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Abstract: Quasi-dry CO2 fracturing technology is a new CO2 fracturing technology that combines
liquid CO2 fracturing (dry CO2 fracturing) and water-based fracturing. It uses a liquid CO2 system
containing a small amount of water-based fracturing fluid to carry sand, and it is characterized by
sand blending at normal pressure, convenient preparation, the integrated application of resistance
reduction and sand carrying, and no dedicated closed sand blender requirement. We developed a
self-crosslinking emulsion-type water-based fracturing fluid (ZJL-1), which contained ionic bonds,
hydrogen bonds, van der Waals forces, and hydrophobic associations, for quasi-dry CO2 fracturing,
and the comprehensive properties of the ZJL-1 fracturing fluid were evaluated. The results showed
that the ZJL-1 fracturing fluid had obvious viscoelastic characteristics, a heat loss rate of less than
10% at 200 ◦C, a good thermal stability, sufficient rheology under high temperature and high shear
conditions, and a good thermal stability. The resistance reduction rate reached 70%, which demon-
strates a good resistance reduction performance. Compared with conventional guar fracturing fluid,
ZJL-1 can carry more sand and has a lower core damage rate. The on-site use of quasi-dry fracturing
showed that optimizing the mixing ratio of liquid CO2 fracturing fluid and ZJL-1 fracturing fluid
effectively enhanced oil and gas recovery. This can be used to optimize quasi-dry fracturing and can
be used as a reference.

Keywords: Quasi-dry CO2 fracturing; self-crosslinking emulsion-type; comprehensive properties;
enhanced oil and gas recovery

1. Introduction

In regard to oil and gas production, unconventional resources, such as shale gas and
tight oil, have attracted much attention in the past decade and have become the focus
in the development of energy resources by the global oil industry. According to the U.S.
Energy Information Administration, global tight oil production will increase from 33%
of the total land oil production to 51% in 2040 to alleviate the world’s growing energy
demand and will account for nearly 10% of the global oil production. Low-porosity and
low-permeability reservoirs, such as tight oil, gas, and shale gas reservoirs, are generally
characterized by poor reservoir physical properties, a permeability generally lower than
0.1 mD, and natural productivity lower than industrial standards [1]. Appendix A Table A1
summarizes the complex properties of unconventional reservoirs, multi-stratum rock and
fluid characterization, and rock mineralogy [2].

For unconventional oil and gas resources, the exploitation method necessarily has its
particularities, and conventional hydraulic fracturing easily results in water sensitivity and
water locking damages to reservoirs, which impacts the increases sought in oil produc-
tion [3,4]. In recent years, dry CO2 fracturing has been developed at home and abroad. This
technology uses 100% liquid CO2 as the fracturing fluid, thereby avoiding water sensitivity
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and water locking damage to reservoirs, and CO2 is discharged as gas during flowback
without residue and damage [5–7].

For the Devonian water-sensitive shale formation in eastern Kentucky, the US Depart-
ment of Energy (DOE) funded a liquid CO2 dry fracturing test. The test results showed
that liquid CO2 dry fracturing was 1.9 times more effective than nitrogen fracturing and
4.9 times more effective than nitrogen foam fracturing [8]. Some researchers proposed in-
creasing the flow rate of liquid CO2 to improve its sand carrying capacity, but increasing the
flow rate of CO2 increases the friction loss in the pipeline [9,10]. Wang et al. conducted ex-
periments to optimize different types of CO2 thickeners. The results showed that 1.5~2.0%
concentration of TNJ-3 type thickeners increased the CO2 viscosity by 240~490 times and
enhanced the performance of carbon dioxide fracturing fluids in TNJ-3 test evaluations [11].
The fatty acid thickener developed by Li Shan et al. can increase the viscosity liquid CO2
by 17–184 times, and the thickener has been successfully applied to construction sites in
the Changqing gas field in the Ordos Basin for liquid CO2 fracturing, but because it is a
nonpolar solvent with poor water solubility and low degradability, the thickener remains
in the formation after compression and can cause reservoir damage [12]. The BJ company
formed a CO2/N2 foam fracturing fluid system by mixing liquid N2 into liquid CO2 and
used methoxy nonafluorobutane (C4F9OCH3) as a foaming agent, which retained the liquid
CO2 fracturing fluid. However, the introduction of N2 greatly reduced the static pressure of
the fracturing fluid system, which establishes higher requirements for the fracturing pump
truck, thus limiting its application range [13–15]. Workers at the Changqing Oilfield, Jilin
Oilfield, and Yanchang Oilfield have made attempts to use supercritical CO2 dry fracturing
and have achieved certain results [16–18]. CO2 fracturing technology was applied in the
Yanchang Oilfield 167 times for the production of tight oil, tight gas, and continental shale
gas, and the production stimulation effect was remarkable [19]. However, conventional
CO2 fracturing also has many problems, including low viscosity, poor sand-carrying and
fluid-loss control capabilities, high frictional resistance, and difficulty in effectively creating
fractures; moreover, special closed sand-mixing equipment is used, and the scale of sand
addition is limited. As a result, the thickening, drag reduction, and sand-carrying properties
of liquid CO2 are poor, and the ideal stimulation effect cannot be achieved; the fracturing
equipment costs, material costs, and construction costs are too high for this method to be
popularized and applied on a large scale [20,21].

