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Abstract: Curcumin, a natural phenolic compound, exhibits poor absorption and extensive first
pass metabolism after oral administration. In the present study, curcumin-chitosan nanoparticles
(cur-cs-np) were prepared and incorporated into ethyl cellulose patches for the management of
inflammation via skin delivery. Ionic gelation method was used for the preparation of nanoparticles.
The prepared nanoparticles were evaluated for size, zetapotential, surface morphology, drug content,
and % encapsulation efficiency. The nanoparticles were then incorporated into ethyl cellulose-based
patches using solvent evaporation technique. ATR-FTIR was used to study/assess incompatibility
between drug and excipients. The prepared patches were evaluated physiochemically. The in vitro
release, ex vivo permeation, and skin drug retention studies were carried out using Franz diffusion
cells and rat skin as permeable membrane. The prepared nanoparticles were spherical, with particle
size in the range of 203–229 nm, zetapotential 25–36 mV, and PDI 0.27–0.29 Mw/Mn. The drug
content and %EE were 53% and 59%. Nanoparticles incorporated patches are smooth, flexible, and
homogenous. The in vitro release and ex vivo permeation of curcumin from nanoparticles were
higher than the patches, whereas the skin retention of curcumin was significantly higher in case of
patches. The developed patches deliver cur-cs-np into the skin, where nanoparticles interact with
skin negative charges and hence result in higher and prolonged retention in the skin. The higher
concentration of drug in the skin helps in better management of inflammation. This was shown by
anti-inflammatory activity. The inflammation (volume of paw) was significantly reduced when using
patches as compared to nanoparticles. It was concluded that the incorporation of cur-cs-np into ethyl
cellulose-based patches results in controlled release and hence enhanced anti-inflammatory activity.

Keywords: chitosan; curcumin; nanoparticles; patches; inflammation and skin delivery

1. Introduction

Curcumin is a hydrophobic polyphenol chemically known as diferuloyl-methane,
derived from the herb Curcuma longa L. (family: Zingiberaceae) [1]. Curcumin has a
wide range of beneficial effects and used traditionally for treatment of several diseases
due to its wide spectrum of biological and pharmacological activities [2]. Curcumin has
well reported multifunctional properties, including anti-inflammatory, anti-oxidant, anti-
microbial, hypocholesterolemic, and anti-carcinogenic activities [3]. Anti-inflammatory
activity of curcumin is due to regulating inflammatory signaling pathways and inhibiting
the production of inflammatory mediators and thereby treating inflammatory diseases [4].
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Curcumin can also regulate the Janus kinase/Signal transducer and activator of transcrip-
tion inflammatory signaling pathway for the management of inflammation [5].

Major drawbacks associated with curcumin therapeutic applications include its poor
aqueous solubility, poor absorption, rapid metabolism, and low stability [6]. The lipophilic
molecules are more advantageous as compared to hydrophilic molecules and these draw-
backs can be removed by converting curcumin into patch. Therefore, topical application of
curcumin on the inflamed site can offer the advantage of delivering a drug directly to the
disease site and producing its local effect. The poor aqueous solubility of curcumin also
limits its skin permeation/topical application [7].

Topical drug delivery is gaining great attention in the field of pharmaceutical indus-
try [8]. Skin is the largest organ of human body and stratum corneum, and the outer most
layer of skin acts as main barrier against the entry of substances into the body [9].

Different techniques were implied to enhance the skin permeability of drugs/active
pharmaceutical ingredients. One of the approaches is to encapsulate the drug into nanopar-
ticles, which increases the drug permeation through the skin [10]. Chitosan is widely used
polymer for nanoparticles. Chitosan is a naturally derived polymer having biocompatibility,
biodegradability, mucoadhesivity, and permeation enhancement activity [11].

Furthermore, nanoparticles made from chitosan shows permeation enhancement,
which favors their use as carrier in transdermal/topical delivery [12]. Chitosan-curcumin
nanoparticles were also prepared by Duse et al., 2018 for photodynamic therapy, and found
that incorporation of curcumin into chitosan nanoparticles helps in destruction of tumor
cells more efficiently than curcumin alone [13]. Curcumin was also incorporated into
chitosan nanoparticles for improved wound healing activity [14,15].

