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Abstract: Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for the
effective activation of naïve T cells. DCs encounter numerous microenvironments with different
biophysical properties, such as stiffness and viscoelasticity. Considering the emerging importance
of mechanical cues for DC function, it is essential to understand the impacts of these cues on DC
function in a physiological or pathological context. Engineered hydrogels have gained interest for the
exploration of the impacts of biophysical matrix cues on DC functions, owing to their extracellular-
matrix-mimetic properties, such as high water content, a sponge-like pore structure, and tunable
mechanical properties. In this review, the introduction of gelation mechanisms of hydrogels is
first summarized. Then, recent advances in the substantial effects of developing hydrogels on DC
function are highlighted, and the potential molecular mechanisms are subsequently discussed. Finally,
persisting questions and future perspectives are presented.

Keywords: dendritic cells; hydrogels; mechanical cues; immune function

1. Introduction

As the most potent antigen-presenting cells, dendritic cells (DCs) play important
roles in the initiation and regulation of innate and adaptive immune responses [1,2]. For
example, tumor-antigen-loaded DCs can activate tumor-specific cytotoxic T lymphocytes,
followed by the initiation of anti-tumor immune responses. Unfortunately, clinical trials
have shown relatively poor treatment effects [3–5]. Therefore, it is crucial to understand
how the biophysical and biochemical factors impact DC functions. Our previous studies
demonstrated that many suppressive cytokines secreted in the tumor microenvironment
impact the motility and immune functions of DCs [6], such as transforming growth factor-β1
(TGF-β1) [7,8], interleukin-10 (IL-10) [9], and vascular endothelial growth factor (VEGF) [10].
Apart from biochemical cues, increasing evidence has demonstrated that biophysical cues
also have crucial impacts on DC function, including confinement [11–14], topology [15],
porosity [16], stiffness [11,17,18], and viscoelasticity [19]. As such, engineered hydrogels
are emerging as a powerful platform to spatiotemporally manipulate biophysical cues
in vitro owing to their extracellular matrix (ECM) mimetic performance, such as high water
content, a sponge-like pore structure, and tunable mechanical performance. Additionally,
diverse gelation mechanisms have evolved to endow engineered hydrogels with versatile
and tunable performance [20,21], such as covalent, noncovalent, and dynamic covalent
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interactions. Based on these beneficial features, various studies have reported the design
of ex vivo models to recapitulate the three-dimensional mechanical microenvironment
that DCs sense in vivo. In this review, we aim to highlight the most recent engineering
hydrogel developments and how their physical factors affect DC function. The underlying
mechanobiology mechanisms are also subsequently discussed.

2. Gelation Mechanisms for Producing Hydrogels

As shown in Figure 1, many gelation mechanisms have been used for the design
and fabrication of various hydrogels, which can be broadly categorized into covalent
interactions [22], noncovalent interactions [23], and dynamic covalent interactions [24,25].
In this section, we will briefly review the common gelation mechanisms that can be used as
platforms for exploring DC mechano-sensing or migration.
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Figure 1. Gelation mechanisms for producing hydrogels.

2.1. Hydrogels with Covalent Interactions

Covalently crosslinked hydrogels can be developed through chain-growth polymer-
ization [26,27] or step-growth reactions [22]. Chain-growth polymerizations can be ini-
tiated with redox initiation or photoinitiation, which subsequently induces the free rad-
ical polymerization of reactive groups for rapid hydrogel formation, such as acrylates,
meth-acrylates, and acrylamides [28]. Alternatively, step-growth polymerizations enable
hydrogel systems in which polymer precursors with different functional groups react by
direct mixing [29]. Various hydrogel systems have been developed for two-dimensional
(2D) or three-dimensional (3D) cultures of DCs, including polydimethylsiloxane hydro-
gels (PDMS) [17,30], polyacrylamide (PAM) hydrogels [18], photo-crosslinked polymer
hydrogels [31], and thrombin-crosslinked fibrin hydrogels [13].

PDMS-based elastomers are a promising in vitro cell culture platform for studying
cellular mechano-sensing owing to their excellent features, such as mechanical elasticity,
ease of fabrication, and acceptable biocompatibility [32]. However, the extreme chemical
inertness of PDMS limits its applicability. To resolve this issue, various approaches have
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been proposed for PDMS surface functionalization, such as coating the PDMS surface
with a hydrogel [33] or covalently linked proteins [15]. As shown in Figure 2, the PDMS
hydrogels were formed using part A and part B components, and the stiffness was increased
from 2 to 50 kPa by fixing the ratio of part A part to B components to 1.2:0.3, respectively.
Subsequently, the PDMS hydrogels were coated with fibronectin for exploring the impacts
of substrate mechanical stiffness on DC differentiation and maturation, metabolism, quality,
and function [17,30]. In particular, PDMS can be used as a building block for developing
complex environments based on microfluidics, such as micrometric confining channels [15].
Matthieu et al. reported that DCs in complex environments possess a mechanism to
pass through micrometric PDMS microchannel constrictions with different restricted sizes,
in which the PDMS microchannels were functionalized with fibronectin [15]. Although
DC responses to PDMS substrates with patterned microchannels have been extensively
studied, the processing parameters for PDMS substrates are usually incompatible with
DC encapsulation.
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Figure 2. PDMS hydrogel-coated tissue culture plates with different substrate stiffnesses for exploring
the impact on DC function (reprinted/adapted with permission from Ref. [30], 2022, Lee et al.).

