by diffusion through swollen niosomal bilayers [51]. The results of the in vitro drug release
experiment were analysed by applying several mathematical kinetic models to the data.
It was discovered that the value of the correlation coefficient (R2) for the release of CVC
from optimized CVC-loaded niosomes for the Higuchi matrix model had the greatest value
(R2 = 0.9933) (Figure 5B). First-order (R2 = 0.9878) and zero-order (R2 = 0.9268) models were
found to have the lowest R2 values, as shown in Table 3 and Figure 5C,D. Consequently,
after obtaining the highest value of the correlation coefficient, the optimized CVC-Ns
indicated Higuchi’s model as the best-fit model. The Korsmeyer–Peppas model was used
to fit data to analyses of the release mechanism of CVC from optimized CVC-Ns (Figure 5E).
The R2 value was found to be 0.9927, and the n value was found to be 0.45 < n < 0.89,
indicating that the release mechanism of CVC from optimized CVC-N follows non-Fickian
diffusion [52].
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2.7. Analysis of the Gel and Texture of the Optimized CVC-N Gel

The pH for the CVC-N gel formulation was 6.01, which is quite close to the skin’s
pH [52]. According to data on texture analysis, as shown in Figure 6, the CVC-N gel has
the following properties: firmness of 239.09 g, consistency of 1587.00 gm sec, cohesiveness
of −89.17 gm, and work of cohesion of −645.47 gm sec, as shown in Table 4 [53]. Peak
or maximum force is used to measure firmness; the higher the number, the thicker the
sample’s consistency. The sample’s stickiness or cohesiveness is determined by measuring
the greatest negative force. The stiffer the sample is, the more negative the number [54].

2.8. Confocal Laser Scanning Microscopy

The stratum corneum thickness of rat or human skin is reported to be 18 and 17 µm,
respectively, and the active site for most of the therapeutic complications associated with
the skin lies below the stratum corneum; thus, a drug moiety must penetrate at least
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20–200 µm across the skin to exert therapeutic effect [55]. The results showed that niosomal
gel loaded with rhodamine B penetrated a deeper layer to a depth of 25.0 µm (Figure 7A).
Rhodamine B hydroethanolic solution only exhibited infiltration up to 5.0 µm, suggesting
that the dye was only present in the top layers of the rat’s skin (Figure 7B). In contrast,
because the fluorescence intensity is greater in the centre of the skin, it is probable that
the formulation was maintained in the lower epidermal area of the rat skin. Many skin
conditions that affect this lower epidermal skin region require the formulation loaded with
rhodamine B to remain in the skin. Thus, it could be said that the created niosomal gel
effectively carried rhodamine B dye deeper into the rat’s skin layers.

Table 4. Physiochemical characterization of CVC-based niosomal gel (CVCNG).

Homogeneity Appearance Washability Separation of Phase Odour

Homogeneous Translucent Yes No odourless

Colour Content of Drug (%) pH Spreadability (gm. cm/sec)

off-white 90.11 ± 0.98 6.01 ± 1.01 18.27 ± 1.24

Cohesiveness (gm) Consistency (gm.Sec) Firmness (gm) Work of cohesion g, sec

−89.17 1587.00 239.09 −645.47
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for predicting the release of the drug.
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2.9. Dermatokinetic Studies

As a result of the application of CVC-CF gel and CVC-N gel at a predefined time
interval, the CVC concentration in the dermis and epidermis of the rat’s skin is shown in
Figure 8. Table 5 displays the values of the dermatokinetic parameters. The rat skin that had
been exposed to CVC-CF gel displayed CSkin max values of 179.04 ± 0.96 µg/cm2 in the epi-
dermis and 160.13± 0.64 µg/cm2 in the dermis. A CSkin max value of 283.54 ± 1.01 µg/cm2

was found in the epidermis, and 262.64 ± 1.12 µg/cm2 was found in the dermis of a
rat whose skin had been treated with CVCN gel. AUC0-t values of 677.47 ± 0.28 and
572.23 ± 0.31 µg/cm2 h, respectively, were seen in the epidermis and dermis of a rat whose
skin had been treated with CVC-CF gel. AUC0-t values in the epidermis and dermis of rat
skin treated with CVC-N gel, in contrast, were 1135.5 ± 0.64 and 1158.7 ± 1.08 µg/cm2

