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Abstract: Using the microwave-assisted sol–gel method, Zn- and Cu-doped TiO2 nanoparticles with
an anatase crystalline structure were prepared. Titanium (IV) butoxide was used as a TiO2 precursor,
with parental alcohol as a solvent and ammonia water as a catalyst. Based on the TG/DTA results,
the powders were thermally treated at 500 ◦C. XRD and XRF revealed the presence of a single-phase
anatase and dopants in the thermally treated nanoparticles. The surface of the nanoparticles and the
oxidation states of the elements were studied using XPS, which confirmed the presence of Ti, O, Zn,
and Cu. The photocatalytic activity of the doped TiO2 nanopowders was tested for the degradation
of methyl-orange (MO) dye. The results indicate that Cu doping increases the photoactivity of TiO2

in the visible-light range by narrowing the band-gap energy.

Keywords: copper-/zinc-doped TiO2 powders; microwave-assisted sol–gel method; thermal behavior;
photocatalytic activity

1. Introduction

Environmental pollution constitutes a problem around the world, and scientists are
working to achieve new or improved methods and materials to reduce such pollutants. The
photocatalytic degradation of pollutants in the environment or water using solar radiation
is the most used method today [1–3].

Nanosized TiO2-based materials are known as the most important photocatalyst for
environmental applications. These materials are intensively studied for their advantages
such as their nontoxicity, higher activity, lower price, and chemical and photoresist proper-
ties [4–6]. Among the three polymorphs (anatase, brookite, and rutile) of TiO2, anatase has
the best photocatalytic activity [7,8].

A major influence on the properties of the final product is the preparation method. The
current trend is to replace methods that use mechanical force (high-energy consumption
and long preparation time) with gentle chemical methods (soft chemistry). By using soft
chemical methods, a better control over the purity and stoichiometry of the studied metal
oxides can be achieved [8–10].

Undoped or doped titanium-dioxide powders were obtained by different methods.
Among them, the most frequently used methods in the liquid phase are: the sol–gel
process [11–16], hydrothermal methods [8,17], coprecipitation [18], hydrothermal-assisted
sol–gel method [19], microwave-assisted hydrothermal method [20,21], ultrasound-assisted
sol–gel [18,22], and microwave-assisted sol–gel [19,23–25].
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The sol–gel method presents advantages such as: synthesis at low temperatures and
the use of simple and accessible technological equipment, the realization of materials with
a clearly defined arrangement that can be controlled by the type of precursors used in the
synthesis, and low cost by optimizing the energy cost and creating products with different
shapes [15,18].

In recent research works, the microwave-assisted sol–gel method has received special
interest for the preparation of oxide materials [26,27]. Microwave synthesis combines
the advantage of speed and homogeneous heating of the precursor materials by making
it possible to homogeneously heat the reaction solution by using microwave irradiation
during the preparation process. The micro- and macroscopic characteristics of oxide
materials, such as shape and morphology, defects of the surface area, purity, particle size,
and reaction kinetics were improved by using microwave irradiation [28].

In the case of the sol–gel method, the hydrolysis and polycondensation reactions
are complex and occur simultaneously. By the sol–gel method, powders or gels can be
obtained, depending on the pH of the solution, which can be regulated by using catalysts.
By microwave irradiation of the sol–gel solution, monodisperse nanoparticles are obtained
(fast nucleation in a supersaturated solution) [29].

Up to now, numerous studies have been reported TiO2 materials prepared with differ-
ent methods and modifications such as doping, heterojunction formation, nanocomposites,
etc., for photocatalytic degradation applications [30–33]. Titanium dioxide is one of the
most used semiconductors in photocatalytic applications due to its advantageous prop-
erties, such as cost effectiveness, ecofriendly nature, photostability, chemical inertness,
and high stability, but it has a high band gap-energy value (around 3.2 eV) that limits its
use only to the UV range [34]. Increasing TiO2 activity efficiency under the visible light
range is one of the most desired improvements, and a facile way to accomplish that is
by TiO2 modification with metal or nonmetal elements. Thus, intermediate energy levels
are created by the dopants which reduce the band gap of TiO2 [35]. Furthermore, a better
separation of electron–hole pairs is obtained by providing new sites that capture photo-
generated electrons, leading to an increase in photocatalytic efficiency [36]. The effective
mass of photogenerated electron–hole pairs, as well as the mobility and diffusibility of
the photoexcited charge carriers, can be determined by the dopant and vacancy band
shapes (charge-separation efficiency) [37]. Metals, such as Cu and Zn, are suitable for TiO2
doping in order to improve photocatalytic performance [34,38,39], presenting interest in
this field due to their relative abundancy and low costs [34,40]. Although there are many
reports in the literature regarding TiO2 doped with copper or zinc, there is still interest in
optimizing the synthesis method in order to obtain materials with improved properties.
Compared to the other synthesis methods (Table 1), the microwave-assisted sol–gel route
has advantages over several properties of synthesized materials such as small size and
homogeneity of the particle, high crystallinity, controlled morphology, and high purity [41].
All these properties of the materials obtained, controlled by choosing the optimal synthesis
conditions, ultimately influenced the photocatalytic activity, as can be observed in Table 1.
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Table 1. Comparative results reported in the literature on methyl-orange photocatalytic degradation in the presence of Cu- or Zn-doped TiO2 obtained by different
methods.