Based on the above reasons, quasi-dry CO2 fracturing, which is a combination of liquid
CO2 dry fracturing and conventional water-based fracturing, is currently being studied [22].
The quasi-dry CO2 fracturing technology proceeds as follows: CO2 thickener, water-based
thickener, and proppant are added into water to form a water-based mixture with high
viscosity and high sand ratio (water-based fracturing fluid accounts for 10–30%), the water-
based mixture is blended with 90–70% liquid CO2 at the high pressure tee manifold of
wellhead to form a mixed-phase liquid with some viscosity. Liquid CO2 is a weak solvent
that is immiscible with clean water. The quasi-dry CO2 fracturing process requires the use
of a liquid CO2 system containing a small amount of water-based fracturing fluid to carry
sand. Moreover, the mixing ratio of liquid CO2 and water base is optimized. Under the
condition of ensuring the stable performance of fracturing fluid, the dosage of the water-
based fracturing fluid is required to be as low as possible and the damage to be minimal.
This technology is characterized by low damage, no requirement for a dedicated closed
sand blender, relatively simple operation flow and control, and suitability for large-scale
sand addition and fracturing, etc., [23], and it exhibits the technical advantages of dry CO2
fracturing technology and meets the requirements for fracturing construction technology
with the high sand ratio.

Traditional water-based fracturing fluid thickeners are mainly in the form of solid pow-
ders, and the solution dissolves slowly when used, which not only increases the workload
but also increases the cost and causes the product to shear and degrade, affecting the use
effect. It is also necessary to use a cross-linking agent for cross-linking to carry sand.
The cross-linking effect is unstable and poorly controllable, resulting in a low sand ratio
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and insufficient sand-carrying capacity, resulting in unsatisfactory or even poor produc-
tion enhancement effects. The integrated operation of low-concentration drag reduction
and high-concentration sand-carrying cannot be well satisfied. Emulsion-type fracturing
fluid thickeners, such as conventional polyacrylamide emulsions, are usually used in the
preparation of low-concentration slick water. The amount of sand is less than that of
low-sand, the cross-linking conditions are harsh, and it is difficult to prepare sand-carrying
fluid. Therefore, this research develops a self-crosslinking, emulsion-based, water-based
fracturing fluid system (ZJL-1) that satisfies the integration of drag reduction and sand-
carrying and does not require a crosslinking agent for crosslinking. The fracturing fluid
dissolves and self-crosslinks, and a strong spatial network structure is formed through
ionic bonds, hydrogen bonds, van der Waals forces, and hydrophobic associations, so it has
excellent shear resistance. It can still achieve a high sand ratio and sand carrying at high
temperatures. A series of performance evaluations of the ZJL-1 fracturing fluid included
studies of the temperature-resistance capacity, viscoelasticity, shear-resistance capacity,
frictional properties, proppant suspension ability, gel breaking properties, and core damage
properties. This fracturing fluid system can provide technical support for oilfield fracturing
sites. Appendix A Table A2 compares the performance of the existing fracturing fluid
systems on the market with the ZJL-1 fracturing fluid system.

2. Materials and Methods
2.1. Experimental Materials

(1) Reagents: The self-crosslinking emulsion thickener was prepared by inverse emul-
sion polymerization. In a three-necked flask protected by nitrogen gas, add 140 g of silicone
oil, 4 g of Span80 and 1 g of OP-10, and stir at high speed for 30 min. Dissolve 40 g of
acrylamide, 10 g of 2-acrylamido-2-methylpropanesulfonic acid, and 5 g of dimethyl diallyl
ammonium chloride in 140 g of deionized water. After the monomers are completely
dissolved, slowly drop them into a three-necked flask, stir while adding dropwise, control
the drop rate, finish the drop within 25–30 min, control the stirring speed, use an emulsifier
to emulsify for 1.5 h, and keep the state of the water-in-oil emulsion stable. Add 0.05 g of
benzoyl peroxide, 0.05 g of azobisisobutyronitrile, and 0.05 g of tert-butyl peroxide to the
emulsion at 45 ◦C for initiation, raise the temperature of the reaction system to 85 ◦C, and
control the reaction at this temperature 14 h after the reaction, the jacket of the reaction
vessel was circulated through cooling water, and the temperature was lowered to 25 ◦C.
The white emulsion obtained in the reaction vessel was a self-crosslinking emulsion type
fracturing fluid thickener. After the reaction was completed and purified, the conversion
rate was 95.6%. The structural formulas of AMPS and the self-crosslinking emulsion-based
thickener are shown in Figures 1 and 2. The degree of hydrolysis (mole fraction) and solid
content were 23–27% and 88%respectively.
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The intrinsic viscosity [η] of ZJL-1 was measured by a self-made dilution Ubbelohde
viscometer, and the relative molecular mass was estimated according to the Mark-Houwink
[η] = KMα equation, where α = 0.8, K= 4.75 × 10−3 mg/L, the relative molecular mass M
is 8.14 × 106 [24]. The self-crosslinking emulsion thickener was mixed with mass fractions
of 0.5 wt%, 1.0 wt%, and 1.5 wt% in water and mechanically stirred at 600 r/min at room
temperature until completely dissolved to form three different concentrations. The ZJL-1
fracturing fluid system, without special instructions, and the subsequent ZJL-1 fracturing
fluids all used simulated formation water.

