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Abstract: Osteoporosis is one of the most disabling consequences of aging, and osteoporotic fractures
and a higher risk of subsequent fractures lead to substantial disability and deaths, indicating that
both local fracture healing and early anti-osteoporosis therapy are of great significance. However,
combining simple clinically approved materials to achieve good injection and subsequent molding
and provide good mechanical support remains a challenge. To meet this challenge, bioinspired by
natural bone components, we develop appropriate interactions between inorganic biological scaffolds
and organic osteogenic molecules, achieving a tough hydrogel that is both firmly loaded with calcium
phosphate cement (CPC) and injectable. Here, the inorganic component CPC composed of biomimetic
bone composition and the organic precursor, incorporating gelatin methacryloyl (GelMA) and N-
Hydroxyethyl acrylamide (HEAA), endow the system with fast polymerization and crosslinking
through ultraviolet (UV) photo-initiation. The GelMA-poly (N-Hydroxyethyl acrylamide) (GelMA-
PHEAA) chemical and physical network formed in situ enhances the mechanical performances
and maintains the bioactive characteristics of CPC. This tough biomimetic hydrogel combined with
bioactive CPC is a new promising candidate for a commercial clinical material to help patients to
survive osteoporotic fracture.

Keywords: injectable hydrogels; osteogenesis; bone cement; biocompatible polymers

1. Introduction

Osteoporosis, a major worldwide health problem, is associated with substantial social,
economic, and public health burdens. By 2030, approximately 13.3 million individuals
in the United States older than 50 years are expected to have osteoporosis [1]. Fractures,
the most important consequence of osteoporosis, are associated with enormous costs and
substantial morbidity and mortality [2,3]. Roughly 9 million osteoporotic fractures occur
worldwide each year [4], and approximately one in three women and one in five men aged
50 years or older will have a fragility fracture during their remaining lifetime. Furthermore,
a total of 23% of the subsequent fractures occur within 1 year after the first fracture, and
54.3% occur within 5 years [5], indicating the treatment for the first fracture with an internal
fixation system or bone cement alone is deemed insufficient, resulting in an urgent need
for early anti-osteoporosis therapy after a first fracture to prevent subsequent fractures.
However, achieving rapid recovery of local fractures to avoid long-term bedrest that can
lead to further systemic osteoporosis, and at the same time, improving the total bone mass
to avoid secondary fractures is still a great challenge.
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Osteoporosis is a systemic skeletal disease characterized by reduced bone mass and
microarchitectural deterioration of bone tissue leading to an increased risk of fragility
fracture [3]. Osteoporosis is a chronic disease and long-term management is required. The
purpose of treating patients with osteoporosis medication is to reduce the risk of fracture
and subsequent pain and disability [6]. At present, most existing therapeutics used in the
treatment of osteoporosis are anti-resorptive drugs, such as bisphosphonates, and bone
anabolic agents, including denosumab and teriparatide [3,6]. If individuals at high risk
of fractures do not receive appropriate treatment, this may result in further consequences.
Vertebral fractures are the most common among osteoporotic fractures and due to poor
bone quality, screw loosening and pull-out occur frequently in older osteoporotic patients,
which presents several challenges to spine surgeons [7,8].