Preparation Method Dopant Content Irradiation-Light Type Methyl-Orange
Concentration Degradation Efficiency, [%] Ref.

Cu-doped TiO2

sol–gel method TiO2−Cu 2.0% UV and visible light 1 × 10−5 M
97% UV
16% Vis [35]

hydrothermal process (180 ◦C for 8 h) 0, 2, 4, 6, 8, and 10% Cu-TiO2
simulated sunlight irradiation

(300 W Xe lamp) 20 mg/L

87.7% of MO (3 cycles, 6% Cu-TiO2)
Photocatalytic degradation efficiencies of MO: 6%

Cu-TiO2 > 4% Cu-TiO2 > 8% Cu-TiO2 > 2% Cu-TiO2 >
10% Cu-TiO2 > TiO2

[42]

TiO2 by sol–gel method;
[Cu(OHCor)]/TiO2 composite by reflux [Cu(OHCor)]/TiO2 visible white LED lamp of 30 W 10 ppm

31.0%@2.5 h for TiO2
79.5% for [Cu(OH-Cor)]/TiO2

Decrease by 5.7% ([Cu(OH-Cor)]/TiO2 after 3 cycles
[43]

hydrothermal method (220 ◦C for 24 h)
Fe3O4@TiO2

1 wt%, 2 wt% and 3 wt%
Cu-Fe3O4@TiO2

sunlight illumination 20 mg/L 85%@2.5 h for MO for Fe3O4@TiO2
85%@2.5 h for MO for 3 wt% Cu-Fe3O4@TiO2

[44]

sol–gel method

TiO2
Cu/TiO2

rFA/Cu/TiO2 oxide
Acid- FA/Cu/TiO2
Base- FA/Cu/TiO2

UVA (λ = 365 nm);
visible light (Opple, 4.5 W) 10 ppm

81.8% UV, 6.7% Vis for TiO2
37.4% UV, 15.3% Vis for Cu/TiO2

79% UV 58.8% Vis for rFA/Cu/TiO2
100% UV and 99.1%% Vis for Base-FA/Cu/TiO2

96.9% UV for Acid-FA/Cu/TiO2

[45]

solvothermal method

TiO2
0.1 mol%Cu-TiO2
0.3 mol%Cu-TiO2

Cu/N-TiO2
0.5 mol%Cu-TiO2
1 mol%Cu-TiO2

simulated visible light
(250 W hydrogen lamp, 464 nm) 20 mg/L

94.3% after 8 cycles for Cu/N-TiO2
Cu/N-TiO2 is four times better than TiO2 (reaction

rate constant 0.695 h−1)
[46]

one-step solvothermal
synthesis method

TiO2-RGO
TiO2-RGO-xCuO (x = 0.05, 0.075,

0.1, 0.3, 0.5%)

simulated visible light
(250 W neon lamp, 464 nm) 20 ppm 94.8% after 8 cycles for TiO2-RGO-0.075%CuO [47]

sol–gel method
TiO2

Cu/TiO2 (1:1 wt%)
Cu/TiO2/FA

UVA (λ = 365 nm);
visible light (Opple, 4.5 W) 5, 15, 25, or 100 ppm

54.32% for Cu/TiO2 (visible)
11.59% for TiO2 (visible)

89.53% for TiO2 (UV)
70.27% for Cu/TiO2 (UV)

96.78% for Cu/TiO2/FA (UV)
89.54% for Cu/TiO2/FA (Visible)

[48]
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Table 1. Cont.

Preparation Method Dopant Content Irradiation-Light Type Methyl-Orange
Concentration Degradation Efficiency, [%] Ref.

hydrothermal
synthesis method
(24 h at 200 ◦C)

TiO2
TiO2/Cu

OPMTC (Organic porous
materials-TiO2/Cu composite)

simulated sunlight (a);
nature sunlight (b) 100 mg/L

55.8% (a), 49.1% (b)
91.8% (a), 86.5% (b)
96.3% (a), 92.6% (b)

[49]

in situ approach

AA
AA-0.5Cu
AA-1Cu

AA-1.5Cu
AA-5Cu

AA-10Cu
P25

P25-0.5Cu
P25-1Cu

P25-1.5Cu
P25-5Cu
P25-10Cu

UV-A (6 × 6 W fluorescence
lamp, 365 nm) 1 g L−1

75.6%
7.1%
6.6%

14.5%
17.4%
23.1%
82.8%
37.5%
38.1%
30.5%
24.9%
39.1%

[50]

hydrothermal Cu UV 10 ppm 90% in 150 min [51]

Zn-doped TiO2

sol–gel method TiO2−Zn 2.0% UV and visible light 1 × 10−5 M
90% UV
30% Vis [35]

Micro-arc oxidation, impregnation MAO (TiO2)
MAOZn (Zn-TiO2) UV (250 W, 365 nm)

5 mg·L−1, 10mg·L−1,
15mg·L−1 and 20

mg·L−1

94% MAOZn films
90% after 10 cycles [52]

sol–gel reflux synthesis route Zn (3 mol %)-TiO2
Zn (5 mol %)-TiO2

UV-A (1.29 mW cm−2, 466 nm)
1 mg of dye in 100 mL

H2O
95.6% for MO
99.6% for MO [53]

sol–gel route Ag,Zn-TiO2
solar simulator (100 LCL

Compact Xenon Light lamp) 4 ppm

58.5% at pH 11
84.4% at pH 2.1, 2 gL−1 catalyst dose
93.1% at pH 4.1, 2 gL−1 catalyst dose