Acrylamide, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), dimethyl diallyl
ammonium chloride (DMDAAC), and silicone oil were all purchased from Macklin’s
Reagent Co., Ltd., Shanghai, China. Span80, OP-10, benzoyl peroxide, azobisisobutyroni-
trile, and tert-butyl peroxide were purchased from Aladdin Biochemical Technology Co.,
Ltd., Shanghai, China.

Nitrogen (purity 99.95%) was provided by Xinxing Gas Co., Ltd., Wuhan, China.
China. All of the above reagents were of industrial purity.

(2) The proppant sample was low-density ceramsite, with particle sizes of 0.2–0.4 mm
and densities of 1.0–1.3 g/cm3.

(3) Conventional guar fracturing fluid was provided by Yanchang Oilfield.
(4) Synthesized brine was used in the present study, and the ionic composition is

shown in Table 1.

Table 1. Ionic element composition of the synthesized brine used.

Ion Concentration, mg/L

Na+ 7012.05
Ca2+ 500.86
Mg2+ 341.26
Cl− 11,398.45
total 19,252.62

(5) Core for experiments: a long core spliced with natural cores was provided by S
Oilfield through artificial single seam splicing; the basic physical properties of the natural
cores are shown in Table 2.

Table 2. Related physical property parameters of natural short cores.

No. Length
(cm)

Diameter
(cm)

Permeability
(mD)

Porosity
(%)

Mean
Permeability

(mD)

Mean Porosity
(%)

1# 6.086 2.327 0.2156 7.24

0.386 8.65
2# 6.968 2.331 0.2221 7.87
3# 6.552 2.328 0.4507 8.33
4# 6.724 2.326 0.4330 9.26
5# 6.414 2.338 0.6115 10.55
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2.2. Experimental Methods
2.2.1. IR Analyses

Using a Bruker Tensor 27 (Salbrücken, Germany) Fourier Transform Infrared Spec-
trometer, the liquid to be measured was characterized in the infrared by applying drops of
the liquid to a pure potassium bromide pressed tablet [25].

2.2.2. SEM Analyses

The surface morphology of ZJL-1 was investigated after self-crosslinking using a
Thermo Nicolet 380 Scanning Electron Microscope (Massachusetts, USA). ZJL-1 was frozen
at −20 ◦C and then freeze-dried for 24 h. Before SEM observation, the freeze-dried samples
were cut open to expose the internal structure of the cross-section, sprayed with gold and
then observed [26].

2.2.3. Thermogravimetric Analyses (TGA)

The temperature was raised from 25 ◦C to 500 ◦C with a Perkin-Elmer Pyris Diamond
TG thermal analyzer (Massachusetts, USA) to analyze the thermal stability of ZJL-1. First,
glass slides were wiped clean, and then appropriate amounts of sample was applied to
them. Then, the glass slides were baked in a drying oven at 60 ◦C for a period of time to
remove the moisture in the samples. Nitrogen was used as the protective gas, and the heating
rate was 10 ◦C/min.

2.2.4. Test of Viscoelasticity

Tests of viscoelasticity and rheological properties were carried out with a Haake
RS6000 rheometer (Karlsruhe, Germany). The storage modulus (G′) and loss modulus (G′′)
of ZJL-1 were determined at different concentrations, with the temperature set to 25 ◦C,
the 35 mm cone-and-plate test system and oscillating measurement mode selected, the
oscillating angular frequency set to 1 Hz, and the yield stress set to 0.5 Pa [27].

2.2.5. Tests of Temperature and Shear Resistance

The experiment used a HaakeMars60 rheometer (Karlsruhe, Germany). The reactor
inside the rheometer was a steel cylinder, and the pressure of the reactor was 40 MPa,
which met the requirements of this experiment. ZJL-1 was poured into the reaction kettle,
the temperature control line and the pressure sensing line were connected, the kettle was
heated to 160 ◦C with the external circulation of the water bath, nitrogen was injected into
the reaction kettle, the pressure was adjusted to 20 MPa, and the shear speed was set to
170 s−1 for 2 h. The relationship between the apparent viscosity of the fracturing fluid and
the time curve was measured [28,29]. Fracturing fluid must have a viscosity greater than
20 mPa·s to meet the requirements of fracturing fluid transportation proppants [30–32].

2.2.6. Test of Gel Breaking Property

The ZJL-1 fracturing fluid was sealed in a container and placed in a constant tempera-
ture water bath at 90 ◦C, and kerosene was added to stir and break the gel. A ZNN-D6B
six-speed rotational viscometer (Qingdao, China) was used to measure the viscosity of the
fracturing fluid before and after breaking the gel and record the break time. A DT-102A au-
tomatic interfacial tension meter (Zibo, China) was used to measure the surface interfacial
tension of the breaking fluid, and the breaking performance of the ZJL-1 fracturing fluid
was investigated [33].