PAM is a polymer (–CH2CHCONH2–) formed by acrylamide subunits. PAM hydrogels
are usually obtained through free radical polymerization of acrylamide and N,N-methylene-
bis-acrylamide (BIS) bifunctional monomers. PAM hydrogels are a particularly popular plat-
form for cellular mechano-sensing studies owing to their hydrophilic and semipermeable
performance [34,35]. Most importantly, the stiffness of PAM hydrogels can be tuned within
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a wide range, from 0.3 to 300 kPa, by changing the concentration of acrylamide monomer
or BIS, which can well provide different in vivo matrix stiffnesses [36]. Nevertheless, PAM
hydrogels are biologically inert, lacking cell interaction sites [18]. The surface functionaliza-
tion of PAM substrates with the ECM has been suggested as a potential strategy to achieve
a bioactive surface. Covalently immobilized protein is a particularly popular approach
for patterning the ECM on PAM substrates [37,38]. As shown in Figure 3, Janmey et al.
reported how the combined substrate stiffness and fluid shear stress impacted endothelial
cell behavior. PAM hydrogel substrates with a wide range of stiffness from 100 Pa to 30 kPa
were developed by free radical polymerization. After polymerization, the PAM hydrogel
substrates were treated with sulfosuccinimidyl 6-(4′-azido-2′-nitrophenylamino)hexanoate
(sulfo-SANPAH) and UV-treated, and the hydrogel substrates were then incubated with
fibronectin [37]. In 2017, PAM hydrogel substrates with stiffnesses of 2, 12, and 50 kPa
were developed by random radical polymerization of acrylamide and BIS monomers, and
then human fibronectin was immobilized on the PAM hydrogel substrate for exploring the
influences of substrate stiffness on the phenotype and function of DCs [18]. Additionally,
most reported PAM stiffness-regulated DC functions were determined in 2D cultures [39],
which might not be able to accurately represent the complicated microenvironments of
peripheral tissues and lymphoid organs.
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Figure 3. Fibronectin-functionalized PAM hydrogels with varied substrate stiffnesses for cellu-
lar responses. Device manufacture and preparation: The PDMS step gasket is developed and
then adhered to a coverslip to make a rectangular-shaped PAM hydrogel coated with fibronectin.
(Reprinted/adapted with permission from Ref. [37], Galie et al.).

Although biophysical studies utilizing PAM hydrogels with fixed stiffnesses have
been extensive, cells or tissues constantly remodel their environment and respond to
dynamic microenvironments [40]. Incorporating photosensitive linkers into the hydrogel
network is one of the more popular methods for simulating this phenomenon [41]. For
example, Li et al. developed a photodegradable PAM hydrogel in which the stiffness was
dynamically controlled with exposure to ultraviolet light [42]. As shown in Figure 4a,
the photodegradable PAM hydrogel was formed by free radical polymerization between
acrylamide and o-NB-bis-acrylate linkers, and then collagen type I was conjugated to
the photodegradable PAM hydrogel surface by covalent coupling. When the hydrogels
were exposed to ultraviolet light, the o-NB crosslinks disconnected, resulting in decreased
stiffness. The formed photodegradable PAM hydrogel can be used to explore more complex
cellular behaviors (Figure 4b).
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Figure 4. Photodegradable polyacrylamide gels for dynamic control of cell functions. (a) Structure
of collagen-functionalized photodegradable polyacrylamide hydrogels for dynamic control of cell
functions. (b) Photodegradable hydrogels were first fabricated and functionalized with an ECM
protein. Next, a subset of the gels was softened prior to cell seeding (“pre-degraded”). Then, 24 h
after cell seeding, a subset of the non-softened gels cultured with cells were softened in situ (“in situ
degradation”), and the remaining gels were left unsoftened (“non-degraded”). (Reprinted/adapted
with permission from Ref. [42], 2021, Norris et al.).

Photo-crosslinking is another well-explored approach for developing covalently crosslinked
hydrogels. Photo-crosslinked hydrogels have drawn much attention in in vitro cell culture plat-
forms, as they enable rapid gelation under physiological conditions [26]. The gelatinization
can readily occur through exposure of a photosensitive system to ultraviolet or visible light.
Additionally, the mechanical performance can be adjusted through simply changing the light
intensity, exposure time, concentration of the modified polymer, or degree of graft modifica-
tion [43]. Many naturally derived biopolymers have been utilized to develop photo-crosslinked
hydrogels, such as alginate [20], hyaluronic acid [44], and gelatin [45,46]. Generally, normal
bone marrow-derived dendritic cells (BMDCs) cultured on conventional plastic dishes are
readily susceptible to activation because the plastic dishes have an elastic modulus that does not
actually match the physiological microenvironment in vivo. To explore how to better maintain
the BMDC immunophenotype in vitro, Xiang et al. reported a novel in vitro BMDC culturing
platform based on a photo-crosslinked gelatin hydrogel substrate that simulated an ECM-like
microenvironment and subsequently reduced BMDC activation during culturing (Figure 5a–c).
BMDCs cultured in the optimized gelatin hydrogel substrate displayed parallel phenotypes
and functions to spleen DCs in vivo and were capable of facilitating T cell stimulation after
lipopolysaccharide (LPS) activation [31]. The reported photo-crosslinked gelatin hydrogel sub-
strate has the potential for exploring the immune response mechanism of DCs in vitro and
subsequently improving the development of DC vaccines.
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Figure 5. Photocurable hydrogel substrate for BMDC culture. (a) Synthetic equation of photo-
crosslinked gelatin hydrogel substrate. (b) Compression modulus of photo-crosslinked gelatin
hydrogel substrate with different concentrations. (c) BMDCs were cultured with GM-CSF and IL-4
from C57 mice on photo-crosslinked gelatin hydrogel substrate with different compression modulus.
(Reprinted/adapted with permission from Ref. [31], 2022, Deng et al.).

In addition to photo-crosslinked naturally derived biopolymer hydrogels, photo-
crosslinked synthetic polymer hydrogels also provide cell culture platforms with tunable
mechanical performances or distinct patterns for exploring the response of cells to me-
chanical cues [47]. For example, poly(ethylene glycol) diacrylate (PEGDA) is a hydrophilic
and biocompatible polymer that forms a hydrogel network through photopolymerization,
in which crosslinking occurs under physiological conditions, and can be used to explore
cellular responses to biophysical cues in both two and three dimensions [48]. Addition-
ally, the mechanical performance of PEGDA hydrogels can be regulated by changing the
concentration or molecular weight of PEGDA, and an increased elastic modulus can be
achieved with a decrease in molecular weight or an increase in polymer concentration [49].
Nevertheless, PEGDA is practically the same as PDMS and PAM hydrogels in that none
of these replicate native ECM-like architectures and composition; however, this can be
resolved by introducing proteins or polypeptides into the hydrogel network using physical
or chemical strategies [50,51].