Common strategies for improving osteointegration include aesthetic contouring at
the physical level and osteogenesis at the biochemical level [9–11]. Percutaneous verte-
broplasty (PVP) and percutaneous kyphoplasty (PKP) are widely used in the treatment of
osteoporotic vertebral compression fractures (OVCFs). PVP and PKP refer to a minimally
invasive spine surgery technique that injects bone cement into the vertebral body through
the pedicle or beside the pedicle to relieve back pain, increase the stability of the vertebral
body, and restore the height of the vertebral body [12]. Pedicle screw fixation is widely
used to treat spinal disease, and the number of spine surgeries in elderly patients with os-
teoporosis continues to increase worldwide due to the increasingly aged population [13,14].
To improve the pull-out strength of screws in the osteoporotic spine and decrease the risk of
screw loosening, several techniques are used, such as using an expandable screw, enlarging
the length and diameter of the screw, and using a cement-augmented pedicle screw (CAPS).
Among these approaches, CAPS has been proven to be the most effective strategy for
enhancing the fixation strength to improve pedicle screw stability in patients with osteo-
porosis [13,14]. However, combining simple clinically approved materials to achieve good
injection and subsequent molding and provide good mechanical support remains a chal-
lenge. The common types of bone cement used clinically include polymethylmethacrylate
(PMMA), calcium phosphate cement (CPC), calcium sulfate cement (CSC), and composite
bone cement. Currently, PMMA bone cement is the most commonly used bone cement
in PVP/PKP and CAPS, having advantages such as biocompatibility, injectability, and
good mechanical properties [12,15]. However, PMMA also has various disadvantages, such
as it cannot be degraded, a lack of biocompatibility, a propensity to cause surrounding
tissue damage due to polymerization exotherm, and residual monomer toxicity [12]. In
addition, the injection of PMMA bone cement into a vertebral body increases the possibility
of fracture of the adjacent vertebral body.

The ideal bone cement is biocompatible, resorbable, osteoconductive, osteoinductive,
and mechanically similar to bone. The study and development of new bone cement alterna-
tives to PMMA is the focus of intensive investigations worldwide. In the last few decades,
injectable hydrogels have gained increasing attention due to their structural similarities
with the extracellular matrix, easy process conditions, and potential applications in min-
imally invasive surgery [15]. CPC, which has good osteoconductive and biocompatible
capacity, presents an advantageous alternative material. Fortunately, with the rapid devel-
opment in nanotechnology, nanomaterials are easily characterized (such as using X-ray
and neutron diffraction to detect structure) [16–18] and evaluated (surface morphology
and surface energy determined by atomic force microscopy) [19]. Thus, nanomaterials
have been widely applied in the ferrimagnetic and optical domains [20,21]. The control-
lable preparation of CPC nano powder-formed CPC scaffolds has been widely applied
in clinical application [22–25]. However, the time-consumer curing process, intrinsic un-
controlled brittleness, and poor washout resistance have limited its further integrated
applications. To address these drawbacks of pure CPC, one of the major strategies is to
integrate organic-inorganic phases and simulation tissue composite. Some peptide-based
matrices endow materials with bioactive and mechanical properties, but they are limited by
stringent synthesis processes [26,27]. Gelatin methacryloyl (GelMA) derived from collagen
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with injectable, bioactivity, and fast crosslinking progress has been widely studied [28–32].
However, its poor mechanical behavior has confined it to accelerating bone reconstruction.
Introducing poly(ethylene glycol) diacrylate (PEGDA) to form GelMA/PEGDA hydrogel
showed guided bone regeneration, however, the mechanical properties were still weak [28].
Thus, developing injectable, osteoblast-active, and tough materials is still a big challenge.
In this study, we design an organic-inorganic precursor containing CPC, GelMA, and
N-Hydroxyethyl acrylamide (HEAA) with fast gelation behavior [33–37]. The CPC and
GelMA are supported to promote bone regeneration. The in situ-formed chemical and
physical GelMA-poly(N-Hydroxyethyl acrylamide) (GelMA-PHEAA) network endows the
composite with a uniquely tough structure that enhances the mechanical performance and
maintains the bioactive characteristics of CPC. Due to the above properties, the resultant
GelMA-PHEAA/CPC hydrogels impart superior tough mechanical properties and strong
osteogenic ability.

Herein, bioinspired by natural bone structure, we develop a biomimetic bone structure
that fully considers the need for appropriate interactions between inorganic osteogenic
teriparatide and organic powerful biological scaffolds, achieving a scaffold that is both
firmly loaded with CPC and able to provide strong mechanical support. The HEAA bridges
in the system make the whole hydrogel network very tough, realizing the great storage
of CPC and excellent osteogenic properties. Meanwhile, the components are Food and
Drug Administration (FDA)-approved and well-suited to clinical translation. In summary,
this bioactive injectable hydrogel is a novel promising therapy for fracture patients and
well-suited to clinical commercialization.