Previously, curcumin was topically used for the management of sprain and osteoarthri-
tis [16]. In the present study curcumin chitosan nanoparticles were prepared for improved
anti-inflammatory activity. The prepared nanoparticles were then incorporated into patches
in order to avoid premature release of nanoparticles/curcumin at the surface of skin. Trans-
dermal patches were used to delivery drug topically at a controlled rate. Patches were
prepared using polymers either natural or synthetic. The patch is considered as the back-
bone of topical delivery systems [17]. Polymers used in the formulation of patches have
desirable properties, e.g., hydrophilicity, biocompatibility, swelling ability, and controlled
drug release rate [18].

In the current study, curcumin-chitosan nanoparticles were prepared and incorporated
into ethyl cellulose based transdermal patches for the controlled delivery of curcumin into
the skin for the possible management of the inflammation.

2. Results and Discussion
2.1. FTIR Analysis

The ATR-FTIR spectra of drug (Curcumin), excipients/polymers (chitosan, ethyl-
cellulose), and formulation (nanoparticles and patch) are shown in Figure 1. The peaks
observed at 3420.1 cm−1 (the phenolic O-H stretching vibration), 2926 cm−1 (CH2 stretching
vibration), 1639 cm−1 (assigned to the response of C=O (ketone) stretching vibration), and
1521 cm−1 (C=O and C=C characteristic vibrations) represents the characteristic peaks of
curcumin [19]. The other peaks were observed at 1423 cm−1 representing enolic COH
bending vibration, and 1241 cm−1 represents C-O stretching vibrations. The chitosan
characteristic peaks were observed at 3422, 2923, 1645, and 1426 cm−1. The ATR-FTIR
spectrum of Cur-Cs-Np shows the characteristic peaks of drug (curcumin) and polymer
(chitosan) with minor shifting and decrease intensity, indicating absence of interaction.
The slight variation in the peaks is due to the presence of some bonds (H-bonds, Vander
wall forces) that result in entrapment of curcumin within nanoparticles. The patch ATR-
FTIR spectra showed no change in the characteristic peaks of curcumin. This is due to
entrapment/loading of curcumin into the polymer matrix of the patch.



Gels 2023, 9, 201 3 of 12

Gels 2023, 9, x FOR PEER REVIEW 3 of 12 
 

 

wall forces) that result in entrapment of curcumin within nanoparticles. The patch 
ATR-FTIR spectra showed no change in the characteristic peaks of curcumin. This is due 
to entrapment/loading of curcumin into the polymer matrix of the patch. 

 
Figure 1. ATR−FTIR spectra of (a) Curcumin, (b) Chitosan, (c) Cur─Cs─Np, (d) Ethyl cellulose and 
(e) Cur─Cs─Np─P. 

2.2. Preparation and Characterization of Nanoparticles 
Curcumin formulation into nanoparticles improves its efficacy and stability. Chi-

tosan was used as carrier for the formulation of nanoparticles. The average size of pre-
pared nanoparticles was in the range of 203–229 nm (Table 1). The size of blank nano-
particles was smaller than the drug-loaded nanoparticles. The size of nanoparticles is 
important parameter as it affects the release profile, stability and biological performance 
of nanoparticles [12]. The zeta potential of prepared nanoparticles ranges between 25 to 
36 mV. The positive zetapotential is attributed the presence of cationic polymer chitosan. 
The zeta potential value of curcumin loaded nanoparticles was slightly lower than the 
blank nanoparticles, this is due to curcumin occupies the +ve charge of chitosan resulting 
in lower surface charge of nanoparticles. The zeta potential value greater than +30 mV 
provides good stability and ability to attach/interact with negatively charged biological 
membranes. The prepared nanoparticles are spherical and having smooth surface as 
shown in Figure 2a. The entrapment efficiency of prepared nanoparticles was 59.3% and 

Figure 1. ATR−FTIR spectra of (a) Curcumin, (b) Chitosan, (c) Cur–Cs–Np, (d) Ethyl cellulose and
(e) Cur–Cs–Np–P.

2.2. Preparation and Characterization of Nanoparticles

Curcumin formulation into nanoparticles improves its efficacy and stability. Chitosan
was used as carrier for the formulation of nanoparticles. The average size of prepared
nanoparticles was in the range of 203–229 nm (Table 1). The size of blank nanoparticles was
smaller than the drug-loaded nanoparticles. The size of nanoparticles is important parame-
ter as it affects the release profile, stability and biological performance of nanoparticles [12].
The zeta potential of prepared nanoparticles ranges between 25 to 36 mV. The positive
zetapotential is attributed the presence of cationic polymer chitosan. The zeta potential
value of curcumin loaded nanoparticles was slightly lower than the blank nanoparticles,
this is due to curcumin occupies the +ve charge of chitosan resulting in lower surface
charge of nanoparticles. The zeta potential value greater than +30 mV provides good
stability and ability to attach/interact with negatively charged biological membranes. The
prepared nanoparticles are spherical and having smooth surface as shown in Figure 2a.
The entrapment efficiency of prepared nanoparticles was 59.3% and drug content was
53.2 ± 3.32% (Table 1). The hydrophobic nature and larger size of curcumin resulted in
low % EE.
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Table 1. Characterization of nanoparticles.