Fibrin derived from the polymerization of fibrinogen is a viscoelastic biomacro-
molecule with both elastic and viscous performance, which is attributable to its reversible
mechanical deformation and irreversible deformation, respectively [52]. In the formation
of a fibrin hydrogel network, fibrinogen transforms itself into fibrin by the action of throm-
bin [53]. Fibrin hydrogels crosslinked by thrombin are an excellent platform for exploring



Gels 2023, 9, 116 7 of 27

effects on DCs owing to thrombin’s biocompatibility and biodegradability. Considering
the importance of the interaction between implanted bone plates and host immune system,
as shown in Figure 6a–c, our group developed a thrombin-crosslinked fibrin hydrogel for
replicating the interfacial fibrin deposition reaction between implanted bone plates and
adjacent tissue. The thrombin-crosslinked fibrin hydrogel was developed for exploring the
influences of dimensionality on the shape deformation, cytoskeleton reorganization, and
mechanical performance of DCs [13].
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respectively. (Reprinted/adapted with permission from Ref. [13], 2022, Hu et al.).

2.2. Hydrogels with Noncovalent Interactions

Many noncovalent linkages motifs have been reported for hydrogel formation [54],
including hydrogen-bond interactions, electrostatic interactions, hydrophobic interactions,
and host–guest interactions.

2.2.1. Hydrogen-Bond Interactions

Hydrogen bonds are weak diatomic interactions that play an important role in natu-
ral macromolecular systems, commonly involving a hydrogen atom and electronegative
atom, such as oxygen or nitrogen. Specific protein–protein interactions and polysaccharide–
polysaccharide interactions are among the most well-studied platforms for cell–matrix
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interactions owing to their biocompatibility, low immunogenicity, and resemblance to parts
of the natural ECM [55], such as collagen and agarose. As shown in Figure 7a, collagen
is the most abundant structural protein in the ECM; thus, hydrogels based on collagen
are among the most well-studied platforms for cell–matrix interactions [56,57]. Rapid pH
changes can drive collagen self-assembly to develop hydrogen bond-crosslinked hydro-
gels [58]. Additionally, the topological and mechanical properties of collagen networks can
be adjusted with the collagen concentration (Figure 7b,c) [12]. The formed collagen hydro-
gel can provide a powerful platform for DC functions [14,57,59], such as three-dimensional
migration and mechanosensory mechanisms (Figure 7d).
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Figure 7. Collagen hydrogel matrices for DC culture. (a) Collagen hydrogels with different fibrillar
microarchitectures (reprinted/adapted with permission from Ref. [12], 2020, Sapudom et al.) (b) Topo-
logical and (c) mechanical properties of collagen matrices with various concentrations (* significance
level of p < 0.05). (d) Schematic diagram of a collagen hydrogel for DC culturing (Reprinted/adapted
with permission from Ref. [60], 2017, Xie et al.).

Agarose is a neutral thermo-responsive polysaccharide that can dissolve in water
with heat treatment and rapidly gelatinize during a temperature drop, which is mainly
attributable to the structural change between a random-coil configuration and double
helices with multiple chain aggregation [61]. As shown in Figure 8a–c, agarose can be
developed as a hydrogel confiner that reveals the effects of mechanical loads on DC
migration within a confined microenvironment, in which different stiffnesses are realized by
changing the agarose concentrations [11,62,63]. For example, as the agarose concentrations
increased from 0.5 w/v% to 1.5 w/v%, the stiffnesses increased from 1.2 to 18 kPa, which
mimicked the wide range of stiffness of tissues in the human body [11]. The formed agarose
hydrogel confiner is different from the microfabricated PDMS, as described in the previous
section, and DCs fully confined within the agarose hydrogel with different stiffnesses were
compelled to adapt their cellular morphology [63].
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Figure 8. Agarose hydrogel with varied mechanical stiffness for DC culture. (a) Agarose hydrogel
based on hydrogen-bond interactions. (b) The Young’s moduli of agarose hydrogels with differ-
ent concentrations. (c) Agarose hydrogels with various mechanical stiffnesses modulated DCs’
morphology. (Reprinted/adapted with permission from Ref. [63], 2021, Yoon-Kyoung Cho et al.).

2.2.2. Electrostatic Interactions

Polyelectrolytes derived from natural or synthetic polymers with fixed opposite
charges can form electrostatically crosslinked hydrogels [64]. For example, electrostatic
interactions favor the formation of alginate hydrogel systems, in which the alginate is
readily bound with a divalent calcium ion. Importantly, weak ionic linkages lead to vis-
coelastic hydrogels that accurately capture extracellular matrix dynamics [65]. In particular,
the viscoelasticity is easily regulated through changing different parameters, such as the
density of divalent cations, alginate molecular weight, or alginate concentration [66]. Dif-
ferentiation of monocytes encapsulated within a dynamic 3D microenvironment has also
been reported. For example, Mooney et al. reported an interpenetrating network that was
created from alginate and collagen, in which the stiffness of the hydrogel was tuned by
cooperative binding of divalent cations. Additionally, permanently crosslinked alginate
networks with click-chemistry groups can endow the hydrogels with more elastic behavior
without changing the gel nanostructure (Figure 9a–c). Human monocytes encapsulated in
static or elastic hydrogels system displayed a proinflammatory polarization phenotype and
differentiation toward DCs, which was different from monocytes cultured in viscoelastic
hydrogel [19].
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Figure 9. Alginate and collagen interpenetrating network hydrogel for regulating monocyte dif-
ferentiation in fibrotic niches. (a) In myeloproliferative neoplasms, abnormal haematopoiesis is
associated with inflammation and substantial ECM remodeling. (b) Bone marrow cells sense the
stiffness and viscoelasticity of the matrix. (c) Alginate was chemically modified with norbornene (Nb)
and tetrazine (Tz), which covalently reinforce existing ionic (Ca2+) hydrogel crosslinks to modulate
viscous performance independently of stiffness. (Reprinted/adapted with permission from Ref. [19],
2022, Vining et al.).