2.2.7. Method for the Frictional Drag Tests

Frictional drag property tests were carried out with a large-sized high-temperature
and high-pressure fluid circulation device, as shown in Figure 3. The frictional drag in
pipe flow was tested before and after the thickener was added into the ZJL-1 fracturing
fluid, the differential pressure in the pipeline was calculated using the differential pressure
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method for pipe flow in a high-pressure long pipe, and the drag reduction efficiency was
calculated with Formula (1).

Dr = (∆P1 − ∆P2)/∆P1 × 100% (1)

where Dr is the drag reduction efficiency, ∆P1 is the differential pressure when water flows
through the pipeline, and ∆P2 is the differential pressure when the ZJL-1 fracturing fluid
with added thickener flows through the long pipe. The method employed a pipe with an
internal diameter of 10 mm and a test pipeline with a length of 2 m, and the drag reduction
efficiency values were tested with different concentrations of thickener added at different
flow rates at a temperature of 25 ◦C and a pressure of 15 Mpa [34,35].
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pump; 5—thickener storage tank; 6—flow meter; 7—injection pump; 8—blending tank; 9—pipe
heater; 10—mass flow meter; 11—pressurizing pump; 12—inlet pressure sensor; 13—pipe viewport;
14—test pipes with diameters of 6 mm, l0 mm, and 14 mm, respectively; 15—outlet pressure sensor;
16—separator; 17—temperature and pressure regulators.

2.2.8. Method for Testing Sand Suspension Properties

A static sand suspension visible reactor was used. ZJL-1 was fully dissolved in water
with stirring. Settling of the proppant in the ZJL-1 fracturing fluid with different thickener
concentrations was observed using the indoor static observation method [36], and the
settling speed of the proppant in the ZJL-1 fracturing fluid was analyzed. The experimental
temperature was 25 ◦C, the pressure was 15 MPa, 30/50 mesh ceramsite proppant was
selected, the density of the proppant was 1.3 g/cm3, and the rotational speed of the stirrer
was 1000 rpm [37].

2.2.9. Method for Testing Core Damage

Evaluations of core damage were carried out with a fracturing fluid-caused damage
test device [38], as shown in Figure 4. The core permeability was determined before and
after the occurrence of damage caused by the fracturing fluid, and the core damage ratio
could be obtained by substituting the determined permeability values into the matrix
permeability damage ratio Formula (2).

ηd = K1 −K2/K1 × 100% (2)

where ηd is the matrix permeability damage ratio and K1 and K2 are the permeability values
before and after core damage, respectively, used to evaluate the extent of damage to the
formation caused by the fracturing fluid [39].
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Figure 4. Core damage test system. 1—Temperature and pressure control system; 2—temperature
sensor; 3—pressure transducer; 4—magnetic sensor; 5—oil; 6—formation water; 7—constant-flux
pump; 8—confining pressure; 9—backpressure valve; 10—core gripper; 11—volumetric cylinder;
12—electrical machine; 13—container.

3. Results and Discussion
3.1. Infrared Spectroscopic Analyses

Figure 5 shows the infrared spectrum of AMPS, which exhibited a vinyl =C-H stretch-
ing vibration peak at 3037.02 cm−1, a C=C stretching vibration peak at 1666.03 cm−1, and
secondary vibrational peaks at 1614.03 cm−1 and 1552.10 cm−1. The characteristic amide
II band and amide I absorption bands appeared at 1373.05 cm−1 and 1398 cm−1 for the
branched -CH, C-H in-plane bending vibrations, and the peak at 629.09 cm−1 was a charac-
teristic absorption peak for a sulfonic acid group. In the infrared spectrum of ZJL-1, there
were two primary amide peaks at 3199.29 cm−1 and 3339.03 cm−1, a peak at 3035.78 cm−1

for the stretching vibration of the vinyl =C-H, a peak at 1670.59 cm−1 for C=C stretching vi-
bration, a sulfonic acid symmetrical stretching vibration peak at 1438.84 cm−1, a secondary
amide II stretching vibrational peak at 1261.04 cm−1, a tertiary ammonium vibrational peak
at 1195.37 cm−1, and the peak at 618.88 cm−1 1 is characteristic of the sulfonic acid group;
the absorption peaks of the AMPS monomer functional groups appeared in the infrared
spectrum of ZJL-1, which confirmed that ZJL-1 was chemically modified by AMPS.
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3.2. Scanning Electron Microscope Tests

