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Abstract: Synthetic hydrogels provide a promising platform to produce neural tissue analogs with im-
proved control over structural, physical, and chemical properties. In this study, oligo (poly (ethylene
glycol) fumarate) (OPF)-based macroporous cryogels were developed as a potential next-generation
alternative to a non-porous OPF hydrogel previously proposed as an advanced biodegradable scaf-
fold for spinal cord repair. A series of OPF cryogel conduits in combination with PEG diacrylate
and 2-(methacryloyloxy) ethyl-trimethylammonium chloride (MAETAC) cationic monomers were
synthesized and characterized. The contribution of each component to viscoelastic and hydration
behaviors and porous structure was identified, and concentration relationships for these properties
were revealed. The rheological properties of the materials corresponded to those of neural tissues
and scaffolds, according to the reviewed data. A comparative assessment of adhesion, migration, and
proliferation of neuronal cells in multicomponent cryogels was carried out to optimize cell-supporting
characteristics. The results show that OPF-based cryogels can be used as a tunable synthetic scaffold
for neural tissue repair with advantages over their hydrogel counterparts.

Keywords: oligo (poly (ethylene glycol) fumarate); multicomponent cryogels; polyethylene glycol;
cationic monomer; physicochemical properties; porous structure; neuronal cells; cell-supporting
properties

1. Introduction

Being a severe and widespread form of neuronal trauma, spinal cord injury (SCI)
represents a challenging medical problem with a high impact on patient physical ability,
quality of life, and the cost of treatment and rehabilitation [1,2]. Currently available thera-
pies for SCI often demonstrate modest recovery without achieving complete restoration of
motor and sensory functions [2,3].

Biomaterial implants prove to be an important tool to replace damaged neural tissues
and promote their regeneration per se or in combination with other treatments [4]. Given
that the SCI site lacks extracellular matrix (ECM), the implanted scaffolds should fill the
lesion gap, providing ECM-mimicking support for cell survival and neurite outgrowth.
To further stimulate the repair of neural tissues, the scaffolds can be modified with cell-
instructive biochemical and physical signals and/or loaded with bioactive products such
as donor cells and drug molecules [5,6].

Currently employed biomaterials for the treatment of SCI are summarized in recent
reviews [4,7–9]. Natural polymers, such as collagen [10], gelatin [11], hyaluronic acid [12],
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fibrin [13], and alginate [14], are well established structure-forming components of tissue-
engineered materials for SCI repair. In spite of their biocompatible and biodegradable
nature with partially preserved ECM functionalities (both cell-supporting and immuno-
genic), natural polymers commonly do not provide precise control over the (bio)chemical,
structural, and physicochemical properties of the resulting scaffolds, which is particu-
larly important for the treatment of injury at different parts of the central nervous system
(CNS) [14,15]. In this regard, synthetic polymer materials, such as poly(ethylene glycol)
(PEG) [16], poly(2-hydroxyethyl methacrylate) (pHEMA) [17], poly(lactic co-glycolic acid)
(PLGA) [18], and poly(ε-caprolactone) (PCL) [19], have several benefits, including high
purity, low immunogenicity, and amenability to various modifications as well as tuning
biochemical and mechanical characteristics [7,15,20].

Two of the proposed biodegradable materials have been approved for clinical trials
in patients with SCI, namely, Neuro-Spinal, a porous scaffold composed of PLGA-poly(L-
lysine) [21] and NeuroRegen, a decellularized collagen scaffold loaded with mesenchymal
stem cells [22]. Due to the low to moderate therapeutic outcomes of these materials, new
products are still in high demand, which ideally should ensure effective posttraumatic
recovery of the spinal cord while having compliance with large-scale production, sufficient
stability, and an extended shelf-life [23,24].

OPF-based hydrogels have been shown to afford a permissive regenerative environ-
ment to repair SCI, providing scaffolding for axon regeneration [25–27]. Based on these
auspicious effects, a positively charged oligo (poly (ethylene glycol) fumarate) (OPF) hy-
drogel was recently proposed by Siddiqui et al. as a tissue-replacing scaffold in SCI with
a set of longitudinal channels introduced to the hydrogel to facilitate and guide axonal
growth, bridging damaged nerve fibers [1]. The material was seeded with neurotrophin-
producing Schwann cells and PLGA microspheres loaded with rapamycin to inhibit glial
scar formation. Combined treatment with the OPF-based scaffold and epidural electrical
stimulation allowed the cumulative enhancement of motor function improvement in rats
with complete spinal transection [1].