h, respectively. When rat skin was treated with CVC-N gel in contrast to the CVC-CF gel
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formulation, a greater percentage of CVC was maintained in both rat skin layers. The epi-
dermis and dermis both showed greater CSkin max and AUC0-t values, which demonstrate
that the CVC-N gel improved drug absorption in both the epidermal and dermis layers
because of its nanosized vesicles’ ease of penetration into the skin’s lipid layers, enhancing
its therapeutic efficacy in the treatment of inflammatory diseases [56].
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Figure 8. CVC concentration on the (A) epidermis and (B) dermis of excised rat skin following
application to the skin of CVC-N gel and CVC-CF gel.

Table 5. Dermatokinetic parameters (mean ± SD) of CVC-N gel and CVC-CF gel.

Dermatokinetics
Parameters

CVC-N Gel CVC-CF Gel

Epidermis Mean ± SD Dermis
Mean ± SD

Epidermis
Mean ± SD

Dermis
Mean ± SD

Tskin max (h) 2 2 2 2
Cskin max (µg/cm2) 283.54 ± 1.01 262.64 ± 1.12 179.04 ± 0.96 160.13 ± 0.64
AUC0-8 (µg/cm2 h) 1135.5 ± 0.64 1158 ± 1.08 677.47 ± 0.28 572.23 ± 0.31

Ke (h−1) 0.171 ± 1.11 0.119 ± 0.91 0.146 ± 0.47 0.119 ± 0.78
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2.10. Ferric-Reducing Antioxidant Power (FRAP)

The analysis indicated that CVC has a significant amount of antioxidant capacity
and that the agent is effective at scavenging free radicals, and preventing the oxidation
of antioxidant activity was found to be 60.14 ± 1.11% in free CVC, 88.41 ± 2.32% in an
ascorbic acid solution, and 71.24± 3.31% in a CVC-N-optimized formulation. As the results
indicate, CVC-Ns have been shown to have a significant antioxidant effect.

2.11. Stability Studies

The data of experiments into short-term accelerated stability were evaluated for six
months. Physical appearance, shape, vesicle size, PDI, zeta potential, colour appearance,
phase separation, clarity, homogeneity, pH, and drug content were detected (Tables 6 and 7).
This study thus validates the notion that niosomes are durable over long periods of storage.

Table 6. Evaluation of the CVC-loaded optimized niosome (CVC-N) formulation’s short-term
accelerated stability.

Evaluation
Parameters Initial

1 Month 3 Months 6 Months

4 ± 2 ◦C 25 ± 2 ◦C/
60 ± 5% RH 4 ± 2 ◦C 25 ± 2 ◦C/

60 ± 5% RH 4 ± 2 ◦C 25 ± 2 ◦C/
60 ± 5% RH

Appearance +++ +++ +++ ++ ++ ++ ++

Phase separation NO PHASE SEPARATION

Shape Spherical in shape

PDI 0.259 0.259 0.264 0.271 0.277 0.280 0.284

Vesicle size (nm) 180.23 180.23 180.99 181.11 182.14 183.09 183.21

Zeta potential (mV) −31.70 −31.70 −32.01 −32.45 −33.41 −33.39 −33.34

++ good, +++ excellent.

Table 7. Short-term accelerated stability evaluation of CVC-loaded optimized niosomal gel formulation.

Evaluation
Parameters Initial

1 Month 3 Months 6 Months

4 ± 2 ◦C 25 ± 2 ◦C/
60 ± 5% RH 4 ± 2 ◦C 25 ± 2 ◦C/

60 ± 5% RH 4 ± 2 ◦C 25 ± 2 ◦C/
60 ± 5% RH

Colour Slightly off white

Appearance Translucent

Phase
Separation NO PHASE SEPARATION

Clarity
√ √ √ √ √ √ √

pH 6.01 6.01 6.29 6.31 6.39 6.55 6.67

Homogeneity *** *** ** *** ** *** *

Washability Washable

Odour NO

* satisfactory, ** good, *** excellent.