Figure 6 shows a scanning electron microscopy image of the 0.5% ZJL-1 base fluid,
and the aggregation state of the molecular main chain is clearly observed. The molecular
chain was stretched in the solution to form a more compact and complex spatial network.
Many small branch chains were intertwined with each other to form an associated structure,
which increased the hydrodynamic volume and the viscosity of the solution.
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After ZJL-1 was dissolved in water, the carboxyl, sulfonic, and quaternary ammo-
nium salt groups in and between the molecular chains of the copolymer underwent self-
crosslinking through ionic bonds, the quaternary ammonium groups in the molecular
chains and the sulfonic groups of the anionic emulsifier dissolved in water to form sec-
ondary self-crosslinks through ionic bonding, and the long-chain hydrophobic groups in
the molecular chains and the nonionic groups of the nonionic emulsifier underwent tertiary
self-crosslinking through van der Waals forces and hydrophobic association. In addition,
there were strongly polar hydrogen bonds, including H-O bonds and H-N bonds, in the
molecular chains, which enhanced the self-crosslinking [40–42]. Therefore, ZJL-1 can form
a three-dimensional network structure through weak associations, such as hydrogen bonds,
ionic bonds, hydrophobic associations, and van der Waals forces, showing good viscoelas-
ticity, as shown in Figure 7. No added crosslinker was needed after dissolution, and various
properties were evidently better than those obtained with crosslinked fracturing fluid. This
self-crosslinking mode was completely different from other crosslinking modes involving
added crosslinker due to the strong covalent bonds (polar covalent bonds, coordinate cova-
lent bonds, etc.,). Crosslinking via chelating bonds is a unique and innovative crosslinking
mode [43].
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3.3. TGA Test Results

As shown in Figure 8, the thermal decomposition temperatures of ZJL-1 were analyzed
by using concentrations of 0.5 wt%, 1.0 wt%, and 1.5 wt%, and the graphs show that ZJL-1
went through three weight loss stages for each concentration profile. The first stage occurred
between 25 and 80 ◦C, and the weight loss was generally low; ZJL-1 was ground into a
powder and absorbed moisture from the air prior to testing, so this weight loss was due to
the volatilization of moisture. When the temperature rose to 80–200 ◦C, the second weight
loss occurred and was mainly due to thermal decomposition of the amide and sulfonic acid
groups in the polymer, and the third stage of weight loss occurred between 200 and 450 ◦C
due to thermal decomposition of -SO3H in ZJL-1, which is the largest weight loss observed.
As the concentration of ZJL-1 was increased, the total amount of mass lost decreased, with
the smallest total mass loss for 1.5 wt% ZJL-1, 7.71%, occurring between 25 and 200 ◦C. A
thermal weight loss of less than 10% for the polymer indicates that the substance is able to
withstand the corresponding temperature. The apparent viscosity of ZJL-1 is closely related
to the density of the spatial mesh structure, the bond length between molecules, and the
entanglement strength of the spatial mesh structure. With the increase of temperature, the
intermolecular chemical bonds are gradually broken and this formed reticular structure is
gradually destroyed due to the increase of molecular activity. Therefore, the results of the
thermogravimetric analyses indicated that ZJL-1 can withstand temperatures up to 200 ◦C.
On the one hand, the existence of the network structure delays the thermal degradation of
ZJL-1, and on the other hand, the sulfonic acid group increases the temperature resistance
of ZJL-1. The better temperature resistance of ZJL-1 is conducive to maintaining better
rheological properties in high temperature environments [44].
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3.4. Viscoelasticity Test Results

G′ reflects the elastic behavior of a polymer caused by its reticular structure. Decreases
in G′ indicate that the elastic behavior of the polymer is weakening. When G′ > G′′, it
indicates that the polymer exhibits relatively strong elastic behavior. The hydrophobic
groups introduced into the molecular structure produce hydrophobic associations, which
causes the molecular chains to intertwine, the spatial structure becomes more complex, and
the elasticity of the solution is enhanced [45]. With increases in the thickener concentration,
intermolecular association of hydrophobic monomers is enhanced so the hydrodynamic
volume of the fracturing fluid increases and the dynamic modulus increases. As shown in
Figure 9, each G′ value was higher than the corresponding G′′ value in the test concentration
range, indicating evident viscoelasticity and stronger spatial reticular structures. The elastic
resistance prevents settling of the proppant and improves the sand carrying capability of
the fracturing fluid [46].

Gels 2023, 9, x FOR PEER REVIEW 11 of 19 
 

 

and the elasticity of the solution is enhanced [45]. With increases in the thickener concen-
tration, intermolecular association of hydrophobic monomers is enhanced so the hydro-
dynamic volume of the fracturing fluid increases and the dynamic modulus increases. As 
shown in Figure 9, each G′ value was higher than the corresponding G″ value in the test 
concentration range, indicating evident viscoelasticity and stronger spatial reticular struc-
tures. The elastic resistance prevents settling of the proppant and improves the sand car-
rying capability of the fracturing fluid [46]. 

0.5 1.0 1.5 2.0 2.5
0

20

40

60

80

100

G
'G

''(
Pa

)

Concentration(%)

 G'',Pa
 G',Pa

 
Figure 9. Viscoelasticities at different thickener concentrations. 