F. Code Size [20] Zeta Potential (mV) PDI Drug Content (%) %EE

Cs-Np 203.1 ± 6.95 +36.3 ± 1.25 0.27 ± 0.12 —- —–
Cur-Cs-Np 229.4 ± 9.53 +25.8 ± 1.56 0.29 ± 0.11 53.2 ± 3.32 59.3 ± 2.98

Data were expressed as mean ± SD, n = 3.
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Figure 2. SEM image of (a) nanoparticles (Cur-Cs-Np) and (b) Patch (Cur-Cs-Np-P).

2.3. Preparation and Characterization of Patches

The patches were prepared using solvent evaporation technique. Blank, curcumin
and Cur-Cs-Np loaded patches were prepared. The physicochemical characterization of
prepared patches is shown in Table 2. The prepared patches were inspected visually for
its physical appearance, and found to be smooth, homogeneous, and flexible. The surface
morphology of the Cur-Cs-Np loaded patches are shown in Figure 2b. The prepared
patches have some pores on the surface which helps in initial release of the nanoparticles.
The pH of the formulated patches was in the range of 5.9–6.3. This pH range is in the
acceptable range as the skin pH ranges from 5.5 to 6.5 [21]. The thickness of the patch
ranges in between 0.73 to 0.84 mm. The thickness of the patches slightly increases with the
incorporation of Cur-Cs-Np. Similarly, the weight of the patches also increased with the
addition of Cur-Cs-Np. All the prepared patches showed folding endurance greater than
60, which suggests that patches will not easily break or damaged when applied on skin.
The tensile strength value of prepared patches ranges in between 11.23 to 12.65 kg/cm2,
indicating sufficient tensile strength with no significant difference. The % moisture content
of all prepared patches ranges from 8.38 to 10.32%. The moisture content slightly increases
with the addition of Cur-Cs-Np in the patches, which was due to the presence chitosan
along with ethyl cellulose.

Table 2. Physicochemical characterization of prepared patches.

F. Codes pH Thickness
(mm)

Weight
Variation

(mg)

Folding
Endurance

Tensile
Strength
kg/cm2

% Moisture
Content

% Drug
Content

Blank-P 5.9 0.73 ± 0.14 85.67 ± 0.12 67 ± 2.35 11.23 ± 0.56 8.38 ± 0.71 —–
Cur-P 6.2 0.78 ± 0.21 88.54 ± 0.25 60 ± 2.67 11.13 ± 0.72 9.76 ± 0.86 83.51 ± 2.92

Cur-Cs-Np-P 6.3 0.84 ± 0.27 91.98 ± 0.29 58 ± 2.14 12.65 ± 0.86 10.32 ± 0.95 85.73 ± 2.49

Data were expressed as mean ± SD, n = 3.



Gels 2023, 9, 201 5 of 12

2.4. In Vitro Release

Figure 3 shows the release profile of curcumin from nanoparticles and patch formu-
lation. Phosphate buffer pH 5.5 was used to measure the curcumin release. Release of
curcumin from nanoparticles was initially fast during the first 4 h, followed by sustained
release, revealing a biphasic process. An initial burst release of curcumin which is adsorbed
on the surface of the nanoparticles and further sustained release of entrapped curcumin was
observed. Burst release of curcumin helps in topical/local disease management. Chitosan is
a natural rate controlling polymer and helps in sustained release of drug. The drug encapsu-
lated inside the chitosan matrix releases slowly over 24 h. The controlled/slower release of
curcumin is due to entrapment of curcumin inside nanoparticles and longer diffusion path
to follow [20]. Approximately 70% of curcumin was released from nanoparticles within
24 h. The release of curcumin from nanoparticles was significantly higher than the patch
(ANOVA; p < 0.05). The nanoparticles incorporation into patches results in sustained release
of curcumin as well as the release duration is extended to 36 h. The curcumin nanoparticles
were faster released from prepared patches, followed by sustained release. The polymers
used in the formulations of patches reduced the release of nanoparticles, which ultimately
reduces the release of curcumin. Patch reduces the release of drug, as curcumin has to
diffuse through the chitosan and patch polymers. This release profile was important to
achieve the high concentration gradient required for successful topical delivery.
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2.5. Ex Vivo Permeation and Skin Drug Retention