Complete mineralization at 8 gL−1 catalyst dose
within 60 and 120 min for Ag–Zn-TiO2

[54]

simple coprecipitation method TZO-4 (ZnO/TiO2) UV (500 W, λ max = 365 nm) 20 mg/L 99%/90 min [55]

stearic-acid-gel method;
sol–gel method

P25
(0, 0.05, 0.1, 0.3, 0.5, 1)ste Zn-TiO2

0.1sol Zn-TiO2
At 400, 450, 500 and 600 ◦C

mercury lamp (300 W) 20 mg/l

0.1% Zn/TiO2 ste—best photodegradation of the dye
0.1% Zn/TiO2 ste > 0.1% Zn/TiO2 sol > P25

For 0.1%Zn/TiO2 ste series
450 ◦C > 400 ◦C > 500 ◦C > 600 ◦C

[56]
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Table 1. Cont.

Preparation Method Dopant Content Irradiation-Light Type Methyl-Orange
Concentration Degradation Efficiency, [%] Ref.

ligand exchange reaction
and with additional thermal treatment

Pure TiO2
metal oxide TiO2(-Zn)

TiO2(-Zn)+HCl

UV light reactor (400 W
high-pressure mercury lamp) 20 mg/l

Residual MO
0.799 mg/L@1h, 0.637 mg/L@2h and 0.528 mg/L@3h

for metal oxide TiO2(-Zn)
0.859 mg/L@1h, 0.748 mg/L@2h and

0.685 mg/L@3h for pure TiO2
0.742 mg/L@1h, 0.542 mg/L@2h and 0.403 mg/L@3h

for TiO2(-Zn)+HCl

[57]

ligand exchange reaction
and with additional thermal treatment

TiO2 nanotubes
Zn(acac)2 assembled TiO2

nanotubes

UV light reactor (400 W
high-pressure mercury lamp) 20 mg/L

Residual MO in Zn(acac)2 assembled TiO2 nanotubes
At 300 ◦C

19.72 mg/L@1h,
19.08 mg/L@2 h and 18.24 mg/L@3 h

At 400 ◦C
13.82 mg/L@1 h, 9.44 mg/L@2h and 7.02 mg/L@3 h

At 500 ◦C
15.32 mg/L@1 h, 12.70 mg/L@2 h and

10.82 mg/L@3 h
Zn ions surface-doped

TiO2 nanotubes > Pure TiO2 nanotubes > pure TiO2
nanoparticles

[58]
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The aim of this work was to obtain photocatalytic materials with improved properties
that would be active under visible light for the degradation of organic pollutants from
wastewater by a simple and cost-effective method. Thus, in the present paper, Cu- and
Zn-doped TiO2 powders were prepared by the microwave-assisted sol–gel method in a
basic medium. The influence of the synthesis method and dopant on the structure and the
photocatalytic properties of these materials were evaluated. The TiO2-based nanopowders
were used for the degradation of methyl-orange (MO) organic dye in order to evaluate the
potential of these materials for environmental applications.

2. Results and Discussion

The samples were investigated following their thermal behavior, morphology, and
structure, and their photocatalytic properties. In the case of the TiO2−Cu 2.0% MW sample,
a white-green amorphous powder was obtained, while for the TiO2−Zn 2.0% MW sample,
the obtained powder was amorphous and had a white color.

2.1. As-Prepared Samples
2.1.1. SEM Results

SEM analysis was performed in order to investigate the morphology of the as-prepared
samples, and the micrographs are shown in Figure 1.
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According to the morphological observation, the size and shape of the as-prepared
samples are similar, without any noticeable differences. However, in case of the TiO2 MW
sample (Figure 1a), the nanoparticles surfaces appear to be quasi-irregular with jagged
edges, while for the doped ones, the profile is well-defined.

2.1.2. Thermal Behavior

The thermal stability of the samples was estimated using TG/DTG/DTA analysis.
The thermograms indicate the physical and/or chemical changes that occur in the samples
during heat treatment. Figure 2a,b depicts the temperature-dependent mass curves of the
TiO2−Cu 2.0% MW (Figure 2a) and TiO2−Zn 2.0% MW (Figure 2b) samples. During the
whole measurement, the TiO2−Cu 2.0% MW sample exhibited a total mass loss of−16.85%,
which can be further separated into three mass-loss steps of −11.62%, −4.89%, and −0.34%.
The TiO2−Zn 2.0% MW sample showed a total mass loss of −18.58%, corresponding to
three mass-loss steps of −13.91%, −4.13%, and −0.54%. The origin of the mass-loss step
below 200 ◦C is most probably the release of physisorbed water and alcohols from the
samples. Following this fact, the thermal effect on the DTA curve, corresponding to the
mass loss, had the peak located at 91 ◦C for the TiO2−Cu 2.0% MW sample, and at 93 ◦C
for the TiO2−Zn 2.0% MW sample, respectively.
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The second mass loss, which ranged from 200 ◦C to 400 ◦C, was most probably due to
the decomposition of the residual organic groups and partial dehydroxylation of Ti(OH)4.
The thermal effect associated with the second mass loss is an exothermic effect centered
at 302 ◦C for the TiO2−Cu 2.0% MW sample, and 277 ◦C for the TiO2−Zn 2.0% MW
sample, respectively, as previously reported for a similar alkoxide precursor [59–61]. The
dehydroxylation of Ti(OH)4 is an event that takes place over a wide temperature range
and continues up to 500 ◦C, leading to the transformation from an amorphous phase
to crystalline anatase. The second exothermic effect, located at 456 ◦C for the TiO2−Cu
2.0% MW sample, and 468 ◦C for the TiO2−Zn 2.0% MW sample, respectively, without
corresponding to mass loss on the TG curve, suggests complete dehydroxylation and
anatase crystallization [62,63].