2. Results and Discussion
2.1. Synthesis and Characterization of GelMA-PHEAA/CPC Hydrogels

In this study, a new injectable and bioactive hydrogel was designed. The schematic
in Figure 1A illustrates the hydrogel preparation process. By introducing GelMA and
HEAA monomer into the CPC precursor, a fast cross-linked homogeneous hydrogel system
could be fabricated. Such a protocol allowed the in-situ gelation of hydrogels at localized
defects and accelerated bone regeneration. As shown in Figure 1B, the typical vial inversion
test proved that GelMA-PHEAA/CPC hydrogel could be easily formed under UV photo
initiation in 2 min. The injection process in Figure 1C demonstrated that the precursor was
able to plastically mold in a preset shape with fast cross-linking. Figure 1C(I–IV) show the
precursor injection, defect filling, formation in situ, and final shape, respectively. These
properties will allow the repairing of irregular defects in clinical applications. A rheological
test was used to evaluate the processability of the used materials. Although the pre-solution
contains macromolecule, monomer, and inorganic particles, the system still exhibits an
obvious shear thinning phenomenon (Figure 1D). Due to the fast cross-linking ability, the
system could form a stable network consisting of an organic-inorganic hybrid structure.
A rheological frequency-sweep test (Figure 1E) showed that the storage modulus (G′) of
the GelMA-PHEAA/CPC precursor was lower than the loss modulus (G′′) at the sol stage,
and after polymerization, the G′ of the GelMA-PHEAA/CPC hydrogels was always higher
than the G′′, which indicated that the hydrogels had both a stable structure and elasticity at
a wide range of frequencies.

Figure 2A shows the SEM micrographs of the hydrogels. The pure GelMA hydrogel
exhibited a smooth surface with few porous structures, while the GelMA-PHEAA hydrogel
presented a flat smooth surface. However, the introduction of CPC in the GelMA system
caused a remarkable increase in porosity. The CPC powder was loose within the GelMA net-
works. In addition, compared with the GelMA/CPC hydrogel, the GelMA-PHEAA/CPC
hydrogel revealed a tighter structure, which allowed CPC to be well-dispersed in the system.
The surface element detection in Figure 2B also illustrates that the GelMA-PHEAA/CPC
hydrogel contains abundant bioactive particles with a homogeneous composition. The
chemical structures of the precursor and hydrogels were tested using FT-IR spectroscopy
(Figure 2C). The characteristic absorption peaks at 3300~3000 cm−1 of HEAA and the



Gels 2023, 9, 302 4 of 12

GelMA macromolecule represented the unsaturated C-H vibration. Absorption peaks at
1680~1620 cm−1 represent the -C=C- vibration of HEAA, which was observed in both
HEAA and the GelMA-PHEAA/CPC precursor. However, in the case of GelMA, this
double bond vibration may overlap with the -NH- vibration whose characteristic peak lay
at 1650~1500 cm−1. After photo-initiation for 2 min, the double bond and unsaturated C-H
vibration peaks in both GelMA-PHEAA and GelMA-PHEAA/CPC groups disappeared,
indicating that both systems experienced in situ completed polymerization. In general,
the complete polymerization of hydrogel precursors always results in less cytotoxicity for
clinical application compared to the toxic monomers.
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Figure 1. Schematic representations of GelMA-PHEAA/CPC hydrogels for bone regeneration (A).
The optical images present the sol−gel transformation of hydrogels, and I,II represent the origi-
nal state and after photo-initiation of GelMA-PHEAA/CPC precursor and GelMA-PHEAA/CPC
hydrogel, respectively (B). The optical images present the injectability and ability to form in situ
of the materials, and I–IV represent precursor injection, defect filling, formation in situ, and final
shape, respectively (C). Rheological behavior of pre-solution and hydrogels under rotation ramp
mode (D) and dynamic frequency sweep tests (E).