The ex vivo permeation and skin drug retention studies of nanoparticles and patches
were performed using rats’ skin and Franz diffusion cell. Figure 4 shows the permeation
profile of nanoparticles and patches. The permeation of cur-cs-np was slightly higher
(ANOVA; p < 0.05) than the Cur-P and Cur-Cs-Np-P. Chitosan acts as permeation en-
hancer by reversibly altering the skin proteins and lipids, resulting in higher permeation of
drug [22]. Skin permeability depends on nanoparticle size and chitosan content [23]. The
drug release was higher with nanoparticles compared to patches and permeation follows
the same trend, whereas skin drug retention was found to be maximum for the patches
(ANOVA; p < 0.05). The drug release from nanoparticles was reduced by incorporating the
nanoparticles into patch, which results in the permeation of nanoparticles without releasing
the drug to the skin. The presence of nanoparticles inside the skin results in interaction
with negatively charged lipids, which supports higher skin drug retention. Higher skin
drug retention is helpful for the management of local disease and inflammation.
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2.6. Anti-Inflammatory Studies

Anti-inflammatory results of prepared nanoparticles and patches were shown in
Figure 5. Male Sprague Dawley rats were used in this study as inflammation is 3–5 times
more common in female as compared to males. Curcumin is well documented as poten-
tial anti-inflammatory agent. Anti-inflammatory activity of curcumin was enhanced by
incorporation into chitosan nanoparticles. It was evident from the results that maximum
percent inhibition in paw volume was observed with nanoparticles incorporated patches
(ANOVA; p < 0.05). Patches prominently inhibit the inflammation/edema as compared to
nanoparticles and control group. Cur-Cs-Np also reduces the edema volume as compared
to control but lower than the patches. This was due to higher drug deposition in the skin
layers in the case of patches as compared to nanoparticles. The higher concentration of
drug in the deeper layers of the skin helps to overcome skin infection and inflammation.
The duration of reduction in the paw edema volume was higher in the case of patches
as compared to nanoparticles. This was due to the continuous and prolonged release
of curcumin from the patches, which results in the continuous supply of curcumin to
the inflamed area. The nanoparticles incorporated patches delivers the therapeutically
required amount of drug at the target site more efficiently than the nanoparticles. Therefore,
the topical delivery of curcumin using nanoparticles incorporated patches supports the
management of inflammation.
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3. Conclusions

Curcumin nanoparticles were prepared using ionic gelation method. The prepared
nanoparticles were then incorporated into the patches. The use of curcumin-chitosan
nanoparticles may take advantage of the functional properties of curcumin, chitosan
nanoparticles in an additive way to fight against inflammation. The in-vitro release of
curcumin was controlled by incorporating nanoparticles into transdermal patches. The skin
drug retention of nanoparticles incorporated patches was found to be higher than nanopar-
ticles and patch alone. Higher skin drug retention will support the better management of
local disease such as inflammation. This was also confirmed by the anti-inflammatory re-
sults. Curcumin-chitosan nanoparticles incorporated into a patch could be a new powerful
drug delivery for local skin diseases such as inflammation.

4. Materials and Methods
4.1. Material

Curcumin (98% Pure) was purchased from RMY Exporter, Mumbai, India. Chitosan
having molecular weight (MW: 350,000 Da, deacetylation degree > 75%), Triphenyl phos-
phate (TPP), and poly(vinyl pyrrolidone) (PVP) were supplied by Sigma-Aldrich, St. Louis,
MO, USA. Ethyl cellulose was purchased from Dow Chemical Company, Washington.
λ-Carrageenan (Sigma-Aldrich, St. Louis, MO, USA). All the chemicals used were of
analytical grade.

4.2. ATR-FTIR Analysis

ATR-FTIR spectra of curcumin, chitosan, ethyl cellulose, nanoparticles, and patches
were examined using the ATR-FTIR spectrometer (PerkinElmer, 940 Winter St Waltham,
MA, United States). The samples were placed on the sample holder without any processing
and scanned between 4000 and 400 cm−1. Spectra were recorded in triplicates and results
were averaged [17].