3.5. Temperature and Shear Resistance Tests 
As shown in Figure 10, at 160 °C and 20 MPa, when the concentration of the added 

ZJL-1 was 0.5%, as the shear time increased, the viscosity of the fracturing fluid remained 
at 167.84 mPa·s for 20 min before shearing and then gradually decreased and finally sta-
bilized at 73.94 mPa s. When the ZJL-1 concentration was 1.0%, the viscosity decreased 
with increasing shear time and finally stabilized at 93.65 mPa·s. When the concentration 
of ZJL-1 was 1.5%, the fracturing fluid viscosity reached a maximum value of 290 mPa·s, 
remained at 195.84 mPa·s 20 min before shearing, and finally showed a downward trend 
but remained at approximately 100 mPa·s overall. At low concentrations, the molecular 
chains of ZJL-1 tend to associate intramolecularly to form separate molecular micelles. 
The increase in hydrodynamic radius is small, so the increase in viscosity is low. As the 
concentration increases, intermolecular association begins. The hydrodynamic radius of 
the polymer increases rapidly, and when the concentration exceeds a certain level, the 
intermolecular association of ZJL-1 dominates, which promotes the formation of the pol-
ymer network structure, and the hydrodynamic radius increases significantly, resulting 
in a rapid increase in viscosity; at the same time , because this weak association is a dy-
namic equilibrium state of continuous formation and destruction, at high shear rates, the 
weak association structure is largely destroyed, and the viscosity of the polymer de-
creases; after the shear rate decreases, the destroyed weak association The cooperation 
gradually recovered and the viscosity of the polymer increased [47]. When the fracturing 
fluid was sheared at different concentrations, the viscosity was maintained above 70 
mPa·s, so the fracturing fluid exhibited good temperature resistance and shear resistance 
and meets the sand-carrying capacity requirement at this temperature. 

Figure 9. Viscoelasticities at different thickener concentrations.



Gels 2023, 9, 156 11 of 18

3.5. Temperature and Shear Resistance Tests

As shown in Figure 10, at 160 ◦C and 20 MPa, when the concentration of the added
ZJL-1 was 0.5%, as the shear time increased, the viscosity of the fracturing fluid remained at
167.84 mPa·s for 20 min before shearing and then gradually decreased and finally stabilized
at 73.94 mPa s. When the ZJL-1 concentration was 1.0%, the viscosity decreased with
increasing shear time and finally stabilized at 93.65 mPa·s. When the concentration of ZJL-1
was 1.5%, the fracturing fluid viscosity reached a maximum value of 290 mPa·s, remained at
195.84 mPa·s 20 min before shearing, and finally showed a downward trend but remained
at approximately 100 mPa·s overall. At low concentrations, the molecular chains of ZJL-1
tend to associate intramolecularly to form separate molecular micelles. The increase in
hydrodynamic radius is small, so the increase in viscosity is low. As the concentration in-
creases, intermolecular association begins. The hydrodynamic radius of the polymer increases
rapidly, and when the concentration exceeds a certain level, the intermolecular association of
ZJL-1 dominates, which promotes the formation of the polymer network structure, and the
hydrodynamic radius increases significantly, resulting in a rapid increase in viscosity; at
the same time, because this weak association is a dynamic equilibrium state of continuous
formation and destruction, at high shear rates, the weak association structure is largely
destroyed, and the viscosity of the polymer decreases; after the shear rate decreases, the
destroyed weak association The cooperation gradually recovered and the viscosity of the
polymer increased [47]. When the fracturing fluid was sheared at different concentrations,
the viscosity was maintained above 70 mPa·s, so the fracturing fluid exhibited good tem-
perature resistance and shear resistance and meets the sand-carrying capacity requirement
at this temperature.
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Figure 10. Shear resistance tests of the ZJL-1 fracturing fluid.

3.6. Gel Breaking Properties

The gel breaking time was 30 min, and the gel breaker exhibited a milky white color
without suspended solid matter. The supernatant of the gel breaker was taken for testing.
The viscosity of the gel breaker was determined at 90 ◦C as 1.7 mPa·s, the surface tension
of the gel breaker was 22.7 mN/m, and the interfacial tension between the gel breaker and
dehydrated kerosene was 1.06 mN/m. After gel breaking, the fracturing fluid exhibited
low viscosity, surface tension, and interfacial tension, which favored rapid and thorough
flowback after construction [48].

3.7. Frictional Drag Properties

As shown in Figure 11 for indoor study conditions, the drag reduction efficiency of
the ZJL-1 fracturing fluid system increased gradually with increasing flow rate and added
thickener concentration. When the thickener concentration was 0.5% and the flow rate
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was 12.0 m3/min, the drag reduction efficiency of the fracturing fluid system reached
72%. The trends for changes in drag reduction efficiency shown in the figure indicate that
the ZJL-1 fracturing fluid system meets the requirement for low frictional drag in field
construction and is an excellent drag-reduction and thickening fracturing fluid system.
Research has shown that a simple polymer long-chain structure is easy to break under
high shear and cannot achieve a long-lasting lowering effect, so thickening agent has side
groups introduced. The molecular chain forms a spiral structure that can be fully extended
in water and has a certain elasticity, and its solutions form elastic bottom layers in the
pipeline to lower the resistance.
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3.8. Sand Suspension Properties