2.2.3. Hydrophobic Interactions

The hydrophobic-interaction-based hydrogels that are formed through copolymerizing
hydrophobic monomers or a grafting approach usually rely on microphase separation and
aggregation of hydrophobic domains. Since the formed hydrogel systems are stable and
rarely influenced by ionic strength or pH, the hydrophobic-interaction-based hydrogels
might be potential candidates for better engineering of mechanical microenvironments
in vitro. Additionally, their mechanical performances can be readily adjusted by changing
the density of hydrophobic interactions. As a typical example of hydrophobic-interaction-
based hydrogels, temperature-responsive hydrogels can freely flow at low temperatures
and transform into stable hydrogels at body temperature [67]. For instance, fibronectin-
immobilized temperature-responsive poly(N-isopropylacrylamide) hydrogels were used as
a powerful platform for analyzing mechanical signal transduction of encapsulated cells [68].

2.2.4. Host–Guest Interactions

Host–guest supramolecular hydrogels are based on the interaction of one or more
guest molecules that are accommodated by a cavitand host, such as cyclodextrins [69,70]
and cucurbituril [71]. Bian et al. developed a gelatin host–guest hydrogel that was lo-
cally stiffened by surface-modified silica nanoparticles, in which the rigid nanostructures
provided local network rigidity and better replicated the dynamic mechanical microenvi-
ronment of the native ECM. More importantly, the obtained host–guest supramolecular
hydrogels with a heterogeneous network topology facilitated the mechanosensory cues of
the encapsulated cells [72].
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2.3. Hydrogels with Dynamic Covalent Interactions

Hydrogels that associate through reversible covalent interactions can closely replicate
the biochemical and mechanical properties of the ECM [25], and thus dynamic covalently
crosslinked hydrogels improve the fidelity of cell culture models. Specific examples of
hydrogels with dynamic covalent interactions include reversible carbon–nitrogen double-
bonds, dynamic covalent boronic esters, and Diels–Alder linkers.

2.3.1. Reversible Carbon–Nitrogen Double-Bonds

The crosslinking strategies based on condensation reactions between carbonyl groups
and nucleophiles are important approaches for developing a dynamic hydrogel platform,
in which imine, oxime, or hydrazone linkages occur under physiological conditions [73–75].
The reactions are reversible and mild because the only byproduct from the reaction is
water; thus, the carbonyl-condensation reactions are different from the traditional covalent
linkages, by which, initiators or catalyzers might introduce potential toxicity issues [76].
The Schiff-base reaction refers to the reactions between a primary amine and carbonyl
group, resulting in a carbon–nitrogen double-bond, producing an imine bond. Oximes
and hydrazones, which structurally resemble imines, can be produced through the con-
densation reactions of carbonyl groups with α-effect nucleophiles consisting of terminal
primary amine groups next to oxygen and nitrogen atoms [77,78]. Due to their reversibility
and viscoelasticity, the carbonyl condensation reactions have become an emerging and
promising method to prepare hydrogels that better recapitulate dynamic ECM mechanics,
which may be beneficial for exploring the effects of ECM mechanics on cellular behaviors or
functions [79]. For example, Chen et al. developed a circular-patterned hydrogel platform
with gradient stiffness through Schiff-base reactions between oxidized hyaluronic acid
and gelatin derivatives (Figure 10). Utilizing their unique self-healable ability resulting
from the formation of dynamic covalent bonds, the hydrogels were further spliced into
one single specimen, and then the formed hydrogel with gradient stiffnesses ranging from
1.2 to 28.9 kPa was used as an in vitro cell culture platform for studying the influences of
stiffness on stem cell adhesion, migration, and differentiation [80].
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Figure 10. Schematic illustration of the gradient circular-patterned hydrogel for regulating cell behav-
iors. To build a hydrogel model containing cell-regulating cues, hydrogels with gradient stiffnesses
are spliced into a circular pattern based on their self-healing performance. (Reprinted/adapted with
permission from Ref. [80], 2022, Wang et al.).
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Beyond that 2D culture, the carbonyl-condensation reactions can also endow hydro-
gels with the ability to encapsulate cells [25] or organoids [77]. For example, the matrix
adaptability and viscoelasticity displayed in hydrazone-crosslinked (covalent) hydrogels fa-
vor the biosynthesis of embedded chondrocytes [65,81]. More recently, Baker et al. reported
that the stiffness and stress relaxation of an oxime-crosslinked sodium-alginate hydrogel im-
pacted the renal phenotype and caused undesired fibrotic markers. The oxime-crosslinked
hydrogel was developed by mixing the oxidized alginate and a small bifunctional oxime
crosslinker, and the stiffness increased from 0.1 to 20 kPa by increasing the concentration of
oxidized alginate or oxime crosslinker. The characteristic stress relaxation times changed
from 1.6 × 104 to 3.9 × 104 s (Figure 11a–c). A renal organoid encapsulated within a stiff
hydrogel displayed signs of an epithelial–mesenchymal transition. Conversely, encapsu-
lation in a stress-relaxing hydrogel platform induced all major renal segments and less
fibrosis [82].
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Figure 11. Schematic of the oxime-crosslinked hydrogel system with varying stiffness. (a) Schematic
diagram of the different hydrogel systems based on oxidized alginate cross-linked with oxime. The
I–III plot represents the increase in stiffness of the hydrogel as the cross-linking density increases.
(b) The shear moduli of different hydrogel compositions (**** significance level of p < 0.0001). (c) Stress
relaxation of the hydrogels. (Reprinted/adapted with permission from Ref. [82], 2022, Ruiter et al.).