Whereas the above-mentioned scaffolds are based on non-porous hydrogels with
mechanically formed channels, it is of substantial interest to evolve these materials by
developing their macroporous analogs prepared by the cryogelation technique. The corre-
sponding cryogels feature a unique interpenetrating porous structure that facilitates the
mass transfer of gases and nutrients and supports cell infiltration and three-dimensional
growth, which are commonly unachievable in conventional hydrogels [28,29]. Furthermore,
the structure of cryogels allows for in situ bulk modification of the scaffold with bioactive
components, ensuring their increased availability for biointeractions [30].

In this study, we describe for the first time the design and synthesis of OPF-based
cryogels as a potential next-generation of OPF scaffolds for the treatment of SCI. Since the
implantable scaffold should primarily possess balanced characteristics of stiffness and soft-
ness in order to be integrated with nerve fibers while avoiding deformation by surrounding
tissues [20,31], multi-component cryogels with tunable composition and mechanical prop-
erties were produced. The important role of the combination of an OPF macromer and a
bifunctional PEG cross-linker in the formation of a well-structured polymer network and
the regulation of both viscoelastic properties and water content in macroporous cryogels
was established. The composition of OPF, PEG, and MAETAC cationic monomers was opti-
mized to support the neural cells in the matrix. The obtained cryogels provide enhanced
cell adhesion, migration, and proliferation and serve as a platform for the development of
biomaterial candidates for preclinical studies.

2. Results
2.1. Synthesis of OPF-Based Cryogels

The OPF macromer was synthesized in the reaction of PEG (1500 Da) with fumaryl
chloride (Section 4.2). The FTIR spectrum of the OPF macromer, in addition to the typ-
ical C–O signal of the ether bond in PEG (1100 cm−1), contained the peaks at 1730 and
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1656 cm−1, which were respectively attributed to the C=O and C=C groups of the fumaryl
moiety (Figure S1). The presence of C=O and C=C groups in the synthesized macromer was
also confirmed by 1H and 13C–{1H} NMR spectroscopy (Figure S2). This analysis verifies
the co-polymerization of PEG and fumaryl moieties to form OPF chains (Figure 1) capable
of radical polymerization and biodegradation [32]. Based on the regression relationship
between the molecular weight (MW) of the PEG precursor and the OPF product [33], the
MW of the synthesized macromer was estimated to be ca. 29 kDa.
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Figure 1. Chemical structures of cryogel constituents: oligo (poly (ethylene glycol) fumarate) (OPF),
polyethylene glycol diacrylate (PEGDA), and 2-(methacryloyloxy)ethyl-trimethylammonium chlo-
ride (MAETAC).

A series of macroporous cryogels, composed of OPF, PEG diacrylate (PEGDA), and
MAETAC (Figure 1), were synthesized, as detailed in Section 4.3, with variable concen-
trations of the constituents. The prepared materials were divided into four groups: A–D,
where the concentration of one component was varied in each group (Table 1). The differ-
ence in composition affected the appearance of the obtained cryogels, as shown in Table 1.
The as-prepared cryogels were in the form of cylindrical products with diameters ranging
from 0.9 to 1.3 mm depending on their swelling ability.

Table 1. Mass content of constituents (wt.%) used to synthesize OPF-based cryogels and images of
the obtained cryogels.
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According to an FTIR analysis data, multicomponent OPF-derived cryogels were
characterized by an increased C=O signal (1730 cm−1) relative to the reference C–O signal
and the absence of C=C groups. The MAETAC constituent generated a new peak at
950 cm−1 attributed to the quaternary ammonium group. The ratio between the peaks
at 950 and 1100 cm−1 almost linearly increased with the MAETAC concentration in the
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reaction solution, indicating a proportional incorporation of the cationic monomer into the
polymer chains of the cryogels (r2 = 0.93, Figure S1).

2.2. Rheological Behavior

Viscoelastic properties of the synthesized cryogels were analyzed by small-amplitude
oscillatory shear measurements within the linear viscoelastic region, observed at the shear
strain amplitude (γ) ≤ 1%. Both the storage (G′) and the loss (G′′) modulus of most of
the studied materials depended relatively weakly on the frequency in the range of up to
10 rad s−1, whereas G′ strongly prevailed over G′′ (Figure 2, Table 2), which indicates
the formation of a stable and well-structured hydrogel network with a dominant elastic
behavior [34]. The contribution of constituents to the mechanical properties of cryogels
was assessed.
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Table 2. Mean values of the storage modulus (G′), the loss modulus (G′′), and the G′/G′′ ratio of OPF-
based cryogels recorded atω = 1 rad s−1. Cryogel compositions (wt. %) are shown in parentheses.
The data are presented as mean ± SD.