The falling times and settling speeds were determined at 90 ◦C and 15 MPa with a prop-
pant settling test device for the single-particle proppant, the proppant with a sand ratio of
20% in the ZJL-1 fracturing fluid, and conventional guar fracturing fluid. Figures 12 and 13
show that in the test done at 90 ◦C, increases in the mass fraction of thickener caused the
sand settling speed for the single-particle ceramsite in the ZJL-1 fracturing fluid to decrease
gradually from 0.082 mm/s to 0.056 mm/s, which was only approximately half the rate
seen for conventional guar fracturing fluid. However, the single-particle proppant only
indirectly reflects the sand-carrying performance of the fracturing fluid. The sand-carrying
time test results for the fracturing fluid containing a 20% sand ratio showed that the settling
speed gradually decreased from 0.071 mm/s to 0.031 mm/s with increases in the mass frac-
tion of thickener, which was significantly lower than that of guanidine gel fracturing fluid;
therefore, the self-crosslinked emulsion-type fracturing fluid exhibited good sand-carrying
performance. During practical application, the sand-carrying fluid flows in the wellbore
and fracture, and the settling speed of the proppant is lower than that suggested by static
sand-carrying experimental data because it is subjected to a strong shearing effect.
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Figure 12. Relationships between the ZJL-1 fracturing fluid concentration and sedimentation rate
and viscosity.
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3.9. Evaluation of Core Damage

Calculation performed with the experimental results yielded permeabilities and core
damage ratios, as shown in Table 3. According to the industry standard SY/T 5358-2010
“Formation damage evaluation by flow test”, the extent of core damage degree caused
by the ZJL-1 fracturing fluid was low, with a mean damage ratio of 14.055%, and the
mean damage ratio of conventional guar fracturing fluid is 33.075%, indicating that this
fracturing fluid can reduce the damage done to reservoirs and meet the field construction
requirement.
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Table 3. Core damage properties of the ZJL-1 fracturing fluid.

Fracturing Fluid
System

Temperature
(°C)

Pressure
(MPa)

Injection
Quantity (%)

Permeability
K1 (mD)

Permeability
K2 (mD)

Core Damage
Ratio Dd (%)

Mean
Dd (%)

1.5 wt% ZJL-1
fracturing fluid

20 8 0.5 0.382 0.331 13.350

14.055

20 8 1.0 0.388 0.329 15.206

20 8 1.5 0.386 0.335 13.212

40 15 0.5 0.389 0.346 11.053

40 15 1.0 0.383 0.323 15.665

40 15 1.5 0.385 0.324 15.844

1.5 wt%
Conventional guar

fracturing fluid

20 8 0.5 0.385 0.509 32.43

33.075

20 8 1.0 0.385 0.510 32.56

20 8 1.5 0.382 0.508 33.17

40 15 0.5 0.381 0.508 33.54

40 15 1.0 0.388 0.519 33.80

40 15 1.5 0.384 0.510 32.95

4. Field Application
4.1. Basic Situations of the Experimental Well

The fracturing target layer in Well XX-Xie 1 has a burial depth of 3446 m, a porosity
range of 7.19–21.84%, and a permeability range of 0.03–50 mD with an average of 2.4 mD.
It is dominated by fine sandstone, has a clay mineral content of 14.2%, is characterized
by low porosity and low permeability overall, and is a reservoir with moderate to strong
water sensitivity. The flowback rate after conventional fracturing is 50–60%, so the postfrac-
turing effect is not satisfactory. To reduce the extent of reservoir damage, quasi-dry CO2
fracturing technology was used with this well. ZJL-1, hydrophobic long-chain ester-based
thickener, proppant, gel breaker, etc., were added to clean water to form the water-based
system with high viscosity and high sand ratio (the proportion of water-based fracturing
fluid was 30%), which was blended with liquid CO2 (proportion of 70%). The designed
total construction displacement was 6.1–7.3 m3/min, the liquid CO2 injection displace-
ment was 4.3–5.2 m3/min, the ZJL-4 fracturing fluid system injection displacement was
1.8–2.1 m3/min, and the selected proppant was 40–70 mesh ceramsite.

4.2. Construction Process and Effect Analysis

In July 2020, quasi-dry CO2 fracturing construction was carried out smoothly at S
Oilfield Well XX-Xie 1. The process flow was divided into two parts: one part involved
pressurizing liquid CO2 and pumping it to the wellhead, and the other part involved
blending clean water, ZJL-1, a hydrophobic long-chain ester-based thickener, proppant
and gel breaker with a fracturing blender truck to form the proppant mortar with high
viscoelasticity, which was pumped to the wellhead. These two pumped liquids converged
at the tee of the wellhead, formed a mixed liquid phase with sufficient viscosity and
structure under turbulent conditions to carry out fracturing construction with integrated
drag reduction and sand carrying. In this construction, the amount of liquid CO2 fracturing
fluid consumed was 350 m3 in total, the amount of ZJL-1 fracturing fluid consumed was
150 m3, the amount of sand added was 40 m3, the construction pressure was 25–60 MPa, the
fracturing pressure was 47.5 Mpa, the liquid CO2 fracturing fluid injection displacement
was 4.5 m3/min, the ZJL-1 fracturing fluid injection displacement was 2.0 m3/min, the shut-
in pressure was 29 Mpa, the mean sand ratio was 18%, and the maximum sand ratio was
25%. The actual construction parameters and the design parameters were relatively highly
matched, and the fracturing construction parameters and construction curves are shown in
Figure 14. After the fracturing measurements were taken, the daily fluid production was
determined to be 16.5 m3, the daily oil production was 10.2 m3, the daily gas production
was 2.5 × 104 m3, the flowback period was 10 days, and the flowback rate was 120%.
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The field application showed that the production rate of this well was increased with this
fracturing mode as compared with the use of the previous fracturing mode. The daily oil
production per single well doubled, and the daily gas production increased by a factor of
6.5 with the evident oil production increase.
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5. Conclusions