2.1.3. XPS on the As-Prepared Samples

To verify the oxidation state of each element, all the sample surfaces were investigated
by XPS. In the following section, we will discuss the as-prepared samples. All the core-
level spectra of interest (Ti 2p, O 1s, Zn 2p, Cu 2p) were analyzed using Voigt profiles, as
described in ref. [64]. The integral areas obtained by the deconvolution procedure were
normed to the atomic-sensitivity factors provided by ref. [65]. The binding energies were
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corrected such that the C value was 284.6 eV. Aside from the photoelectron emission peaks,
XPS spectra can also show the presence of Auger electrons (emitted when an outer shell
electron fills the photoelectron vacancy following core ionization).

The XPS spectra and their deconvolutions are illustrated in Figures 3–6. The peaks
for Ti 2p, O 1s, Zn 2p, and Cu 2p were attributed as described in Table 2 and revealed
the presence of different species such as Ti(IV), Zn(II), and Cu(I), consistent with the
database [66–68]. The Ti 2p doublet has a spin-orbit splitting of 5.71 eV, which supports
the presence of Ti(IV). If we take into consideration the total intensity of each element, we
obtain TiO2 with different percentages of dopants, as depicted in Table 2.
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Figure 4. XPS spectra of the core level Cu 2p of the as-prepared Cu-doped sample: red symbols for
the experimental data and black line for the one-component fit.
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Figure 5. XPS spectra of the Ti 2p level: (a) comparison between the experimental data: red line for
Zn-doped samples and blue line for the Cu-doped samples, and (b,c) the fit and deconvolutions for
the Zn sample and Cu sample, respectively: red symbols for the experimental data overlayed with a
black line for the fit, blue line for C1, and green line for C2.

2.2. Thermally Treated Samples
2.2.1. SEM Results

The surface morphology of the thermally treated powders, obtained by SEM, are
illustrated in Figure 7.

Analogous to the previously investigated untreated samples, the micrographs reveal
uniformly distributed nanoparticles with the formation of aggregated clusters with similar
shapes and sizes for the TiO2 MW sample compared to doped ones. Because of the
agglomeration of the particles, no specific shapes could be determined, as previously
reported [69].
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Table 2. Binding energies (BE), atomic %, and attributions of the deconvolutions for the core levels
for the as-prepared samples.

Element BE (eV) % at Interpretation

TiO2-Zn 2.0% MW

Ti 2p
C1 457.15 0.25 Ti(IV) vol.

C2 458.82 32.59 Ti(IV) surf.

32.84

O1s
C1 530.32 50.71 Ti(IV)

C2 531.49 15.9 TiO2/TiOx + Zn(II) + cont

66.61

Zn 2p3/2 C1 1022.52 0.55 Zn(II)

TiO2.03—Zn 0.55%

TiO2-Cu 2.0% MW

Ti 2p
C1 458.70 32.58 Ti(IV) vol.

C2 459.71 1.26 Ti(IV) surf.

33.84

O1s
C1 530.28 51.02 Ti(IV)

C2 531.50 14.75 TiO2/TiOx + Zn(II) + cont

65.77

Cu 2p3/2 C1 932.86 0.39 Cu(I)

TiO2—Cu 0.39%Gels 2023, 9, x FOR PEER REVIEW 11 of 26 
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2.2.2. XRD Results

Figure 8 displays the diffractograms of the undoped TiO2 sample, thermally treated at
450 ◦C, and Zn- and Cu-doped TiO2 samples, thermally treated at 500 ◦C, respectively. All
diffraction lines correspond to the TiO2 anatase phase, according to ICDD file no. 21−1272.
No polymorphs of titanium oxide (rutile or brookite) or Cu- and Zn-based compounds
were detected within the limit of the instrument. This observation suggests that the dopants
enter the anatase structure or are distributed on the anatase particle surface in the form of
tiny clusters [70]. To determine the impact of Cu and Zn dopants (2% molar) on the anatase
structure, the lattice parameters, crystallite size, and microstrain were calculated, and the
results are listed in Table 3.

Gels 2023, 9, x FOR PEER REVIEW 12 of 26 
 

 

by the larger ionic radius of Cu2+ (0.73 Å) and Zn2+ (0.74 Å) compared to that of Ti4+ (0.61 
Å). 

 
Figure 8. X–ray diffraction patterns of microwave-assisted sol–gel prepared samples, thermally 
treated (bottom—undoped TiO2 sample, middle—Cu-doped TiO2 sample, and top—Zn-doped TiO2 
sample). 

Table 3. The lattice parameters, the estimated crystallite size, and the average microstrain of the 
samples. 