2.3.2. Dynamic Covalent Boronic Esters

Boronic-ester-crosslinked hydrogels have emerged as an effective approach for ex-
ploring cell–matrix interactions, in which a cyclic ester is formed through the reversible
condensation reaction between diols and boronic acids under physiological conditions and
is free from any catalyst [83]. Particularly, different static or dynamic mechanical prop-
erties can also be achieved by using simple neighboring group effects [84,85]. Therefore,
boronic-ester-crosslinked hydrogels have become a promising approach to developing a
fast relaxation hydrogel platform for studying cellular mechano-transduction. Additionally,
the reversibility of boronic-ester-crosslinked hydrogels allow for 3D cell encapsulation [86].
Anseth et al. developed boronic-ester-crosslinked hydrogels by rationally selecting boronic
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acid variants and diols, and a tunable viscoelastic rheological performance was achieved by
changing the structure of the boronic acid (Figure 12a–d). In in vitro 3D cell culture models,
the fast relaxation matrix mechanics favored cell–matrix interactions [87]. In addition to tis-
sue regeneration, viscoelasticity also plays an important role in fibrotic disease progression.
A boronic-ester-crosslinked hydrogel system with the highest levels of stress relaxation
activated valvular interstitial cells, in which the characteristic myofibroblast markers, such
as collagen 1a1 and α-smooth muscle actin, were prominently upregulated [88].
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Figure 12. Design of covalent adaptable networks based on dynamic boronate bonds for cell cul-
ture. (a) Schematic of covalent, adaptable networks based on boronic-ester-crosslinked hydrogels
(b) Frequency-sweep spectrum of boronate hydrogels. (c) Comparisons of the high-frequency plateau
moduli (* significance level of p < 0.05) and (d) the network relaxation times of different hydrogel
(**** significance level of p < 0.0001). (Reprinted/adapted with permission from Ref. [87], 2018,
Tang et al.).

2.3.3. Diels–Alder Reaction

A Diels–Alder reaction is a [4 + 2] cycloaddition reaction in which a cyclohexene adduct
is formed between conjugated diene and a substituted alkyne or alkene [89,90]. Conse-
quently, Diels–Alder linkers have been used to develop in vitro cell culture platforms [91,92].
For example, Shoichet et al. developed a hyaluronic acid (HA)-based hydrogel with an
independently tunable stiffness and peptide composition for recapitulating the tumor mi-
croenvironment [93], in which the mechanical and biochemical performances were adjusted
by oxime ligation and Diels–Alder chemistry, respectively. Aldehyde-group-modified HA
was first synthesized, and then the methyl furan motifs were subsequently immobilized.
Oxime ligation can be formed between the HA-aldehyde groups and bis(oxyamine)-PEG,
whereas maleimide-functionalized peptides can react with HA-methylfuran groups based
on a Diels–Alder reaction. The optimized hydrogel facilitated the formation of breast cancer
spheroids that epitomized drug-resistant tumors (Figure 13a–c).
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Figure 13. Hyaluronan-based hydrogels with oxime and Diels−Alder chemistry to culture breast can-
cer spheroids. (a) Schematic of preparation of hyaluronic-acid-based hydrogels. (b) Tunable mechani-
cal performance of hyaluronic acid-based hydrogels (** significance level of p < 0.01, n.s. = not signifi-
cant). (c) Hyaluronic-acid-based hydrogels for culturing breast cancer spheroids (Reprinted/adapted
with permission from Ref. [93], 2017, Baker et al.).

3. Engineering Hydrogels Control DC Function

DCs work as sentinel cells in the immune system, patrolling the blood and peripheral
tissue to detect numerous danger signals, such as foreign antigens or pathogens. In
surveying tissues, DCs travel long distances through the body, encountering different
biophysical cues throughout their life cycle, such as stiffnesses and topology [94]. The
stiffness of most soft tissues ranges between 2 and 5 kPa. Conversely, muscles and bones
display higher physiological stiffness ranging from 10 to 20 GPa [95,96]. The stiffness of
healthy tissues can change under pathological conditions. Accumulating evidence has
demonstrated that immune-related pathological conditions such as fibrosis and tumors are
associated with tissue stiffening [97]. Tumor initiation and progression generate complex
structural changes in the ECM, which can lead to differences in local ECM stiffness, a feature
that distinguishes them from normal physiological stiffness (Figure 14a). For instance,
healthy breast tissues display a physiological stiffness of about 400 Pa, whereas fibrotic
breast tissues can reach a stiffness upwards of 20 kPa in rare cases (Figure 14b) [98–100].
Another typical example is lymph nodes that stiffen in an inflammatory microenvironment,
which correlates directly with abnormal ECM remodeling [101]. Thus, biophysical cues
generated from different ECM mechanical and topographical characteristics might affect
DC function. Given the emerging importance of biophysical cues for DC behavior, it is
essential to understand their impact on DC function in both physiological and pathological
contexts. Engineering hydrogels with tunable mechanical performance or topology holds
great promise for matching the different ECM microenvironments. In this section, recent
advances in developing hydrogel platforms with tunable mechanical performance or
topology for controlling DC function are highlighted (Table 1), including the morphology,
migration, immunophenotype, and immune functions of the DCs.
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Figure 14. ECM remodeling in a primary tumor. (a) The matrix stiffness results from crosslink-
ing of the ECM in tumor progression (reprinted/adapted with permission from Ref. [97], 2020,
Winkler et al.). (b) The distribution of stiffness between the tumor invasion front and adjacent healthy
tissue (reprinted/adapted with permission from Ref. [98], 2015, Acerbi et al.).

Table 1. Summary of hydrogel types used for modulating the DC functions.

Hydrogel Gelation
Mechanisms

Reinforcing
Mechanism DC Type Cellular Response Ref.

PDMS Covalent
interactions

Covalent bond
interactions BMDCs

BMDCs cultured on plastic dishes are
susceptible to becoming activated during
cell culture. DCs cultured on a stiffened

PDMS hydrogel substrate upregulated the
expression of Piezo1, that directed the
reciprocal differentiation of TH1 and

regulatory T cells.

[17,102]

PAMs Covalent
interactions

Covalent bond
interactions

Human peripheral
blood monocyte-

derived DCs

A PAM hydrogel with tunable substrate
stiffness upregulated the CD83 expression
on mDCs and CD86 expression on imDCs.
DCs culture on PAM substrates of 2 kPa
took up 1.5–2-fold more ovalbumin in

comparison with those cultured on 12 and
50 kPa.

[18]

Photo-crosslinked
polymer

Covalent
interactions

Covalent bond
interactions BMDCs

BMDCs cultured in the optimized gelatin
hydrogel substrate displayed parallel
phenotypes and functions relative to

spleen DCs in vivo and were capable of
facilitating T cell stimulation after

lipopolysaccharide (LPS) activation.