4.3. Synthesis of Curcumin-Loaded Chitosan Nanoparticles

Chitosan-curcumin nanoparticles were prepared using the ionic gelation method, as
previously described by Basit et al., 2020 with slight modifications [15]. TPP was used as
crosslinker and its ratio with chitosan was 1:3. Curcumin was first dissolved in ethanolic
solution (water: ethanol; 1:1) at a concentration of 1 mg/mL (1% w/w). Chitosan (0.5% w/w)
solution was prepared in 2% v/v aqueous acetic acid, and its pH was adjusted to 5 with 2 M
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NaOH. Then, the curcumin solution was added in to the chitosan solution and followed
by the dropwise addition of aqueous TPP solution (0.125% w/v) under constant magnetic
stirring (1000 rpm). The nanoparticles were spontaneously formed and harvested by
centrifugation at 10,000 rpm for 1 h. The pellet formed was then re-dispersed in deionized
water and freeze dried (Freezone loor top freeze dryer, Labconco, Kansas City, MO, USA)
at −50 ◦C for 24 h.

4.3.1. Size and Zeta Potential Analysis

Average particle size distribution and zeta potential of the prepared nanoparticles
was determined by dynamic light scattering (DLS) using a Malvern Zetasizer instrument
(Malvern Instruments, Malvern, Worcestershire, UK). The prepared NPs were taken and
dispersed in distilled water to a final concentration of 1% and ultrasonicated before the
measurement. Three measurements were conducted for each sample and results were
averaged [24].

4.3.2. Surface Morphology

The surface morphology of the prepared nanoparticles and nanoparticles incorporated
patch was determined using SEM (Zeiss EVO40; Carl Zeiss, Cambridge, UK). Briefly,
nanoparticles were taken and spread on a double-sided conductive tape and the surface was
coated with gold under high vacuum. The images were taken at different resolutions [25].

4.4. Preparation of Nanoparticles Loaded Patches

Nanoparticles loaded patches were prepared using solvent casting technique. Ethyl
cellulose was used as patch forming polymer. Polymer and excipients were weighed
precisely using analytical balance (Shimadzu AX 200, Kyoto, Japan) and dissolved in the
solvent system (comprised of equal amount of 10 mL of ethanol and distilled water) using
magnetic stirrer. The prepared nanoparticles were suspended in distilled water. The NPs
aqueous phase was added to the polymer solution under continuous stirring. PEG-400
was added as plasticizer. The solution was sonicated using sonicator (D-78224, Singen,
Germany) and carefully poured into petri-dishes. The Petri dishes were dried in oven in
dark and at 37 ◦C temperature. The final prepared patches were kept in desiccator until
further use [26].

4.5. Characterization of Patches
4.5.1. Physicochemical Characterization of Patches

The prepared patches were evaluated physiochemically as described by our previously
reported methods [27]. Briefly, prepared patches were physically inspected for color,
smoothness, and clarity. The thickness of the patches was measured using vernier calipers
(Germany) at six different places and results were averaged. The weighed uniformity of all
patches was determined using an analytical weighing balance (Shimadzu AX 200, Kyoto,
Japan). The surface pH of the formulated patches was measured by placing a pH meter
(InoLab®, Xylem Analytics, Weilheim 82362, Germany) rod on the surface of the patch and
reading was recorded. Folding endurance was determined by folding the patch several
times at the same point till it breaks. All the experiments were conducted in triplicates and
results were averaged.

4.5.2. Drug Content

Drug content of the prepared patches was evaluated using UV visible spectropho-
tometer (Shimadzu 1601, Kyoto, Japan). A patch having area of 1 cm2 was placed in a
volumetric flask filled with phosphate buffer (pH 7.4) and sonicate for 8 h. The solution
was then centrifuged, and supernatant was analyzed on UV spectroscopy. The pellet was
dissolved in 1% v/v acetic acid solution and analyzed using a UV visible spectrophotometer
at 425 nm wavelength. Both the readings were averaged and drug content was calculated
using calibration curve [28].
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4.5.3. Tensile Strength and Percent Elongation

Pulley system was used for the evaluation of mechanical properties of prepared
patches. The initial length of patch was measured using scale. One side of the prepared
patch was tied to the hook and another side of the patch was tied to the rope. The rope was
crossed over a pulley and attached to the weighing pan. Weight was gradually added to the
weighing pan until creak or break appears in prepared patch. The total weight of weighing
pan was calculated for the value of tensile strength. The value for percent elongation was
evaluated using thread pointer method [29].