Sample 
Lattice Parameters Crystallite Size, 

[nm] 
Microstrain, 

[%] a, [Å] c, [Å] 
TiO2 MW (450 °C) 3.788359 ± 0.000278 9.508230 ± 0.000739 16 0.57 ± 0.16 
TiO2−Cu 2.0% MW 3.788145 ± 0.000340 9.504234 ± 0.000896 14 0.65 ± 0.19 
TiO2−Zn 2.0% MW 3.790948 ± 0.000383 9.500206 ± 0.001015 12 0.75 ± 0.22 

TiO2, anatase (ICDD 21-1272) 3.7850 9.5140 - - 

2.2.3. XRF Results 
The presence of the dopant elements in the sample composition was investigated by 

X-ray fluorescence analysis. Table 4 lists the composition in terms of elements, as well as 
oxides. We noticed that Cu and Zn oxides were detected in amounts close to the initial 
calculated composition. Other elements (C, S, Si or V) were detected as traces. Small dif-
ferences compared to the initial composition could be determined by the washing proce-
dure. 

Table 4. Elemental composition of the analyzed samples. 

Sample Composition Values U.M. Line 

TiO2−Zn 2.0% 
MW 

Ti 57.9936 mass% Ti−KA 
Zn 1.6021 mass% Zn−KA 
O 39.0359 mass% O−KA 

C, S, Si, V (traces) 1.6684 mass%  
TiO2 93.2240 mass% Ti−KA 
ZnO 1.8994 mass% Zn−KA 

C, S, Si, V oxides (traces) 4.8766 mass%  
Ti 56.7392 mass% Ti−KA 

10 20 30 40 50 60 70 80
(3

01
)

(2
20

)

(2
15

)

(1
16

)(2
00

)

(1
12

)(0
04

)
(1

03
)

In
te

ns
ity

 (a
rb

. u
ni

ts
)

2θ (°)

 TiO2 MW (450 °C)
 TiO2−Cu 2.0% MW
 TiO2−Zn 2.0% MW

(1
01

)

(1
05

)
(2

11
)

(2
13

)
(2

04
)

Figure 8. X–ray diffraction patterns of microwave-assisted sol–gel prepared samples, thermally
treated (bottom—undoped TiO2 sample, middle—Cu-doped TiO2 sample, and top—Zn-doped
TiO2 sample).

Table 3. The lattice parameters, the estimated crystallite size, and the average microstrain of the samples.

Sample
Lattice Parameters

Crystallite Size, [nm] Microstrain, [%]
a, [Å] c, [Å]

TiO2 MW (450 ◦C) 3.788359 ± 0.000278 9.508230 ± 0.000739 16 0.57 ± 0.16

TiO2−Cu 2.0% MW 3.788145 ± 0.000340 9.504234 ± 0.000896 14 0.65 ± 0.19

TiO2−Zn 2.0% MW 3.790948 ± 0.000383 9.500206 ± 0.001015 12 0.75 ± 0.22

TiO2, anatase (ICDD 21-1272) 3.7850 9.5140 - -

According to the calculated values for the lattice parameters, no differences were
noticed compared to the standard reference file (ICDD 21-1272), suggesting that Cu and
Zn dopants probably substitute for Ti in the TiO2 host lattice. The crystallite size was
influenced by the doping cation; thus, the sizes are smaller by 2 nm for Cu and 4 nm for Zn.
The evolution in the mean crystallite size may be correlated with the increase in the lattice
strain, where lattice strain is a measure of crystal defects, where the defects are generated by
the larger ionic radius of Cu2+ (0.73 Å) and Zn2+ (0.74 Å) compared to that of Ti4+ (0.61 Å).

2.2.3. XRF Results

The presence of the dopant elements in the sample composition was investigated by
X-ray fluorescence analysis. Table 4 lists the composition in terms of elements, as well as
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oxides. We noticed that Cu and Zn oxides were detected in amounts close to the initial calcu-
lated composition. Other elements (C, S, Si or V) were detected as traces. Small differences
compared to the initial composition could be determined by the washing procedure.

Table 4. Elemental composition of the analyzed samples.

Sample Composition Values U.M. Line

TiO2−Zn 2.0%
MW

Ti 57.9936 mass% Ti−KA
Zn 1.6021 mass% Zn−KA
O 39.0359 mass% O−KA

C, S, Si, V (traces) 1.6684 mass%

TiO2 93.2240 mass% Ti−KA
ZnO 1.8994 mass% Zn−KA

C, S, Si, V oxides (traces) 4.8766 mass%

TiO2−Cu 2.0%
MW

Ti 56.7392 mass% Ti−KA
Cu 1.6454 mass% Cu−KA
O 40.3301 mass% O−KA

C, Si, S (traces) 1.2 mass%

TiO2 93.3325 mass% Ti−KA
CuO 2.0222 mass% Cu−KA

C, S, Si oxides (traces) 4.6453 mass%

2.2.4. TEM/HRTEM/SAED Investigations

Figure 9 depicts the results of the TEM/HRTEM/SAED investigations for the thermally
treated samples. Lower-magnification TEM images confirm that the quasispherical particles
observed in the SEM images are aggregates of polyhedral primary nanoparticles that are
nearly uniform in shape and size [70] (Figure 9a,d). Since individual nanoparticles were
only spotted close to the aggregate surfaces, it is difficult to estimate the particle average size
with any degree of accuracy. Nonetheless, a rough calculation shows that the values of these
nanoparticles’ diameters are in the 10–20 nm range, which is in agreement with the average
crystallite sizes listed in Table 3. This demonstrates that the particles in question for both
analyzed powders are single-crystal. In spite of their size, the nanoparticles exhibit a high
crystallinity degree, regardless of the dopant, as shown by the long-range ordered fringes
inside the nanoparticles revealed by the HRTEM images in Figure 9b,e and the well-defined
dashed diffraction rings made up of bright spots of the SAED patterns (Figure 9c,f).