Gel G′ (Pa) G′′ (Pa) G′/G′′

Group A
(OPF x%)

OPF-3
(OPF 2%) 41 ± 15 1.2 ± 0.5 34 ± 2

OPF-4
(OPF 4%) 239 ± 66 6 ± 2 39 ± 3

Group B
(OPF 4%, PEGDA y%)

OPF-6
(PEGDA 0.32%) 937 ± 117 15.8 ± 0.1 59 ± 7

OPF-7
(PEGDA 0.8%) 1800 ± 42 32 ± 9 58 ± 16

OPF-8
(PEGDA 2%) 2730 ± 353 48.0 ± 0.2 57 ± 7

OPF-9
(PEGDA 3%) 4910 ± 608 139 ± 1 35 ± 4

OPF-10
(PEGDA 4%) 9500 ± 579 1275 ± 63 7.4 ± 0.1

Group C
(OPF 4%, PEGDA 2%,

MAETAC z%)

OPF-11
(MAETAC 0.32%) 4445 ± 388 122 ± 38 38 ± 9

OPF-12
(MAETAC 0.51%) 5045 ± 219 122 ± 8 42 ± 1

OPF-13
(MAETAC 0.8%) 5595 ± 5 144 ± 16 39 ± 4

OPF-14
(MAETAC 1.27%) 2720 ± 495 102 ± 33 27 ± 4

OPF-15
(MAETAC 2%) 2610 ± 70 98 ± 20 27 ± 6

Group D
(OPF 4 %, PEGDA y%,

MAETAC 0.8%)

OPF-16
(PEGDA 0%) 98 ± 4 12 ± 1 8.5 ± 0.2

OPF-17
(PEGDA 0.32%) 255 ± 1 18 ± 4 15 ± 3

OPF-18
(PEGDA 0.8%) 2345 ± 35 56 ± 5 42 ± 3

OPF-19
(PEGDA 3%) 5875 ± 685 158 ± 11 37 ± 2

For the formation of one-component OPF cryogels (group A), a critical concentration
of OPF ≥ 2 wt.% was required. Materials of this group with an OPF concentration of
2–6 wt.% were quite soft and difficult to handle compared to the cryogels of other groups.
The cryogel with 4 wt.% OPF had a higher G′ value (ca. 240 Pa) than that with 2 wt.% OPF
(40 Pa), while the G′/G′′ ratio for both materials was similar (Figure 2, Table 2, OPF-3, and
OPF-4). Furthermore, at a concentration of 6 wt.%, part of the OPF was not entrapped and
was washed out of the material; therefore, this cryogel was not studied further. The results
show the relatively poor ability of the OPF macromer alone to produce a stable polymer
network in the cryogel system, which is attributed to the restricted availability of the C=C
reactive group in the fumaryl moieties, which are surrounded by PEG fragments. The
additional cross-linking of the polymer network with a bifunctional PEG derivative PEGDA
improved incorporation of the OPF macromer and increased gel strength (groups B–D).

However, the OPF cryogels with 4 wt.% OPF and upper concentrations of PEGDA 3
and 4 wt.% (OPF-9 and OPF-10) were characterized by a reduced G′/G′′ ratio. Moreover,
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for the OPF-10 material, the G′ and G′′ parameters began to strongly depend on frequency
(Figure 2, Table 2). This altered viscoelastic behavior can be attributed to a certain inho-
mogeneity of the material due to the flocculation of the excess PEG component, which is
promoted by a subzero temperature.

In addition, the effect of MAETAC on cryogels composed of 4 wt.% OPF and 2 wt.%
PEGDA was evaluated (group C). The elasticity of these materials increased moderately
and linearly (r2 = 0.94, Figure S3), with a MAETAC concentration of up to 0.8 wt.%
(Figure 2, Table 2), indicating the contribution of the monomer to the formation of the
polymer network.

At a higher amount of MAETAC (1.3–2 wt.%), such a promoting effect generally
disappeared, which was also accompanied by some decrease in the G′/G′′ ratio. This
can be explained by a critical concentration of the monomer at ca. 0.8 wt.%, above which
increased cationization and electrostatic repulsion of polymer chains occur, which affect
the cross-linking degree of the resultant polymer network.

The analysis of the group D data demonstrated that in the absence of PEGDA, 0.8 wt.%
MAETAC weakly contributed to the viscoelastic properties of the OPF material, indicating
that the PEGDA component is necessary to produce stable multicomponent gels (Figure S5,
Table 2).

2.3. Swelling Behavior

The swelling properties and porous structure of cryogels were assessed and analyzed
in correlation with the rheological data. The cryogel network contains both weakly bound
capillary water (CW) and polymer-bound water (PW). As demonstrated previously, the
relative amounts of CW and PW in as-prepared cryogels can be differentiated [35]. The
CW present in large pores can be readily removed by absorption with filter paper, while
the PW is retained in the polymer network (pore ‘walls’) due to bonding with the polymer
molecules. The relative amounts of CW and PW (%) in fully hydrated cryogels were
estimated in correlation with porosity and cross-linking density.