Next, to determine the phase composition of CPC in the composite GelMA-PHEAA/CPC
hydrogels, X-ray diffraction (XRD) analysis was performed (Figure 2D). The CPC consisted
of tetracalcium phosphate (TTCP, Ca4(PO4)2O) and dicalcium phosphate anhydrous (DCPA,
CaHPO4), which could form hydroxyapatite (Hap) (Ca10(PO4)6(OH)2) in situ [38]. The
broad peak at around 20 = 23◦ represented the polymer chain segment of the organic
composite. Both samples exhibited typical peaks of HAp and anhydrate TTCP phase.
However, the intensity of HAp and TTCP in GelMA-PHEAA/CPC was obviously weaker
than CPC, which might be due to the shielding effect of the organic phase. Appropriate
mechanical properties are vital for materials applied in bone defects. As mentioned, GelMA-
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PHEAA/CPC hydrogel could be injectable with fast cross-linking, but the form of the
organic-inorganic composite needs to be strong enough to support tissue regeneration. The
compress-strain curves in Figure 2E,F show a comparison of the mechanical performance
of each sample. The clinically used CPC was brittle with less than 10% compressibility,
which is a major disadvantage in practical application. At the same time, while, due to its
bioactivity and biocompatibility, GelMA is wildly researched in tissue regeneration, the soft
and weak networks it forms limited its application in hard tissue repair. The introduction
of CPC in GelMA would weaken the network. As shown in Figure 2F, the modulus of
GelMA/CPC is one-third that of GelMA. However, by introducing PHEAA into the system,
both Young’s modulus and the compressibility of the materials were significantly promoted.
GelMA/CPC and GelMA-PHEAA/CPC both showed lower mechanical properties than
their hydrogel matrix. This may be attributed to the weak interaction between CPC dis-
persed in the system and the polymer, which decreases the strength of the polymer network
connections. However, with the increase in compression deformation, the breaking stress of
GelMA/CPC and GelMA-PHEAA/CPC became greater than that of their hydrogel matrix.
These phenomena may be due to the strong interaction between CPC and the polymer
network. In addition, the fluctuations in the curve of the GelMA-PHEAA/CPC hydrogel
after 78% deformation indicated the local failure of the system; however, the materials could
maintain their structural integrity at 90% strain with over 3.5 MPa stress. This property
allowed the GelMA-PHEAA/CPC hydrogel to support a hard tissue structure and would
reduce the potential risk of implant material rupture.
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Figure 2. The characteristics of the hydrogels. (A) surface morphology of the hydrogels by SEM.
(B) Elemental composition and distribution of GelMA-PHEAA/CPC. (C) FT-IR spectra of GelMA,
HEAA, GelMA-PHEAA, and GelMA-PHEAA/CPC. (D) XRD of CPC and bioactive hydrogel, and the
characteristic peaks were labeled with *. (E) Typical compress-strain curves of different samples and
detailed performance of the first 0–20% strain (F). (G) The Young’s modulus of different hydrogels.
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The stability of a hydrogel after swelling is very important because the mechanical
property of traditional hydrogels is supposed to be weak in the swollen state. However,
as shown in Figure 3A(I), the structure of GelMA-PHEAA/CPC hydrogel remained intact
in the swollen state. We compressed the cylindrical hydrogel with a 500 g hook weight
and it underwent deformation (Figure 3A(II,III)). After removing the force, the GelMA-
PHEAA/CPC hydrogel recovered its initial shape, indicating that this hydrogel was stable
in the solution environment. The swelling curve in Figure 3B exhibits the weight change of
the freeze-dried hydrogels versus time. The swelling rate of pure GelMa hydrogel reached
over 1000%, while, after introducing CPC or PHEAA in the system, the swelling rate of the
hydrogels decreased. The PHEAA network is influenced more obviously than the inorganic
component CPC. The GelMA-PHEAA/CPC hydrogel showed an appropriate ability to
absorb water, and this behavior is thought to promote affinity with tissue. All hydrogels
can be degraded by collagenase. The weight retention curves in Figure 3C demonstrated
that the pure GelMA hydrogel degrades too fast to fill a defect, while the degradation
ratio of GelMA/CPC was nearly 50% after 7 days. The hydrogel with PHEAA degraded
more slowly than the single network materials, as the PHEAA promoted network density
and enhanced the interaction of all components, making the system more stable. Thus,
the GelMA-PHEAA/CPC needed a long time to degrade. This behavior could prolong
the bioactive effect of the CPC hydrogel scaffold and slow the release of CPC, rather than
rupturing quickly.
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Figure 3. Stability test of the hydrogels. (A) The optical images of GelMA-PHEAA/CPC hydrogel
in the swelling state. I: shape integrity of the swelling hydrogel. II–IV: the compression process on
swollen GelMA-PHEAA/CPC hydrogels using a 500 g hook weight. (B) The swelling properties of
different hydrogels. (C) Biodegradation of hydrogels.