3. Conclusions

Niosomes were effectively developed using thin film hydration. Using BBD, the
niosomal formulation was optimized by taking independent and dependent factors. The
optimized formulation achieved the highest amount of CVC entrapping, suggesting that it
was the most ideal among all formulations, i.e., batch code F4. The optimized CVC-loaded
niosomes had reduced PDI values and were in the colloidal size range, which indicated
that the formulations were homogeneous. The TEM images demonstrated the spherical
shapes of the vesicles, providing evidence of an entrapped CVC. According to in vitro
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drug release studies, the amount of CVC released from CVC-loaded niosomes was two
times higher than it was from CVC suspension solution, demonstrating improved drug
release from the niosome formulation due to nanosized vesicles. A CLSM study on rat
skin has provided insight into the penetration of rhodamine-loaded B hydroalcoholic and
rhodamine-loaded niosome formulations, and the results showed that rhodamine-B-loaded
niosomal formulations penetrated the skin much more effectively than hydroalcoholic
solutions of the rhodamine B dye, indicating that niosomes have improved in vivo prospects
for anti-inflammatory treatment. Compared to CVC-CFG, dermatokinetic studies show
that a higher concentration of CVC-NG reaches the epidermis and dermis (Cskin max and
AUC0-t) due to the nanosized vesicles providing a means to cross the stratum corneum
to have a profound effect. The antioxidant studies revealed that the niosome formulation
has a greater potential for antioxidants than the pure drug, showing a capability to reduce
the level of free radicals and reactive oxygen stress and hence to reduce inflammation.
Moreover, the results of this experiment confirmed that the developed, optimized niosome
formulation is an effective means of delivering CVC drugs topically and can therefore be
used to treat anti-inflammatories more successfully. However, the actual skin penetration of
carvacrol may vary depending on the formulation and the distinctive characteristics of the
skin. While carvacrol is usually regarded as safe, the safety profile of carvacrol-containing
niosomes for topical distribution has not been fully established, and additional research may
be required to determine their possible toxicity and side effects and to validate the in vitro
and skin permeation results by using appropriate animal models in preclinical studies.

4. Materials and Methods
4.1. Materials

Carvacrol oil, polyethylene glycol 400 (PEG), triethanolamine rhodamine-123, Ascorbic
acid and potassium ferricyanide were procured from Sigma-Aldrich (St. Louis, MI, USA).
Cholesterol and tween 80 were provided by S D Fine Chemicals Ltd. (Mumbai, India).
Methanol and chloroform were provided by Merck Mumbai, India. B.S. Goodrich in
Pleveland generously provided carbopol-934 as a gift sample. Other agents used in the
experiment such as disodium hydrogen phosphate, potassium dihydrogen phosphate,
and sodium chloride of analytical grade were provided by S D Fine Chemicals Limited,
Mumbai, India.

4.2. Method
4.2.1. Preparation of CVC-Loaded Niosomes (CVC-Ns)

Niosomes loaded with CVC (CVC-Ns) were made using the thin-layer hydration
method. Briefly, the drug (CVC), cholesterol, and surfactant were dissolved in a round-
bottomed flask using a chloroform-to-methanol ratio of 2:1. The organic phase was then
evaporated in a rotary evaporator (120 rpm, 60 ◦C, 1 h) to generate a thin layer. Phosphate-
buffered saline solution (PBS pH—6.8, 10 mL) was then used to rehydrate the desiccated
thin film at room temperature (30 ◦C) for one hour (200 rpm). CVC-loaded niosomes were
then sonicated for 2 min by a probe sonicator. The samples were preserved in a refrigerator
at 4 ◦C for further investigation [57].

4.2.2. CVC-Loaded Niosome Optimization through Experimental Design

The Box–Behnken design (BBD) of the Design-Expert software (Stat-Ease Inc.’s, Design
Expert®, Version 13) was used to examine the relationships between the three selected input
variables (drug, surfactant, cholesterol). The output variables studied were the vesicle size
(Y1), polydispersity index (PDI, Y2) and entrapment efficiency (Y3). The input variables
were chosen, at their three levels, i.e., their minimum, average, and maximum values,
which are shown in Table 8 to explore the final optimal formulation [58].
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Table 8. Factors and responses employed in BBD to create CVC-Ns.

Factor The Level Used, Actual Coded

Factors Low (−1) Medium (0) High (+1)

A = Drug (mg) 05 10 15
B = Surfactant (mg) 90 120 150

C = Cholesterol (mg) 2.5 05 7.5

Responses Aim

Y1 = globule size (nm) <200 nm
Y2 = PDI <0.3

Y3 = Entrapment Efficiency (%) >70%
A, drug (mg); B, surfactant (mg); C, cholesterol (mg); Y1, Vesicle size (nm); Y2, PDI; Y3, EE (%); BBD, Box–Behnken
experimental design; Ns, Niosomes; CVC, carvacrol.