The PEGDA constituent, generally in proportion to its added concentration, was found
to decrease the amount of CW and increase the amount of PW in OPF cryogels (Figure 3A).
In consistency with that, laser scanning confocal microscopy (LSCM) visualization of the
materials showed that the addition of PEGDA significantly reduced the size of macropores
(Figure 3B) filled with CW. Similar changes appeared in gelatin-based cryogels upon their
additional cross-linking by divalent metals [35].
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Figure 3. (A) The swelling properties of OPF cryogels (OPF 4 wt.%) with an increased amount of
PEGDA (OPF-4–OPF-10) or OPF/PEGDA cryogels (OPF 4 wt.%, PEGDA 2 wt.%) with an increased
amount of MAETAC (OPF-11–OPF-15). The mass content of capillary water (CW) and polymer-
bound water (PW) is shown (mean ± SD, n = 3). (B) LSCM images of OPF cryogels are visualized by
autofluorescence upon argon laser excitation (514 nm). The variable amounts (wt.%) of PEGDA and
MAETAC are shown in parentheses. Scale bar 100 µm.
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The introduced MAETAC decreased the CW and increased the PW of OPF/PEGDA
cryogels at a monomer concentration of 0.3–0.8 wt.%, above which the effect was partially
reversed similarly with the concentration dependence of G′ (Figure 2). All the OPF-based
materials were characterized by a well-organized macroporous structure; however, at a
higher amount of both PEGDA (OPF-10) and MAETAC (OPF-15) constituents, the polymer
walls and macropores of the cryogels appeared less defined and less homogenous (Figure 3).
Such a modulation of the cryogel structure was accompanied by a decrease in the G′ and
G′/G′′ ratios (Figure 2).

Together, these results reveal clear relationships between rheological and hydration
properties as well as the porous structure of the cryogels, allowing for better character-
ization of the produced materials. These also indicate that CW and PW differentiation
provides a more informative structure characterization of the materials compared to the
overall swelling index (Figure S4). In accordance with that, the equilibrium swelling values
of macroporous cryogels were found to be apparent and inapplicable for the precise assess-
ment of the materials [36]. Furthermore, based on the relative mass content of CW and PW
in the swollen cryogels, the percent volume of macropores can be roughly estimated [35].
This parameter varied between 78 and 92% for the studied cryogels (Figure 3).

2.4. Cell Behavior in OPF Cryogels
2.4.1. Cell Migration

Rat pheochromocytoma PC-12 and human neuroblastoma SH-SY5Y cells were used as
established neuronal cells to assess biomaterials [37]. Among the pre-optimized methods
of cell introduction into the cryogels [38], top seeding was used to study cell migration,
adhesion, and proliferation in the materials.

The materials with 4 wt.% OPF, 2 wt.% PEGDA, and a varied amount of MAETAC
were selected for a cell migration assay. The cryogels were immersed in a full culture
medium to their half-height (5 mm). After equilibration with the medium, PC-12 cells were
seeded on top of the materials and allowed to migrate down along the conduits towards a
medium gradient. The results showed that the cells readily infiltrated cryogels and that
adding MAETAC to the cryogel composition considerably promoted cell migration. In
particular, the highest migration efficiency was observed for an intermediate MAETAC
concentration of 0.8 wt.% (OPF-13), where the cells penetrated to a depth of 5.6 ± 0.7 mm.
At a higher monomer concentration of 2 wt.% (OPF-15), the process was hampered almost
to the level of MAETAC-free material (Figure 4).

The results demonstrate that MAETAC supports cell migration in OPF cryogels in the
optimal concentration range, above which the materials appear to acquire excess cationic
charge. Interestingly, exceeding the optimal concentration (0.8 wt.%) was accompanied by
a distinctive transition in the viscoelastic properties of materials (Figure 2).

In contrast to the above cryogels, the OPF hydrogel analog, regardless of the presence
of MAETAC, did not support the infiltration of cells, so that they remained completely on
the upper surface of the material (Figure 2). This demonstrates that the developed porous
structure of the cryogel scaffold ensures increased cell migration, which should be due
to both the spatial availability of macropores for cell penetration and a better exchange
process between the material and medium, providing a decreased gradient of nutrients.
Such cell-supporting properties are essential for material integration with host tissues
and stimulation of regeneration-related processes, especially in the earlier stages prior to
neovascularization [39,40].
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Figure 4. LSCM microphotographs of the lateral sections of OPF cryogels with a variable MAETAC
amount (A) and an OPF hydrogel (B) with PC-12 cells migrating towards culture medium. The cells
were incubated for 6 h on top of the materials mounted over the medium, which were fixed and
stained with DAPI. The lateral sections of each cryogel were combined from the upper and lower
parts; the arrows indicate cell seeding and migration sides. (C) The mean depth of cell migration into
cryogels was shown.
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2.4.2. Cell Adherence and Proliferation