[31]

Fibrin Covalent
interactions

Covalent bond
interactions BMDCs

DCs cultured on a 2D fibrin matrix display
an elongated morphology, whereas DCs

encapsulated in a 3D fibrin matrix spread
in several directions.

[13]
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Table 1. Cont.

Hydrogel Gelation
Mechanisms

Reinforcing
Mechanism DC Type Cellular Response Ref.

Collagen Noncovalent
interactions

Hydrogen bonds
interactions BMDCs

DCs encapsulated in a collagen
hydrogel required the actin capping

activity of the signaling adaptor
Eps8 to polarize, resulting in

elongated migratory protrusions.
DC migration was

integrin-independent in a 3D
collagen hydrogel.

[12,14,103]

Agarose Noncovalent
interactions

Hydrogen bonds
interactions BMDCs

DCs cultured in agarose gels with
different compressive force were
clearly visible as morphological

differences. DCs displayed small
actin-rich patches embedded in a
homogeneous actin cortex when

migrating in an intermediate
stiffness agarose hydrogel, and the

formed patches were scattered
across the entire cell, with peak

intensities in the cell body.

[11,63]

Alginate Noncovalent
interactions

Electrostatic
interactions Human monocytes

Human monocytes encapsulated in
static or elastic hydrogels system

displayed a proinflammatory
polarization phenotype and
differentiation toward DCs.

[19]

3.1. DC Morphology

DCs were originally identified in 1973 by a Canadian scientist named Steinman, and
eventually became known as “dendritic cells” owing to the distinctive stellate-like cy-
toplasmic protrusive morphological features during the maturation stages [104]. The
morphological changes in DC, such as the formation of veils and dendrites, are closely
associated with migration, motility, phagocytosis, and DC–T cell contacts. DC morpho-
logical changes induced by biochemical factors were reported in our previous studies,
and mainly included tumor-derived cytokines [6], such as IL-10 [9], TGF-β1 [7,8], and
VEGF [10]. In addition to biochemical cues, changes in DC morphology may depend on
biophysical cues, such as dimensionality and stiffness. As shown in Figure 15a, F-actin
is mainly located at the extreme ends of DCs and away from the nuclei in a suspension
culture. Interestingly, DCs cultured on a 2D fibrin matrix display an elongated morphology,
resulting in a predominantly bi-polarized shape, whereas DCs encapsulated in a 3D fibrin
matrix spread in several directions, resulting in a predominantly tri-polarized or stellate
spindle-shaped morphology [13]. The distinctive changes in DC morphology are related
to RhoA and CDC42 levels. In addition to the culture dimensionality, substrate stiffness
also modulates DC morphology. For example, adaptive responses of DCs cultured in
agarose gels with different compressive force levels were clearly visible as morphological
differences. As shown in Figure 15b, the height of DCs was distinctively increased at a low
mechanical load (1.2 kPa), whereas DCs were more flattened with increased mechanical
loads ranging from 8.0 to 18.1 kPa. Consequently, the collected results highlighted that
dimensionality and stiffness modulated DC morphology [11].
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Figure 15. Matrix dimensionality and stiffness regulate DC morphology. (a) Representative confocal
images of the cytoskeletons of DCs cultured on 2D and in 3D fibrin hydrogels (reprinted/adapted with
permission from Ref. [13], 2022, Hu et al.). (b) Morphological changes in DCs cultured in confining
agarose hydrogels with different stiffnesses (*** significance level of p < 0.005) (reprinted/adapted
with permission from Ref. [11], 2021, Choi et al.).