In this study, we developed a self-crosslinking emulsion-type ZJL-1 fracturing fluid
for quasi-dry CO2 fracturing, which formed a strong spatial network structure involving
ionic bonds, hydrogen bonds, van der Waals forces, and hydrophobic associations, so
self-crosslinking was enhanced without the need for additional crosslinkers.

The heat loss rate of the ZJL-1 fracturing fluid was less than 10% at 200 ◦C, and it
showed good thermal stability and obvious viscoelasticity. After shearing for 2 hours at
160 ◦C with a shear rate of 170 s−1, the viscosity of the ZJL-1 fracturing fluid was still
higher than 70 mPa s, indicating good shear resistance. The drag reduction rate reached
70%, indicating good drag reduction performance. Compared with the conventional guar
fracturing fluid, the ZJL-1 fracturing fluid showed better sand-carrying performance and
caused less damage to the core permeability. Field tests showed that upon optimizing the
mixing ratio for the liquid CO2 fracturing fluid and ZJL-1 fracturing fluid, the increases
in gas and oil production were obvious. This was beneficial for environmental protection
and reservoir protection and met the requirements of integrated application for resistance
reduction and sand carrying, and it has broad application prospects.
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Appendix A

Table A1. Typical rock/formation and fluid properties of shale oil reservoirs.

Reservoir Formation, Rock and Fluid Properties Typical Range (Collected from Literature)

Permeability 1E-5-0.1 mD
Porosity 2–18%
Reservoir temperature 200–240◦F
Formation pressure 3000–8000 psi
Saturation pressure 2500–3500 psi
Ney pay thickness 8–2600 ft
Formation depth 2000–14,000 ft
Drive mechanism Poor sweep and low-pressure connectivity
Initial water saturation 25–50%
Pressure gradient 0.42–0.7 psi/ft
Rock type Mixed-silt, limestone, sand & shale
Thermal maturity (Ro) 0.6–1.8%
Wettability Mixed to oil-wet
Contact angle 80◦–145◦vvv
Oil–water interfacial tension (IFT) 17–34 mN/m
Natural fracture intensity 0–32 per ft
Clay content 7–30%
Total organic content 0.1–12%
Bulk density 2.3–2.5 g/cm3

Grain density 2.5–2.7 g/cm3

Rock grain size Below 62.5 µm
Average pore radius 0.01–0.03 µm
Oil density 38–42 API
Oil viscosity Below 4.2 cP
Gas oil ratio (GOR) 500–1800 scf/stb
Oil polarity More towards paraffinic
Fluid pH Acidic
Total acid number 0.02–0.36 mg KOH/g
Total base number 0.12–1.16 mg KOH/g
Brine specific gravity Heavy
Brine salinity High
Brine total dissolved solids (TDS) 228,500–285,000

Table A2. Performance comparison table of fracturing fluid systems on the market and the ZJL-1
fracturing fluid system.

Fracturing Fluid System Producer
Drag

Reduction
Rate/%

Viscosity of Gel
Breaking

Liquid/mPa.s

Temperature
Resistance,

Shear
Resistance

Reservoir
Damage
Rate/%

FR1-1 fracturing fluid system
Shandong Ruixing

Petroleum Technology
Service Co., Ltd.

40 3.7~4.8 150 ◦C, 170 s−1

for 2 h, 40 mPa.s
30

JNBY fracturing fluid system Jinan Beyate Chemical
Co., Ltd. 40 3.5 120 ◦C, 170 s−1

for 2 h, 50 mPa.s
26

Guar gum fracturing fluid system Henan Yuanchun
Chemical Co., Ltd. 60 <5 45 ◦C, 170 s−1 for

1.5 h, 100 mPa.s
18

Guar gum fracturing fluid system Hubei Dongsao Chemical
Technology Co., Ltd. 60 <5 90 ◦C, 170 s−1 for

2 h, 70 mPa.s
25

Environmental protection emulsion
fracturing fluid system

Henan Tianxiang New
Material Co., Ltd. 55 4 70 ◦C, 170 s−1 for

2 h, 80 mPa.s
15
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Table A2. Cont.

Fracturing Fluid System Producer
Drag

Reduction
Rate/%

Viscosity of Gel
Breaking

Liquid/mPa.s

Temperature
Resistance,

Shear
Resistance

Reservoir
Damage
Rate/%

BS-1A fracturing fluid system Zhejiang Fenghong New
Material Co., Ltd. 65 <5 40 ◦C, 170 s−1 for

2 h, 100 mPa.s
25

ZL-1 fracturing fluid system Lab homemade 72 1.7 160 ◦C, 170 s−1

for 2 h, 100 mPa.s
14
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