The cell-supporting properties of the optimized OPF-13 cryogel were further evaluated.
Compared to the MAETAC-free material (OPF-8), the OPF-13 material provided a high
primary adhesion of both PC-12 and SH-SY5Y cells with an adhesion rate of 55 and 51%,
respectively (Figure 5A), where the cationic monomer profoundly contributed to cell
attachment, increasing it by 2.3 and 1.7 times, respectively. According to the MTS assay
(72 h), MAETAC promoted cell proliferation within the OPF-13 cryogel by 4.1 (PC-12) and
2.2 (SH-SY5Y) times over the MAETAC-free OPF-8 cryogel (Figure 5B).
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The latter results were in agreement with the bright-field microscopy analysis of the
cells in the matrix stained with cresyl violet (Figure 5C). In contrast to the OPF-8 cryogel,
the OPF-13 cryogel showed an increased number of cells of both types. SH-SY5Ycells
were well distributed on both materials, with a mean cell number of 13 ± 4 (OPF-8) and
30 ± 9 (OPF-13) per mm2 of cryogel section. PC-12 cells tended to form cell ensembles
on the OPF-8 cryogel, complicating their counting, whereas they appeared as multiple
individual cells on the OPF-13 cryogel (39 ± 7 per mm2 of cryogel section), indicating a
higher requirement of the cationic charge by these cells to spread and grow in the matrix
(Figure 5C).

Collectively, the results show that positively charged OPF cryogels that incorporate a
MAETAC monomer allow superior cell attachment and distribution over MAETAC-free
cryogels, thus providing an increased cell population of the materials.

3. Discussion

In this study, the structural and mechanical properties of OPF-based cryogels were
analyzed depending on the concentrations of OPF, bifunctional PEGDA, and cationic
MAETAC constituents. The results show that the material stiffness can be modulated in
a controllable manner by varying the amount of PEGDA added to the OPF solution. The
elastic modulus of the OPF cryogel profoundly (up to 40 times) and gradually increased
with increasing PEGDA concentration. However, at a critical value of 3 wt.% PEGDA
(75% by weight of OPF), the polymer network of cryogel appeared to be less organized,
presumably due to some kind of phase separation at an excessive concentration of PEG.

Compared to PEGDA, MAETAC has relatively little effect on the mechanical properties
of the materials composed of both OPF and OPF/PEGDA. The latter cryogel system
became altered when the MAETAC concentration was ≥1.3 wt.% (22% of the total weight
of OPF and PEGDA) (Figure 2, Table 2). Taken together, these results suggest working
concentration ranges for PEGDA and MAETAC to obtain homogeneous multi-component
OPF-derived cryogels with tunable viscoelastic properties. Previously, non-porous OPF
hydrogels modified with PEGDA [41] or MAETAC [42] alone had been prepared. However,
concentration-dependent transitions of their elastic modulus have not been reported to
compare them with our data for cryogels.

The observed changes in the mechanical properties of OPF cryogels containing PEGDA
and MAETAC are consistent with changes in the water content and the porous structure
of the swollen materials (Figure 3). In particular, an increase in G′ and G′′ values was
generally observed, along with a reduction in both the CW and the size of macropores
and an increase in the PW. This can be explained by the formation of a more developed
polymer network in the multi-component materials, which gives them better viscoelastic
properties and water retention within the polymer chains. However, it should be expected
that additional swelling of the polymer network will be accompanied by a shrinkage of
macropores. This indicates that information on the CW and PW content in cryogels can
complement their rheological characteristics, providing insights into the organization of
the polymer component of materials.

Given that the mechanical properties of biomaterial scaffolds play an important role in
their regenerative ability towards CNS, the literature data on the viscoelastic parameters of
the SC and brain in mammals were reviewed. There is some evidence that CNS explants are
soft, with an elastic modulus of 330 Pa [43] and ca. 100–600 Pa [44]. Higher G′ values for in
situ/preconditioned rat brains were also reported to be as follows: 3336/1754 Pa (immature)
and 1721/1232 Pa (old) [45]. A comparative evaluation of the previously reported data is
complicated since the behavior of CNS tissues strongly depends on specimen characteristics,
age, and analysis conditions [46]. Although rheological analysis has become a standard
technique to characterize gels, different methods have been used to assess the viscoelastic
parameters of living tissues, including brain and SC explants [44,46,47]. The rheological
data summarized in the review [46] include quite variable G′ values for CNS, ranging from
ca. 0.2 to up to 12 kPa.
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Furthermore, no clear consensus exists on the optimal elastic and loss moduli for
SC-replacing scaffolds. Table 3 summarizes the corresponding data on representative
gels composed of natural and synthetic constituents. For some materials, G′ values were
generally adjusted below 1 kPa [23,48–53], whereas in other studies, stiffer materials
with G′ values up to several kPa were preferred [54–58]. It was suggested that softer
hydrogels (G′ < 1 kPa) could be advantageous in supporting adhesion, proliferation, and
differentiation of neural stem cells in vitro [59]. Similar results were obtained for CNS-
derived cells encapsulated in three-dimensional hydrogel scaffolds [60] or cultured on their
surfaces [43,61], whereas stiffer gels (G′ is ca. 10 kPa) somewhat inhibited cell functions [61].