4.3. Characterization of CVC-Ns
4.3.1. Determination of Globule Size and Zeta Potential

To determine the zeta potential and vesicle size distribution, the dynamic light scat-
tering (DLS) method was utilized. Before analysis, samples were 100-fold diluted in
double-distilled water, and impurities were removed using 0.45 m membrane filters. The
Malvern particle size analyser equipment (Malvern Instrument Ltd., Malvern, UK) was
utilized to determine the zeta potential and to quantify the vesicle size [59].

4.3.2. Measurement of % Entrapment Efficiency and % Drug Loading

The drug loading and entrapment efficiency of CVC-loaded niosome vesicles were
determined by ultra-centrifuging (Beckman Coulter India Pvt. Ltd., Mumbai, India) for-
mulations for one hour at 15,000 r/min and 4 ◦C. The upper layer of liquid (supernatant)
was withdrawn using a pipette, diluted, and filtered (0.25 µm), and the CVC concentration
was measured employing UV spectroscopy (UV 1601, Shimadzu, Nagoya, Japan) at 280
nm [60]. The experiment was performed in triplicate. For evaluating the drug-loading
capability of the niosomes, drug entrapment efficiency is a crucial factor. This parameter
depends on the developmental methodology, the physicochemical features of the drug,
and the formulation factors [61].

The equation was used to obtain the entrapment efficiency (EE%) and drug
loading (%) [62]:

Encapsulation efficiency (%) =
(total amount − free amount)

total amount
× 100

Drug loading (%) =
amount of drug entraped

total amount of drug and lipid
× 100

4.4. Morphological Studies

Transmission electron microscopy (TEM) analysis was carried out on a JEOL-2000 Ex
II TEM (Akishima, Japan) to morphologically characterise the niosomes. The excess sample
was taken off the carbon-coated copper grid using filter paper after a drop of the niosomal
formulation was applied to it. The carbon-coated copper grid was then applied with a drop
of 2% (w/v) PTA (phosphotungstic acid solution) and kept undisturbed for 2 min. The
excess of the staining agent was removed with the help of a filter paper, and the sample
was air-dried before being examined on the transmission electron microscope [63].

4.5. Formulation of CVC Niosomal Gel (CVCNG)

Niosomal dispersions have a very low viscosity, which makes them unsuitable for
topical use; therefore, gelling was performed. Carbopol 934 was spread out by slowly
adding distilled water and letting it sit in the dark so that it could fully swell. The dispersion
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was further made neutral by adding triethanolamine drop by drop to achieve the intended
result of a viscous transparent gel. Finally, the optimized CVC-N formulation was added
slowly to the gel with constant agitation to create CVC-NG [64].

4.6. In Vitro Drug Release Study

The optimized CVC-N formulation and carvacrol suspension (drug (10 mg)) was
dissolved in methanol and the volume was made up to 10 mL with adequate solvent.
The drug release investigation was conducted using the cellulose dialysis membrane bag
(molecular weight cut off–12,000 kDa). The dialysis bag was filled with both of the prepared
formulations (2 mL of each containing 2 mg of the drug), and the ends were knotted. As part
of the experiment, the dialysis bag was submerged in 100 mL of the phosphate buffer (pH
6.8; medium). The release media’s temperature was maintained at 37 ± 2 ◦C throughout
the investigation, which was conducted with constant stirring. The sample (1 mL) was
taken at 0, 0.5, 1, 2, 4, 6, 8, 12 and 24 h, and precisely the right amount of fresh medium
was added to keep the sink conditions. The in vitro drug release study was conducted
for 24 h to determine the drug release pattern, the mechanism it follows and how long it
remains in the target area. The obtained samples were filtered (0.22 µm) and further diluted
to determine the content of the drug by utilizing a UV spectrophotometer at 280 nm. To
evaluate the release mechanism, the drug release data were fitted to various release kinetic
models, including zero-order, first-order, Higuchi, and Korsmeyer–Peppas models [65].