2.2. Cell Proliferation

As presented in Figure 4, the Live/Dead staining showed almost no dead cells among
all samples after being cultured for 48 and 72 h, suggesting that the biocompatibility of
GelMA and the incorporation of CPC were satisfactory, and the hydrogels do not affect
the proliferation of cells on the samples. L929 cells spread and grew well on all the sample
surfaces cultured for 48 h. When cultured for 72 h, all of the samples were almost covered
by cells. There were plenty of living cells (green fluorescence), indicating that all hydrogels
were biocompatible, which is consistent with the previous literature [39] and demonstrates
that all components are well-suited for clinical translation.
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Figure 4. In vitro cell biocompatibility of GelMA-PHEAA/CPC hydrogels. Representative live/dead
staining images of L929 cells for GelMA, GelMA-PHEAA, GelMA/CPC, and GelMA-PHEAA/CPC
on 48 (A) and 72 h (B).

2.3. Osteogenic Activity

The expressions of osteogenic genes including Runx2, OPN, OCN, ALP, COL I, and OSX
in MC3T3 were evaluated by qRT-PCR. As shown in Figure 5A–F, the cells on the GelMA-
PHEAA/CPC hydrogel sample expressed a higher level of these osteogenic-related genes than
the other samples. The trends in the expressions of the four genes in cells on the four samples
were consistent and ran: GelMA < GelMA-PHEAA < GelMA/CPC < GelMA-PHEAA/CPC.
The increased expressions of osteogenic genes in the cells may be due to the formation of a
hard tissue structure and reduced risk of CPC rupture, and the good storage of CPC, which
could promote the differentiation of MC3T3 cells.
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Figure 5. Expression of osteogenic-related genes in MC3T3 cells seeded on hydrogels at Day 7:
(A) Runx2, (B) OPN, (C) OCN, (D) ALP, (E) COL I and (F) OSX, (n = 4, * p < 0.05, ** p < 0.01,
*** p < 0.001).

Meanwhile, the protein expression of COL I and OCN, which were analyzed using
immunofluorescence staining, were further investigated to evaluate the osteogenic activity
of the hydrogels. As shown in Figure 6A,B, the GelMA-PHEAA/CPC hydrogel significantly
promoted COL I and OCN expression compared to the other hydrogels. Semi-quantitative
statistical analysis results further confirmed that the protein expression of COL I and OCN
in the GelMA-PHEAA/CPC group was notably higher than that in the GelMA/CPC and
GelMA hydrogels (Figure 5C,D). These results confirmed the bioactivity of the GelMA-
PHEAA/CPC hydrogel. In summary, this bioactive injectable hydrogel is a novel promising
therapy for fracture patients and well-suited to clinical commercialization.
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3. Conclusions

In this work, GelMA-PHEAA/CPC hydrogel was synthesized through a one-pot
process. Due to the fast cross-linking and injectable behavior, in situ defects can be formed
easily. The GelMA-PHEAA network endowed the system with a strong and tough network,
and the inorganic CPC phase promotes bioactivity for bone regeneration. The GelMA-
PHEAA/CPC hydrogel exhibited good biocompatibility and promoted cell proliferation.
The good storage of CPC in the hydrogel system promoted the mRNA expressions of
osteogenic genes (Runx2, OPN, OCN, ALP, COL I, and OSX). The improved osteogenic
activity of GelMA-PHEAA/CPC was due to the increase in the CPC content and the stable
hydrogel system. This study provided a reference for the modulation synthesis of injectable
hydrogel, strongly supporting the contention that the biological properties of CPC can be
improved by modulation synthesis to endow bone implants with good osteogenic abilities.