Other evidence shows that neural stem cells exhibit increased proliferation and dif-
ferentiation on PEG-based hydrogels with G′ values between 3.5 and 5.5 kPa [62]. In vivo
applications should provide additional requirements on the mechanical properties of im-
plantable hydrogels since insufficient stiffness impairs the integration of a scaffold with
surrounding tissues and may result in its deformation and pore collapse [63]. It is also
worthy of noting that many studies on the scaffolds rely on the G′/G′′ values of CNS
explants recited from papers, which do not deal with primary experimental data, further
complicating the selection of optimal parameters.

Table 3. Reported values of storage modulus (G′) and loss modulus (G′′) for gel-based materials used
for SC repair.

Gel G′ (Pa) G′′ (Pa) Ref

Hyaluronic acid-methylcellulose hydrogels with embedded
BDNF-loaded PLGA microparticles 2200–4200 320–540 [54]

RGD peptide-modified poly[N-(2-hydroxypropyl)methacrylamide]
(PHPMA) hydrogel 100 ~10 [59]

Gelled ECM components (e.g., collagen and GAG) extracted from
decellularized sciatic nerves 171 25 [49]

Gelled ECM components (e.g., collagen and GAG) extracted from
decellularized spinal cord 139–775 16–94 [51]

Collagen-laminin-hyaluronic acid ECM-mimicking hydrogel 43 7 [50]

Dopamine-modified chitosan hydrogels 1000–1500 20–40 [55]

P11-8 peptide-enriched PCL fibers integrated with
glycidylmethacrylated collagen hydrogels 340–2574 61–264 [23]

Lauryl-VVAG nanofiber-forming sequence conjugated with
neuroactive peptide motifs 1000–2020 150–700 [64]

Electroconductive polypyrrole-modified chondroitin
sulphate-gelatin hydrogels 423–1600 40–600 [52]

Graphene-crosslinked collagen cryogel 1200 110 [57]

Polysaccharide-based composite hydrogels composed of
Ca-alginate 26–6040 6–3030 [53]

FGF-loaded methacrylate-silk fibroin hydrogels 300–2000 10–30 [58]

The optimized multi-component cryogels composed of OPF (4 wt.%), PEGDA (2 wt.%),
and MAETAC had an elastic modulus of up to ca. 5.5 kPa, which can be considered close to
the upper value based on the reported data for CNS-replacing hydrogels. One can expect
that the optimal parameters for the cryogels should differ from those for conventional
hydrogels since most of their volume is occupied by interconnected macropores that are
filled with mobile water. Due to the presence of low-density macropores, the cryogels
should be stiffer to maintain their shape compared to hydrogels, especially upon implanta-
tion. Extra stiffness of cryogel materials could also be required to extend their design to
SC conduits with hollow channels to promote nerve guidance [65] as well as to consider
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the softening of biodegradable conduits in vivo [66]. Based on the foregoing, the exact
mechanical properties of OPF-based cryogels will be established afterwards depending on
the final formulation and in vivo conditions, and these could be adjusted in a controllable
manner by varying the concentration of PEGDA and other constituents.

In addition to having tunable structural properties, the multi-component cryogels
were proven to serve as an effective scaffold for neuronal cells (Figures 4 and 5). The mate-
rials supported the bulk migration and proliferation of the cells, which were not achieved
for the hydrogel counterparts as previously observed for gelatin-based materials [38]. The
prevailing interconnected macropores obviously improve cell infiltration and growth in
different parts of the scaffold by promoting cell and nutrient penetration into the materi-
als [28]. Even when channeled, the hydrogels are not expected to ensure such processes,
which are important to promote angiogenesis and other regeneration-related events in the
whole material [67].

Furthermore, the optimal cell-supporting concentration of MAETAC in the cryogels
was revealed (Figures 4 and 5). The selected OPF-13 cryogel with 0.8 wt.% MAETAC
following 4 h of incubation provided cell adherence comparable to that previously reported
for PEG-based hydrogels, e.g., non-activated [68,69] and RGD-modified ones [70], although
these were incubated with the cells for 24–72 h. Higher concentrations of MAETAC clearly
decreased the interaction of cells with OPF cryogels (Figure 4), presumably due to the
inhibition of cell adhesion by excessively charged polymer chains, and these cryogel
compositions led to changes in the material structure (Figures 2 and 3).