2.2.5. STEM/EDX Investigations

The Ti, O, and dopant species that make up the anatase solid solutions are exclusively
present, according to the EDX spectra of the Cu- and Zn-doped TiO2 powders, ruling out
any contamination during the synthesis process (Figure 10).

Due to the consistent integration of the dopant into the host crystalline structure, the
overall and elemental EDX maps (Figure 10b–d,f–h) recorded on the areas indicated by
the STEM images of Figure 10a,e demonstrate a high compositional homogeneity of both
powders. These results are consistent with the XRD data, revealing the presence of the
single anatase phase and the absence of any segregation of any residual secondary phases.

2.2.6. XPS on the Thermally Treated Samples

XPS measurements were also performed on the treated samples and were analyzed in
the same way; see Table 5 for the relevant parameters obtained from the deconvolutions.
All the core-level spectra of interest are illustrated in Figures 11–14. The Cu 2p spectra
show some additional peaks, which are satellites (peaks arising from various less-likely
electron transitions). It can be observed that, in this case, there are some changes in the
shape of the spectra, and the most significant one relates to the satellite peaks at ~945 eV
and 967 eV, confirming the presence of the Cu(II) valence of Cu [67]; this can be assumed to
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result from the preparation method, as the presence of this valence was not observed when
the samples were synthesized only by the sol–gel process [35].
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Figure 10. STEM image of TiO2−Cu 2.0% MW (a) and TiO2−Zn 2.0% MW (e) samples, EDX map
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Table 5. Binding energies (BE), atomic %, and attributions of the deconvolutions for the core levels
for the treated samples.

Element BE (eV) % at Interpretation

TiO2-Zn 2.0%
TT (500 ◦C)

Ti 2p3/2

C1 458.7 24.1 Ti(IV) vol.

C2 459.53 4.5 Ti(IV) surf.

28.6

O 1s

C1 529.94 42.5 Ti(IV)

C2 530.83 27.1 Ti(IV)+Zn(II)+cont

69.6

Zn 2p3/2
C1 1022.39 1.8 Zn(II)

TiO2,43—Zn 1.8%

TiO2-Cu 2.0%
TT (500 ◦C)

Ti 2p

C1 458.6 16.7 Ti(IV)

C2 460 4.2 TiOx

C3 461.4 3.1 Ti

24.0

O 1s

C1 529.79 31.5 Ti(IV)

C2 530.71 21.8 TiOx+ organics

C3 532.61 20.8 TiOx/OH groups [71]

74,1

Cu 2p3/2 C1 936.3 1,9 Cu(II)

TiO2,22—Cu 1.9%
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Auger peak.

2.2.7. UV-Vis Absorption Spectra

The optical properties of the synthesized powders were analyzed using UV−Vis
spectroscopy; the absorption spectra are shown in Figure 15a. Both doped TiO2 MW
samples show an intense absorption band in the UV region (up to 350 nm) due to the
electronic transitions O2p→Ti3d from the valence band (VB) to the conduction band (CB) of
TiO2 [72]. A red shift of absorption band was observed for the TiO2−Cu 2.0% MW sample,
due to the electron transition from O2p of TiO2 to the Cu2+ d-states (400–550 nm) and due to
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the d–d transitions of Cu2+ ions (600–800 nm) [73,74], indicating that doping TiO2 MW with
copper led to an increase in visible-light-absorption capacity of the synthesized material.
For the TiO2−Zn 2.0% MW sample, no absorption bands assigned to d–d transitions were
observed, due to the complete electronic configuration of incorporated Zn2+ species [38].
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Figure 13. XPS spectra of the Ti 2p level for treated samples: (a) comparison of experimental data:
red line for the Zn-doped samples and blue line for the Cu-doped samples, and (b,c) the fit and
deconvolutions for the Zn and the Cu samples, respectively: red symbols for the experimental data
overlayed with a black line, blue line for C1, green line for C2, and magenta line for C3 (for (c) only).
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The indirect band gap energy of the samples was estimated using the Kubelka–Munk
function by plotting (F(R)*hυ)1/2 versus photon energy hυ (eV). As shown in Figure 15b,
by doping TiO2 MW with copper, a narrowing of the band-gap energy was noticed, from
3.15 eV to 3.02 eV. It is probably due to the new electronic levels provided by the copper
species under the conduction band of titania, available to accept the photoexcited electrons
from the valence band of titania. The same behavior was not observed in the case of zinc
doping, which led to a slight increase in the band-gap value from 3.15 eV to 3.18 eV. It is
related to the completely filled 3d10 electronic configuration of Zn2+ species compared to
Cu2+ with 3d9 configuration [38].