4. Materials and Methods
4.1. Chemicals and Reagents

Methacrylate Gelatin (GelMA), N-Hydroxyethyl acrylamide (HEAA, 98%), and Lithium
Phenyl(2,4,6-trimethylbenzoyl) phosphinate (LAP, 98%) were purchased from Aladdin
Reagent Inc. (Shanghai). Tetracalcium phosphate (TTCP, Ca4(PO4)2O) and dicalcium
phosphate anhydrous (DCPA, CaHPO4, 98%) were supplied by Macklin Biochemical Co.,
Ltd. (Shanghai, China). Calcium phosphate cement (CPC) powder was prepared by
equimolar mixing of TTCP and DCPA. All reagents were used as received without further
purification. In this experiment, all purified water was obtained from a Millipore system
with an electronic conductance of 18.2 MΩ cm.
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4.2. Preparation of GelMA-PHEAA/CPC Hydrogels

To obtain the fast gelation bioactive hydrogel, a predetermined amount of GelMA
(0.3 g) was added to 1.5 mL purified water and stirred at 60 ◦C to prepare a GelMA
solution. Then 1.2 g HEAA, 15 mg LAP photoinitiator, and 0.3 g CPC were added into
the solution and subjected to ultrasonic dispersion (see Scheme 1). The obtained pre-
solution was transferred into a syringe and injected into the template. After exposure to UV
light (365 nm, 36 W) for 2 min, the bioactive hydrogel was fabricated and named GelMA-
PHEAA/CPC. Hydrogels without CPC were defined as GelMA-PHEAA, and the 10 wt%
GelMA hydrogel was chosen as a control group. The hydrogel base materials including
GelMA, GelMA-PHEAA, GelMA/CPC, and GelMA-PHEAA/CPC were prepared by photo-
initiation. Clinically used CPC scaffold was chosen as the control group [38].
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4.3. Characterization of Hydrogels

Fourier-transform infrared (FTIR) spectra were acquired using a Nicolet 5700 (Thermo)
at room temperature from 4000 to 400 cm−1. The morphology and surface elemental
composition of the hydrogels were visualized under scanning electron microscopy (SEM)
(3400-N, Hitachi, Tokyo, Japan). The rheological behavior of the hydrogels was evaluated by
a HAAKE MARS III rheometer. The pre-solution processability was tested under rotation
ramp mode from 0.01–100 s−1 in 1 min at 37 ◦C. Dynamic frequency sweep tests were
carried out from 15 to 0.1 Hz at 37 ◦C with an oscillatory strain of 1% at the thickness of
1 mm. The microstructure of the materials was examined by X-ray diffraction (XRD, Rigaku
D/Max2550, Tokyo, Japan) with a scan range of 10 to 60 degrees. The mechanical properties
of hydrogels were evaluated by an electronic mechanical testing machine (SANS CMT2503,
Guangzhou, China). Hydrogel samples were fabricated in a cylindrical shape (8 mm
in diameter and 10 mm in height) and tested at a speed of 10 mm min−1. The swelling
test was evaluated by gravimetric analysis. The freeze-dried hydrogel was weighed,
giving Wd, and then hydrogels were immersed in phosphate-buffered saline (PBS). The
hydrogels were taken out from PBS at different time intervals and weighed again, to find
Ws, until swelling equilibrium. The swelling ratio was then calculated from swelling
ratio = (Ws −Wd)/Wd × 100%. The degradation of the samples was also recorded using
gravimetric analysis. The prepared hydrogels were weighed to find W0 and then incubated
in PBS with 2 CDU mL−1 collagenase type I solution at 37 ◦C for one week. The hydrogels
were weighed every day to find Wt. The degradation ratio was then calculated from
degradation ratio = (W0 −Wt)/W0 × 100%.