To induce specific cellular responses such as neuronal differentiation, the synthesized
cryogels can be additionally modified with neuroactive components such as peptide fac-
tors. The feasibility of in situ functionalization of β-cyclodextrin-bearing cryogels with
adamantylated ECM-derived peptides via host-guest interactions was previously demon-
strated [30,71]. This immobilization strategy was proven to be effective for the controllable
bulk modification of cryogel materials with synthetic peptide compositions, and it can be
further exploited for the activation of OPF-based cryogels for SC repair applications.

4. Materials and Methods
4.1. Materials

Fumaryl chloride (95%), triethylamine chloride (≥99%), poly(ethylene glycol) (PEG)
(1500 Da), poly(ethylene glycol) diacrylate (PEGDA, Mn = 575), N,N,N′,N′- tetramethylethylene-
diamine (TEMED, ≥99%), ammonium persulfate (APS), and dichloromethane (DCM) were
purchased from Sigma-Aldrich (Saint Louis, MO, USA).

Cell culture media and reagents were purchased from Paneco (Moscow, Russia). The 3-
(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS reagent) was purchased from Promega (Madison, WI, USA). PC-12 rat pheochroma-
cytoma and SH-SY5Y human neuroblastoma cell lines were obtained from the American
Type Culture Collection (Manassas, VA, USA). Cresyl violet acetate (Acros Organic) and
4,6-diamino-2-phenylindol (DAPI) (Sigma-Aldrich) were used for cell staining.

4.2. Synthesis and Characterization of OPF Macromer

OPF was synthesized as previously described [72]. Briefly, 50 g of PEG pre-dried in
toluene by azeotropic distillation were dissolved in 320 mL of anhydrous dichloromethane
(DCM). An amount of 30 mL of anhydrous fumaryl chloride (the fumaryl chloride:PEG
molar ratio was 0.9:1) and 30 mL of triethylamine (the triethylamine:fumaryl chloride
molar ratio was 2:1) was added dropwise from two funnels connected to a three-necked
round-bottomed flask containing the PEG solution. The reaction was conducted under
stirring and argon-purging conditions on ice. The reaction mixture was stirred at room
temperature for 48 h, followed by DCM removal using a rotary evaporator (at 30 ◦C). The
OPF product was then purified by crystallization in ethyl acetate, collected by filtration,
washed using ethyl ether, and dried under a vacuum for 10 h.
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The structure of the obtained OPF macromer was analyzed by 1H and 13C NMR
spectroscopy after dissolution in deuterium oxide (D2O) (Figure S2). The spectra were
recorded on a Bruker Avance-400 NMR spectrometer (Billerica, MA, USA) (400.0 MHz, 1H;
100.6 MHz, 13C).

4.3. Preparation of OPF-Based Cryogels

OPF-based cryogels were synthesized by vinyl addition polymerization in an aqueous
solution using variable concentrations of constituents (Table 1). The reaction mixture was
purged with N2, followed by the addition of 0.6 wt.% ammonium persulfate (APS) and
0.3 wt.% TEMED (as an initiator and activator of free radicals) upon stirring. The resultant
solution was poured into transparent cylindrical glass tubes (1 cm inner diameter), placed
in a cooling thermostat at a temperature of −12 ◦C for 4 h, and then transferred into a
freezer (−18 ◦C, 24 h) to complete polymerization. The product was thawed at room
temperature and washed with deionized water to obtain a cylindrical cryogel.

To prepare non-porous hydrogels, the mixture of constituents with APS and TEMED
was kept at room temperature until a stable gel was formed.

4.4. Fourier Transform Infrared (FTIR) Spectroscopy

Prior to the analysis, the OPF-based cryogels were washed with milli-Q grade water
and freeze-dried by lyophilization. The attenuated total reflectance (ATR) FTIR spectra of
the lyophilized cryogels as well as constituents (PEG, MAETAC, and OPF) were recorded
on a Frontier spectrometer (PerkinElmer, Waltham, MA, USA) in the wavenumber range
4000–400 cm–1 with a resolution of 1 cm–1.

4.5. Analysis of Swelling and Viscoelastic Properties of The Cryogels

The cryogel samples were cut into round, 3 mm-thick disks and equilibrated with
deionized water. The swelling ratio (SR) was calculated according to the formula:
SR = (mx −m0)/m0 × 100%, where mx(1, 2) represents the mass of fully hydrated cryogels
(m1) or partially hydrated cryogels (m2) after the removal of weakly bound water (or capil-
lary water, CW) [30]. The mass of completely dried cryogels (m0) was recorded after the
removal of polymer-bound water (PW) from the materials and was placed in a heating ther-
mostat at 90 ◦C. The volume fraction of CW relative to the total water volume of the swollen
cryogels was calculated with the following formula: VCW (%) = (m1 −m2)/(m1 −m0) × 100%.