Tensile strength value was determined using following equation.

Tensile Strength = F/(a·b(1 + L/I)) (1)

where F indicates total amount of force required to break patch, a indicates the width of
patch (cm), and b indicates thickness of patch (cm). L indicates length of patch (cm), and I
indicate elongation of patch before patch breakage (cm). The following equation was used
for the evaluation of patch percent elongation [30]:

% Elongation = (Lf − Li)/Li × 100 (2)

where Li indicates initial length of patch and Li indicates final length of patch.

4.6. In Vitro Drug Release Study

The in vitro release of nanoparticles and patches was performed using Franz Diffusion
Cell Apparatus (Perme-Gear, Hellertown, PA, USA) and synthetic membrane (Tuffryn
membrane; diameter 2.5 mm and pore size 0.45 µm). The membrane was fixed between
donor and receptor compartment. The receptor compartment was filled with phosphate
buffer (pH 5.5) and 1.5% polysorbate 80 in-simulation to skin pH. The temperature of
the receptor compartment was maintained at 32 ± 0.5 ◦C and stirred at 100 rpm. The
donor compartment was charged with Cur-Sol (curcumin solution), Cur-Cs-Np (curcumin
chitosan nanoparticles), Cur-P (Curcumin patch), and Cur-Cs-Np-P (curcumin chitosan
nanoparticle patch), each containing 5 mg of drug. Then, 2 mL sample was collected at
specified time intervals, i.e., 0.5, 1, 1.5, 2, 4, 8, 12, 16, and 24 h, respectively, and replaced
with equal volume of fresh buffer (pH 5.5) to maintain the sink condition. The collected
samples were analyzed using UV visible spectrophotometer at 425 nm wave length [31].

4.7. Ex Vivo Drug Permeation and Retention Study

Ex-vivo studies of nanoparticles and patches were carried out across rat’s skin. The
procedure performed to extract skin from rats was approved from Ethical Review Board,
Gomal Centre of Pharmaceutical Science, Faculty of Pharmacy, Gomal University, Dera
Ismail Khan, KP, Pakistan. Male Sprague Dawley rats weighing 200–250 g were sacrificed
using a cervical dislocation method. Hairs were removed from the dorsal region of the rats
using electric trimmer. The skin was then removed surgically, washed with 0.9% sodium
chloride solution, and was kept at −20 ± 1 ◦C. The rat’s skin was then mounted between
donor and receptor compartment of Franz diffusion cell. The receptor compartment was
filled with phosphate buffer (pH 7.4) and temperature was maintained at of 37 ± 2 ◦C.
The receiver medium was stirred at 100 rpm. The donor compartment was loaded with
nanoparticles/patch containing 5 mg of drug. Hence, 2 mL aliquots were taken at specified
time intervals, i.e., 0.5, 1, 1.5, 2, 4, 8, 12, 16, and 24 h, respectively, and replaced with fresh
buffer in order to maintain sink condition. The samples were analyzed using a UV visible
spectrophotometer at 425 nm wave length [32].

Ex-vivo permeation study was followed by skin drug retention analysis. The skin
obtained from ex vivo study was dried with tissue paper, cut into small pieces, and
suspended in phosphate buffer pH 7.4. Then, 5 mL of methanol was added for extraction
of drug. The skin was the homogenized using tissue homogenizer and then centrifuged.
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The supernatant was taken and analyzed using a UV visible spectrophotometer at 425 nm
wavelength, and the results obtained were calculated and averaged (mean ± SD).

4.8. Anti-Inflammatory Activity

Anti-inflammatory activity of prepared nanoparticles and patches were carried out
using male Sprague Dawley rats, weighing 200–250 g and protocol was approved from
ERB, GCPS, Gomal University Pakistan. The rats were divided into three groups (Group
A-Control, Group B-Nanoparticles and Group C-NPs loaded Patch). All the rats were given
access to food and water, and temperature was maintained at 25 ± 2 ◦C with humidity
55%. The natural light and dark cycle were also employed. Inflammation was developed
by carrageenan injection in the right hind paw, whereas normal saline (non-pyrogenic) was
injected in the left hind paw to act as control. The prepared nanoparticles and patch were
applied on the inflamed paw. Paw thickness was measured at 0 h, and at 1, 2, 4, 8, 16, and
24 h using a digital plethysmograph. Control thickness was compared with the inflamed
paw for each group [33].

4.9. Statistical Analysis

Statistical analysis was performed using SPSS version 18. ANOVA was used for analysis.
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