4.4. In Vitro Cytocompatibility Evaluation

All hydrogel specimens were immersed in sterile medium to reach a swelling equi-
librium and further exposed under ultraviolet (UV) light (8 W) for another 1 h before
testing. The hydrogel was soaked in fresh medium for 24 h to prepare the extracts. L929
cells were seeded in a 6-well plate for 24 h. Then, medium was replaced with extracts and
incubated for 48 and 72 h. After culturing, the cells were stained with Calcein AM/PI
(Servicebio, Beijing, China). Finally, the cells were viewed with fluorescence microscopy
(Leica, Weztlar, Germany).
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4.5. Quantitative Real-Time PCR (qRT-PCR) Analysis

The mRNA expressions of osteogenic genes in MC3T3-E1 cells on different samples were
evaluated by using qRT-PCR. Briefly, MC3T3 cells with a cell density of 1 × 105 cells/mL
were seeded on samples for 7 days. At the end of the incubation time, the cells were rinsed
with PBS and the total RNA was extracted with TRIzol™ reagent (Invitrogen, MA, USA).
Afterward, 1.0 µg of the RNA was reverse-transcribed into complementary DNA (cDNA) by
Transcript or First Strand cDNA Synthesis Kit (Roche, Switzerland). Subsequently, qRT-PCR
was carried out on the Roche LightCycler480 II system using an SYBR Green I PCR Master
(Roche, Switzerland). The housekeeping gene was GAPDH, and runt-related transcription
factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), Alkaline Phosphatase (ALP),
type I collagen (COL I), and Osterix (OSX) were the chosen osteogenic genes. The relative
mRNA expressions of target genes were normalized to that of the reference gene GAPDH.
All the primers for RT-PCR are listed in Table 1.

Table 1. Primers for RT-PCR.

Primers Sequences Primers Sequences

GAPDH Forward AGAACATCATCCCTGCATCCAC GAPDH Forward
Reverse TCAGATCCACGACGGACACA Reverse

RUNX2 Forward CCTCGAATGGCAGCACGCTA RUNX2 Forward
Reverse GCCGCCAAACAGACTCATCCA Reverse

ALP Forward CACGGCGTCCATGAGCAGAAC ALP Forward
Reverse CAGGCACAGTGGTCAAGGTTGG Reverse

COL I Forward TGGTCCTGCTGGTCCTGCTG COL I Forward
Reverse CTGTCACCTTGTTCGCCTGTCTC Reverse

4.6. Effects of the Osteogenic Activity of MC3T3

The osteogenic activity of the hydrogels was detected by immunofluorescence staining.
Briefly, immunostaining of COL I and OCN was performed after 21 days of culture at a
density of 1 × 104 MC3T3 cells per scaffold. After being fixed with 2.5% glutaraldehyde
for 15 min, the cells were permeabilized with 0.1% Triton X-100 solution and blocked
with 5% bovine serum albumin (BSA) for 1 h. Then, COL I and OCN were incubated
with mouse-anti-osteocalcin IgG (Abcam, Cambridge, UK) at 4 ◦C overnight, followed by
incubation with Alexa Fluor® 647 labeled goat-anti-mouse IgG (Abcam, HK, ab150115) for
2 h. Then, F-actin was stained with phalloidin, and the nucleus was stained with DAPI
(Beyotime, Shanghai, China). Subsequently, the immunofluorescence images were observed
and captured by a confocal laser scanning microscopy (CLSM, A1, Nikon, Natori, Japan).

4.7. Statistical Analysis

All numerical data were generated by at least three separate experiments and ex-
pressed as the mean and standard deviation of each experimental condition. One-way
analysis of variance (ANOVA) was used in the statistical analysis, and Tukey’s signifi-
cant difference posterior test was used. Statistical significance was accepted at * p < 0.05,
** p < 0.01, and *** p < 0.001.
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