2.2.8. Photoluminescence Analysis

The photoluminescence spectra of the samples are illustrated in Figure 16. The intense
signals recorded for the TiO2 MW sample are due to the electron–hole repairing after the
return of photoexcited electrons from the conduction band to the valence band of TiO2. By
modification with copper and zinc dopants, we noticed a quenching of the PL intensity of
TiO2 MW, indicating the suppression of e−/h+ pair recombination by providing interband
levels. This explains the better photocatalytic activity visible for the TiO2-Cu 2.0% MW
sample with the lowest-intensity PL signal (Figure 17a).
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2.2.9. Photocatalysis Investigation

The photocatalytic properties of the synthesized nanopowders were evaluated in the
photocatalytic degradation of methyl-orange dye under visible- and UV-light irradiation
(Figure 17). The best photocatalytic activity under visible-light irradiation (Figure 17a)
was observed for the copper-doped TiO2 sample, with a photocatalytic efficiency of 55.5%
after 5 h of irradiation. This is related to the decrease in band-gap energy by doping with
copper, which represents the minimum energy required for the electrons’ excitation. The
presence of features attributed to Cu2+ and surface hydroxyl groups in the XPS spectra
(Figure 14) can contribute to this photocatalytic activity. Furthermore, the presence of
surface hydroxyl groups suggested by the XPS spectra (Figure 14) could improve the
photocatalytic activity [75,76]. Under UV-light irradiation (Figure 17b), the synthesized
materials showed high photocatalytic activity, reaching almost 90% discoloration efficiency
after 3 h of irradiation.

2.2.10. Identification of Reactive Species

In order to investigate the contribution of the main reactive oxygen species (ROS) to
the MO degradation, the photocatalytic experiments were conducted in the presence of
•OH, •O2

−, e−, and h+ scavengers. The results are illustrated in Figure 18a–c.
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and TiO2-Cu 2.0% MW photocatalysts was as follows: •O2

− > h+ > •OH > e−, indicating
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that the photocatalytic degradation of MO dye mainly proceeded by the attack of super-
oxide radicals. The significant decrease in the photocatalytic performances noticed after
p-benzoquinone addition (used as •O2

− scavenger) suggests that •O2
− species have a

crucial role in the methyl-orange-degradation process by the two photocatalytic materi-
als (Figure 18a,c).

In the case of the TiO2-Zn 2.0% MW sample, the obtained results (Figure 18b) suggested
that the photocatalytic degradation of MO was attributed especially to the holes, the order
of the reactive species being the following: h+ > •O2

− > •OH > e−.
An increase in the photocatalytic activity was observed when AgNO3 was added into

the reaction system as electron scavenger for all the samples, as a result of preventing
e−/h+ recombination. In this way, there is a greater number of holes and electrons in the
system, available to give rise to hydroxyl and superoxide radicals, respectively.

3. Conclusions

The different electron configurations of the Zn2+ and Cu2+ cations influenced the opti-
cal properties of the doped materials. By modifying TiO2 MW with copper, it was possible
to lower the band-gap energy to 3.02 eV, which led to an increase in the photocatalytic
performance in the visible range. The experimental results showed that, under visible-light
irradiation, the TiO2−Cu 2.0% MW sample had a discoloration efficiency of 55% for MO
dye after 5 h.

4. Materials and Methods
4.1. Materials

Cu- and Zn-doped TiO2 nanopowders were obtained using the microwave-assisted sol–
gel technique. Compositions with a TiO2:CuO or TiO2:ZnO molar percentage of 98:2 were
selected. Except for the microwave irradiation, the preparation method and the reagents
were previously described in Ref. [35]. The solution was exposed to microwave irradiation
for 10 min at 200 W in an oven operating at a frequency of 2.45 GHz with a maximum power
of 2000 W. To remove the water and organic residues and obtain crystallized nanometer-
sized powders, the resulting oxide powder was filtered out of the solution, washed with
distilled water to remove adsorbed compounds, dried, and then thermally treated at 500 ◦C
in the air with a plateau of 1 h and a heating rate of 1 ◦C/min. The composition of the
solutions and the experimental conditions used are shown in Table 6.

Table 6. The composition and the experimental conditions.

Sample Precursors
Molar Ratio pH Sol Experimental Conditions

ROH
∑ precursor

H2O
∑ precursor

catalyst
∑ precursor T (◦C) t (min)

TiO2−Cu
2.0% MW

Ti(OC4H10)4 +
Cu(NO3)2·3H2O 36.5 3 0.003 10 60 10

TiO2−Zn
2.0% MW

Ti(OC4H10)4 +
Zn(NO3)2·6H2O 36.5 3 0.003 10 60 10

ROH = C4H9-OH.

The samples were denoted (TiO2−Cu 2.0% MW) and (TiO2−Zn 2.0%MW), and the
thermally treated samples (TiO2−Cu 2.0% MW-TT) and (TiO2−Zn 2.0% MW-TT).

Our previous work [8] described the synthesis procedure for the TiO2 MW sample
(450 ◦C) (noted Ti-Bu-MW).

Figure 19 depicts a flowchart of the methodology used for sample preparation. Based
on the TG/DTG/DTA results, the thermal treatment was determined.
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In order to investigate the contribution of the main important reactive oxygen species
(ROS) to the photocatalytic degradation of MO, scavenger studies were conducted. For
these experiments, commonly applied quencher molecules (0.1 mmol) were used for holes
(potassium iodide, KI, Merck), electrons (silver nitrate, AgNO3, Merck), hydroxyl (ethanol,
C2H5OH, Merck), and superoxide radicals (p-benzoquinone, C6H4O2, Merck).