3.2. DC Migration

As the sentinels of the immune system, DCs are a heterogeneous population that
reside in both lymphoid organs and peripheral tissues, in which DCs experience distinctive
tissue microenvironments with a wide range of stiffnesses. Most importantly, effective
immune responses depend on optimized cell migration with trafficking of distinct DC
subsets across peripheral or lymphoid tissues [105,106]. Therefore, it is very important to
understand how biophysical cues modulate the intrinsic motility of DCs [107]. As shown
in Figure 16a, there are two distinct migration patterns that have been identified for DCs,
ameboid-like migration and mesenchymal migration [108]. The ameboid-like migration
is independent of cell adhesivity and usually requires porous environments without pro-
teolytic degradation or junction interactions. For example, Michael et al. utilized DCs as
a model system to understand how ameboid cells responded to microenvironments with
different degrees of confinement [63]. As shown in Figure 16b,c, the migratory behaviors of
DCs were explored by using agarose hydrogels with different stiffnesses. DCs displayed
small actin-rich patches embedded in a homogeneous actin cortex when migrating in an
intermediate stiffness agarose hydrogel, and the formed patches were scattered across
the entire cell; there were peaks in intensity in the cell bodies. The underlying molec-
ular mechanism is based on the Wiskott–Aldrich syndrome proteins that assemble into
dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches.
These patches locally push against the external load, which can be obstructing collagen
fibers or other cells, and thereby create space to facilitate forward locomotion. In 2011,
Giorgio et al. reported that DCs encapsulated in a collagen hydrogel required the actin
capping activity of the signaling adaptor Eps8 to polarize, resulting in elongated migratory
protrusions [103]. As shown in Figure 16d, Michael et al. reported that DC migration
was integrin-dependent on 2D substrates, whereas migration of DCs encapsulated in a
3D collagen hydrogel was independent of integrin [14]. The distinctive DC migration in
the 3D microenvironment was mainly attributable solely to the force formed by the actin
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network’s expansion, which promoted protrusive flow of the leading edge. Subsequently,
myosin II-dependent contraction promoted contraction of the trailing edge that propelled
the rigid nucleus, resulting in a purely protrusive mode of migration. Unlike ameboid-
like migration, mesenchymal migration that is traction-dependent is closely related to
strong adhesive interactions with the surrounding matrix, proteolytic degradation, and
ECM remodeling [109]. In 2018, Isabelle et al. revealed that DCs adopted two migration
modes in 3D collagen hydrogel [110]. As shown in Figure 16e, amoeboid migration was
observed in a porous hydrogel matrix, whereas DCs adopted the ROCK-independent and
protease-dependent mesenchymal migration mode in a dense hydrogel network.
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Figure 16. DC migration mode with different dimensionalities and stiffnesses. (a) Schematic of mes-
enchymal migration and amoeboid migration (reprinted/adapted with permission from Ref. [109],
2021, Franck et al.). (b) Confinement of DCs under agarose with different stiffnesses, in which the
actin patches form in response to confinement (reprinted/adapted with permission from Ref. [63],
2022, Gaertner et al.). (c) Esp8-/- BMDCs fail to extend elongated cell protrusions and migrate in
3D collagen hydrogels. (Reprinted/adapted with permission from Ref. [103], 2011, Emanuela et al.).
(d) Migration of DCs cultured in 2D and 3D collagen hydrogels (reprinted/adapted with permission
from Ref. [14], 2008, Lämmermann et al.). (e) DCs adopt both amoeboid and mesenchymal migra-
tion in tumor spheroids (* significance level of p < 0.05) (reprinted/adapted with permission from
Ref. [110], 2018, Cougoule et al.).
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Cell migration has two opposite effects, which are advantageous immune responses
under physiological processes and detrimental effects resulting from infiltration of cancer
cells. In vivo, DC migration occurs in heterogeneous microenvironments, calling for high
cellular deformability that is usually restricted by the cell nucleus. In 2016, Matthieu et al.
reported an underlying migration mechanism of DCs based on a micrometric constrictions
model [15]. As shown in Figure 17a, DCs displayed strong enrichment of actin filaments
around a nucleus inside a small constriction, indicating that the enrichment was temporally
restricted to the time during which the nucleus was deformed in the constriction and spa-
tially limited to the constriction. The migration mechanism of DCs is closely associated with
rapid Arp2/3-dependent actin nucleation around the nucleus, which disrupts the nuclear
lamina, the main structure limiting nuclear deformability [15]. In 2019, to further under-
stand how DCs navigated through dense tissues, as shown in Figure 17b, Matthieu et al.
revealed that DCs confined in large pores chose the path of least resistance [111], which
allowed them to circumnavigate local obstacles and effectively follow global directional
cues, such as chemotactic gradients. Distinctive frontward positioning of the nucleus was
observed with changes in the size of the pore, which enabled DCs to use their bulkiest
compartment as a mechanical gauge. Once the nucleus and the closely associated micro-
tubule organizing center passed the through largest pore, the cytoplasmic protrusions still
lingering in smaller pores were retracted.
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Figure 17. DC migration in narrow spaces. (a) Actin polymerization enables nuclear deformation
to facilitate cell migration through complex environments (*** p < 0.001 as determined by one-way
ANOVA with Tukey’s test) (reprinted/adapted with permission from Ref. [15], 2016, Thiam et al.).
(b) Protrusion dynamics of the leading edge of a DC, during migration in microchannels through
a junction (decision point) with four differently sized pores (one-way ANOVA with Tukey’s test;
**** p < 0.0001, ** p = 0.0029, * p = 0.0225) (reprinted/adapted with permission from Ref. [111], 2019,
Renkawitz et al.).
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3.3. DC Phenotype and Differentiation

DCs develop through a complex differentiation and maturation process that is usually
accompanied by a change in phenotype and in function. Monocyte-derived DCs display
unique phenotypic and functional characteristics that distinguish them from all other APCs.
Generally, monocytes first differentiate into immature dendritic cells (imDCs) that display
a high endocytic capacity. Subsequently, imDCs patrol the microenvironment of peripheral
tissues to detect antigens. Upon encountering antigens, imDCs internalize the antigens,
and then they become mature DCs (mDCs) during their maturation stage, resulting in
upregulated expression of the major histocompatibility complex (MHC) and accessory
molecules (such as CD11c, CD80, CD83, CD86, and CCR7) on their surfaces. Under a
high concentration of CCL21 in draining lymph nodes (LNs), mDCs move to LNs via
afferent lymph vessels and present antigens to T cells, resulting in the initiation of acquired
immunity. In addition to biochemical cues, increasing evidence has demonstrated that
DC phenotype and differentiation can be regulated by the biophysical microenvironment.
Engineered hydrogels are a powerful platform for studying the phenotype and differentia-
tion of DCs owing to the ability to recapitulate diverse biochemical microenvironments,
including the microenvironment’s stiffness [17,18,31], dimensionality [12,13,59], and pore
structure [16].

Tissue stiffness is defined as the capacity of resistance to deformation. Tissue stiffness
is well known to change in an immune-related pathological context, such as tumor or
fibrosis progression. It has been confirmed that DC phenotype and differentiation are
affected by substrate stiffness. For example, a PAM hydrogel with tunable substrate stiff-
ness upregulated the CD83 expression on mDCs and CD86 expression on imDCs [18]. As
shown in Figure 18a, BMDCs cultured on a 50 kPa PDMS hydrogel substrate mimicking
fibro-inflammatory disease displayed high levels of CD80, CD86, and MHCII in response
to stimulation with LPS [17]. Conversely, BMDCs cultured on a 2 kPa hydrogel substrate
representing physiological resting stiffness displayed reduced activation and cytokine
production. Commonly, BMDCs cultured on plastic dishes are susceptible to becoming
activated during cell culturing, which is unfavorable for imitating the internal immune
function. To solve this dilemma, Xiang et al. reported a novel photo-crosslinked hydrogel
substrate for culturing BMDCs. BMDCs cultured in the optimized gelatin hydrogel sub-
strate with 5 kPa stiffness displayed a phenotype and function similar to those of spleen
DCs in vivo and were capable of facilitating T cell stimulation after LPS activation [31].
In addition, it was reported that DCs cultured within a 3D hydrogel network were more
similar to their in vivo counterparts in comparison with those cultured on 2D hydrogel
substrates [12,13,59]. As shown in Figure 18b, Teo et al. reported that cell culture dimen-
sionality modulated the differentiation of DCs. From a tissue-centric perspective, surface
marker expression (such as CCR7, CD209, CD80, CD86, and MHC II) of both imDCs and
mDCs cultured on a 2D substrate was generally higher in comparison with those cultured in
a 3D collagen hydrogel. Conversely, from a cell-centric perspective, upregulated expression
of cell surface markers in both imDCs and mDCs was found. In 2017, Jing et al. explored
whether 3D collagen hydrogel favored BMDCs differentiating into specialized DCs. They
found that BMDCs encapsulated in a 3D microenvironment differentiated into a distinct
subset of DCs, displaying low expression of CD11c, CD40, CD80, CD83, CD86, and MHC-II
molecules in comparison with those cultured on a 2D substrate [59]. Overall, these findings
identify substrate stiffness and dimensionality as critical biophysical cues impacting the
activation and maturation of DCs, which is of great importance in the treatment of many
clinical diseases, such as tumor immunity and infection-induced inflammation.
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Figure 18. Dimensionality and stiffness modulate DC phenotype. (a) Surface expression of CD80,
CD86, and MHC class II from BMDCs on PDMS substrate in which black dots and white squares
correspond to the different test values that BMDCs on 2 kPa and 50 kPa, respectively. (* p < 0.05,
** p < 0.01, *** p < 0.001 as determined by Mann-Whitney U test) (reprinted/adapted with permission
from Ref. [17], 2021, Chakraborty et al.). (b) DC immune phenotype on 2D and 3D collagen hydrogels
(reprinted/adapted with permission from Ref. [12], 2020, Sapudom et al.).