4.7. Characterization of Gel
Evaluation of pH and Texture of CVC-N Gel

A digital pH meter electrode (Mettler Toledo, Chiyoda, Japan) was utilized to directly
measure the pH of the CVC-N gel. TA.XT Plus Texture analyser (Stable Micro Systems Ltd.,
Surrey, UK) was used to determine the gel’s texture. The texture analysis curve produced
at the end of the trials was used to identify parameters including hardness, consistency,
cohesiveness, and gel viscosity index [66].

4.8. Spreadability Studies

The parallel plate method was used to determine the niosomal gel spreadability. In
this procedure, 500 mg of the formulated gel was added to a circle diameter of 1 cm, atop a
glass plate that had been pre-marked and another glass plate had been placed on top. Five
minutes were given for a weight of 500 gm to lay on the top plate of the glass. It was seen
that the gel spreading caused the diameter to expand [67].

4.9. Permeation Depth Study by Loading Rhodamine B Dye

Franz diffusion cell was utilized in the confocal studies to evaluate the infiltration
in the skin by rhodamine-B-dye-loaded niosomal formulation and standard solution of
rhodamine B dye. A 1 cm2 sample of rat skin was cut from the abdomen, and the hairs
were removed using purified water and a phosphate-buffered saline solution; the rat skin
was meticulously washed and rinsed until it was completely clean. The stratum corneum
was then facing up and the dermis was facing down when the skin was then put on the
diffusion cell. The niosome formulation was mixed with rhodamine B, while the standard
was hydroalcoholic rhodamine B solution. Both were put into the donor compartment and
kept at a temperature of 32 ± 0.5 ◦C for six hours. Additionally, slides with the stratum
corneum pointing upward were examined using a confocal microscope and an optical
excitation of 488 nm. Above 560 nm, both the argon laser beam and the fluorescence
emission could be seen. Confocal laser scanning microscopy (CLSM) was used to compare
the penetration and distribution of improved gel formulation with traditional gel (TCS
SP5II; Leica Micro System Ltd., Wetzlar, Germany) [68].
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4.10. Dermatokinetics

The dermatokinetic analysis was performed to determine the quantity of drug in
different layers of excised rat skin after applying the CVC-NG formulation mounted on
a diffusion cell apparatus. The research was carried out following the protocol described
in the CLSM study. In this case, the Franz diffusion cell skin samples were obtained for
this study at 0, 1, 2, 4, and 8 h. The skin was then washed with normal saline and kept
at 60 ± 0.5 ◦C for 2–3 min. The skin layers (epidermis and dermis) were separated using
forceps and sliced into tiny fragments before being soaked in methanol for 24 h to extract
the drug contained in the layers. The methanolic extracts of the drug were further filtered
(0.22 µm), and the drug concentration was determined using a UV spectrophotometer. All
the measurements were performed in triplicate [69].

4.11. Ferric-Reducing Antioxidant Power (FRAP)

In brief, 2.5 mL of 0.2 M sodium phosphate buffer (pH 6.6) and 2.5 mL of 1% (w/v)
potassium ferricyanide solution were combined with 1 mL of sample solution (10 µg/mL)
in methanol. Employing a method similar to Oyaizu’s with a few minor alterations, the
reduction power (antioxidant) of CVC in the niosomal formulation was determined. The
mixture was then incubated for 20 min at 50 ◦C before being treated with 2.5 mL of 10%
trichloroacetic acid. Then, 2.5 mL from the top layer of the mixture, 2.5 mL of distilled
water, and 0.5 mL of FeCl3 (0.1%) were added after the mixture had been centrifuged for
10 min at 3000 rpm. The amount of ascorbic acid that was utilized as the standard was
10 µg/mL, and a spectrophotometer was used to measure the absorbance at 700 nm. Each
test was performed in triplicate [70].

4.12. Stability Studies

Optimized CVC-N and CVC-N gel formulations underwent short-term accelerated
stability evaluation in line with the International Conference on Harmonization (ICH) Q1 A
R2 guidelines. Lyophilized niosomes (CVC-Ns) were placed in an Eppendorf, sealed, and
maintained in a stability chamber at 25± 2 ◦C and RH 60± 5% at 4± 2 ◦C. The formulation
along with the gel was then assessed for changes in physical appearance, shape, vesicle
size, PDI, zeta potential, clarity, homogeneity, pH and phase separation for six months [71].
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