4.2. Methods

Thermogravimetric and differential thermal analysis (TG/DTA), using Mettler Toledo
TGA/SDTA 851e (Greifensee, Switzerland) equipment, were used to assess the thermal be-
havior of the as-prepared samples in open Al2O3 crucibles and in flowing-air environments.
The heating rate was 10 ◦C/min, and the maximum temperature was set to 1000 ◦C.

An FEI Quanta 3D FEG microscope (FEI, Brno, Czech Republic) operated at a 10 kV
accelerating voltage was used to capture SEM micrographs. The uncoated specimens were
placed on conductive carbon tape and scanned in high-vacuum mode.

The surface of the samples was investigated by the X-ray Photoelectron Spectroscopy
(XPS) measurements performed in a SPECS Multimethod Surface Analysis System, with
a PHOIBOS 150 hemispherical analyzer, using Al Kα (1486.74 eV) radiation produced by
a monochromatic X-ray source XR50M at operating power of 250 W (12.5 kV × 20 mA).
The base pressure in the analysis chamber was at least 1.1 × 10−8 mbar. For charge
compensation, we used a SPECS FG−40 flood-gun device, using an electron beam of
0.1 mA and 1 eV energy. High-resolution core-level spectra (Ti 2p, O 1s, Zn 2p and Cu 2p)
were recorded using medium-area-lens mode and a pass energy of 30 eV.

X-ray diffraction (XRD) patterns were recorded using a PANalytical Empyrean diffrac-
tometer (Malvern Panalytical, Malvern, UK) with Ni-filtered Cu Kα radiation (λ = 0.15406 Å).
The equipment was set on theta–theta geometry, with a 1/4◦ divergence slit, 1/2◦ antiscat-
ter slit, and 0.02◦ soller slit on the incident=beam side, and a 1/2◦ antiscatter slit mounted
on PIXCel3D detector operating in 1D on the diffracted-beam side. The scan parameters
were: range 10.0000–80.0107◦, step size 0.0263◦, and counting time per step 255 s. Phase
analysis was performed using HighScorePlus 3.0.e software coupled with ICDD PDF4+
2022 database. Determination of unit-cell parameters, average crystallite size, and mi-
crostrains was performed by Rietveld formalism, using a polynomial background with
4 parameters and a pseudo-Voigt function for line profiles.

Elements were analyzed using X-ray fluorescence (XRF). A Rigaku ZSX Primus II
spectrometer (Rigaku Corp., Tokyo, Japan) with a 4.0 kW Xray Rh tube was used for the
measurements. For data analysis, EZscan was combined with Rigaku SQX fundamental
parameters software (standard less).

TEM/HRTEM/SAED investigations were carried out on the powders’ morphology
and crystallinity using a Thermo Fisher Scientific TITAN THEMIS Ultra High-Resolution
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Electron Microscope (Hillsboro, OR, USA). The transmission-electron microscope was used
in STEM (scanning transmission-electron microscopy) mode at 300 kV to acquire the EDX
spectra and elemental maps, with a HAADF (high-angle annular dark-field) detector for
imaging and a column windowless 4 Super EDX detector for elemental analysis.

An FLSP 920 spectrofluorometer was employed to record the photoluminescence
spectra (PL) of the powders (Edinburgh Instruments, Livingston, UK). An Xe lamp was
used as the excitation source, the excitation wavelength was 350 nm, and the spectra were
recorded between 350 and 600 nm. Using a spectrofluorometer FluoroMax 4P (Horiba
Jobin Yvon, Northampton, UK), the ability of the material to produce hydroxyl radicals
in solution when exposed to light was assessed. This method employs terephthalic acid
(TA) (5 × 10−4 M TA solution, prepared in aqueous NaOH solution with a concentration of
2 × 10−3 M), which interacts with the hydroxyl radicals generated by the photocatalytic
materials during irradiation (λexc = 312 nm), yielding a highly fluorescent compound
(2-hydroxyterephthalic acid).

The optical absorption spectra of powders were recorded using a JASCO V570 spec-
trophotometer (Tokyo, Japan). The photocatalytic activity of doped and undoped TiO2
was measured in terms of the discoloration of methyl orange (MO) dye. Thus, 5 mg of
photocatalyst was dispersed in 10 mL of MO aqueous solution (1 × 10−5 M), and further,
the reaction mixture was stirred in the dark for 30 min in order to allow the adsorption
of MO dye molecules on the photocatalyst surface. Then, the suspension stirred at the
same constant speed was irradiated for a certain period of time (300 min in the case of UV
irradiation and 180 min under visible-light irradiation) in a closed box with a UV−Vis lamp
at certain specific wavelengths. At regular intervals of time, we took the same aliquots
of MO solution and filtered them using syringe filters with a 0.45 µm pore size, and spec-
trophotometrically analyzed them in order to evaluate the progress of the photocatalytic
reaction. The discoloration efficiency of the samples was evaluated using the absorbance
value of the maximum peak (464 nm) that corresponds to the azo bond of MO dye recorded
at the beginning of the reaction and after each time interval. In the case of ROS-scavenging
experiments, the procedure was the same as in a photocatalytic test, except for the addition
of scavengers (0.1 mmol) to the reaction mixture.
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