3.4. DC Immune Functions

As a specialized APC, DCs play a central role in bridging innate and acquired im-
munity. DCs first express plentiful phagocytic receptors for efficiently phagocytizing
pathogens. Endocytosed proteins are internalized by DCs and then degraded by lysosomal
proteolysis, resulting in the formation of peptides [112,113]. MHC molecules bind with
peptides, and then the formed peptide-loaded MHC molecules are delivered to the cell
surface in the process of DC maturation. Finally, the activated DCs transmit antigen signals
to naive T cells, resulting in T cell differentiation into different types of Th cells [114].
The activation and maturation of DCs are coupled with rapid and sustained glycolytic
reprogramming. Upon TLR ligation, BMDCs rapidly upregulate the glycolytic flux to
meet their bioenergetic and biosynthetic demands. In 2021, Winer et al. found that DC
metabolism was independent of TLR agonist input and was closely associated with matrix
stiffness. Higher stiffness upregulated glucose metabolism in DCs to support their inflam-
matory phenotype in comparison with those cultured on a pliant hydrogel, which was
related to the major Hippo-signaling factor, TAZ, and Ca2+-related ion channels, including
potentially Piezo1, as tension sensors in DCs. As shown in Figure 19a, BMDCs cultured
to a stiffness of 50 kPa displayed an increased capacity for phagocytosis. Additionally, an
enhanced antigen-presenting capacity of BMDCs was observed in plastic, or 50 kPa [17].
Similarly, Liu et al. reported that DCs cultured on a stiffened PDMS hydrogel substrate
upregulated the expression of Piezo1, which altered the secretion of inflammatory factors,
such as TGFβ1 and IL-12, that directed the reciprocal differentiation of TH1 and regulatory
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T cells [102]. Conversely, as shown in Figure 19b, the antigen endocytosis of DCs displayed
opposite stiffness-dependent differences, and a DC culture on PAM substrates of 2 kPa took
up 1.5–2-fold more ovalbumin in comparison with those cultured at 12 and 50 kPa [18].
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Figure 19. Mechanical stiffness controls DC immune functions, such as (a and b) phagocytosis and
T cell proliferation. (a) BMDCs cultured on PDMS hydrogel with different stiffness. (b) Human
peripheral blood monocyte- derived DCs cultured on PAM hydrogel with different stiffness in which
gray dots, squares and triangles correspond to the different test values that BMDCs on 2 kPa, 50 kPa
and plastic, respectively. (* p < 0.05, ** p < 0.01, *** p < 0.001 as determined by Mann-Whitney U test.)
(reprinted/adapted with permission from Ref. [17], 2021, Chakraborty et al.; Reprinted/adapted with
permission from Ref. [18], 2017, Mennens et al.).

4. Conclusions and Perspectives

In the past few decades, multidisciplinary approaches have contributed remarkable
advances in the development of engineered hydrogels to understand how the biophysical
microenvironment affects DC function. Although DC mechanobiology has been broadly
explored in 2D hydrogel microenvironments, DC mechanobiology in 3D hydrogel mi-
croenvironments is still deficient and controversial due to the complex crosstalk between
biochemical and biophysical signaling pathways. As such, it is very important to pre-
cisely decouple biophysics from biochemistry for future research. Additionally, a better
understanding of the potential molecular mechanisms underlying DCs’ adaptive migration
ability that allows them to effectively execute their effector functions in response to different
microenvironment is needed. This may answer the question of how DCs carry out their
individual immune functions in a physiological or pathological context.

Recent advances in the design of a hydrogel platform with tunable biophysical perfor-
mance (stiffness, dimensionality, and topological structure, etc.) have offered a versatile
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toolbox for modulating DC function in vitro [115,116]. Having reviewed the latest progress
in engineering hydrogels for modulation of DC function, we herein draw conclusions on the
challenges and potential directions for the future. Firstly, despite the versatile modulation
of the biophysical performance of hydrogels, they are still limited in recapitulating the
spatiotemporal physical cues in vivo resulting from the complexity and heterogeneity of the
native mechanical microenvironments of DCs. Current functional dynamic hydrogels that
can precisely capture ECM dynamics may provide potential hydrogel candidates for better
engineering hydrogels for modulation of DC function. Additionally, the development of
cancer-on-a-chip systems may also make considerable contributions to engineering hydro-
gels for modulation of DC function. Secondly, the mechanisms of how three-dimensional
spatiotemporal biophysical cues affect DC function remain under debate because of the
crosstalk and interplay between signaling pathways and microenvironmental cues. As
such, it is necessary to precisely characterize DC responses (e.g., morphology, migration,
and phenotype) to spatiotemporal biophysical cues. Finally, DCs cultured in enzymatically
or chemically crosslinked hydrogel platform usually need enzymatic or chemical hydro-
gel digestion to collect cells, which may affect DC function. The temperature-responsive
hydrogels may provide potential candidates for the release of DC in the absence of enzyme.
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