The rheological properties of the swollen cryogels were analyzed using an MCR 302
rotational rheometer (Anton Paar, Ashland, VA, USA) at 25 ◦C. The strain sweep and
frequency sweep tests were performed by applying a 0.01–100% strain (ω = 10 rad s–1) and
0.01–100 rad s–1 angular frequencies (γ = 0.5 %), respectively. The frequency dependencies
of the storage (G′) and loss (G′′) moduli of the materials were recorded within a linear
viscoelastic region (LVR).

The porous structure of the cryogels was analyzed using laser scanning confocal
microscopy (LSCM) with a LSM 780 microscope (Carl Zeiss) equipped with argon laser
excitation (488 nm). Zeiss ZEN black software was used for acquisition.

4.6. Cell Maintenance and Seeding

PC-12 rat pheochromacytoma and SH-SY5Y human neuroblastoma cells were main-
tained in sterile DMEM supplemented with 10% horse serum and 5% fetal bovine serum
(FBS) (PC-12) or 10% FBS (SH-SY5Y). Penicillin (100 U/mL), streptomycin (100 µg/mL),
and L-glutamine (2 mM) were added to the culture medium. The cells were cultured under
standard conditions in a temperature- and humidity-controlled incubator (37 °C and 5%
CO2). The culture medium was refreshed every 2 days.

Prior to cell seeding, the gels were treated with penicillin (2.5 kU/mL) and strepto-
mycin (2.5 mg/mL) solutions for 1 h, rinsed with Hanks’ Balanced Salt Solution (HBSS),
and equilibrated in the culture medium. The cells were seeded onto the cryogel surface
using the top seeding method [37] in a 12-well plate at a density of 6.4 × 104 cells/cm2 of
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the cryogel area and incubated for 1.5 h under standard culture conditions to allow for
cell attachment.

4.7. Study of Cell Migration

Cryogel samples were cut into cylindrical pieces of 10 mm in height and placed
vertically in a 12-well plate. A complete cell culture medium with 10% FBS was added
to the wells to a level of 5 mm to cover half of the material height. An aliquot of the cell
suspension in serum-free DMEM (6.4 × 104 cells/cm2) was spread on the cryogel surface
and cultured for 6 h under standard conditions. The cryogels were then washed with PBS
and incubated in 4% p-formaldehyde in PBS for 2 h. The fixed cells were stained with DAPI
nuclear dye and visualized by LSCM on a LSM 780 microscope (Carl Zeiss).

4.8. Cell Adherence Assay

PC-12 and SH-SY5Y cells were seeded on top of the cryogels, pre-incubated in serum-
free medium at a cell density of 6.4× 104 cells/cm2, and then allowed to adhere for 4 h. Un-
adhered cells were collected by washing them with HBSS and counting them using a hemo-
cytometer. Cell adherence efficiency was determined according to the following formula:

cell adherence (%) = (ni − nii)/ni × 100 (1)

where ni represents the number of initially seeded cells, while nii is the number of unattached
cells [71].

4.9. Cell Detection in the Cryogels

PC-12 and SH-SY5Y cells were seeded on top of the cryogels, pre-incubated in full
medium at a cell density of 6.4 × 104 cells/cm2, and cultured for 72 h under standard
conditions. The cryogels with grown cells were transferred into new wells containing
fresh culture medium supplemented with MTS/PMS reagents to assess the cell metabolic
activity [38,73]. After incubating the samples for 1.5 h in a CO2-incubator (37 ◦C, 5% CO2),
the optical absorbance of the generated formazan product was detected at 490 nm on an
Infinite M200 PRO microplate analyzer (Tecan) as a measure of a viable cell number.

For the bright-field microscopy analysis, the cryogels with grown cells were fixed with
4% p-formaldehyde. After a gentle wash with PBS, the fixed cells were stained with cresyl
violet (0.1% w/v in deionized water) for 5 min and visualized using an AxioObserver Z1
microscope (Carl Zeiss).

4.10. Statistical Analysis

Data were presented as mean ± SD. The statistical significance was determined
when appropriate with a one-way analysis of variance (ANOVA), followed by Tukey’s
multiple comparison post-test or with Student’s t-test analysis (* p < 0.05, ** p < 0.01, and
*** p < 0.001).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels9020105/s1, Figure S1: FTIR spectra of PEG, OPF, MAETAC
(A), and lyophilized OPF/PEGDA cryogels with an increased MAETAC amount (B). The relationship
between the MAETAC concentration in the reaction solution and the FTIR signal of MAETAC in
cryogels determined by the peak intensity ratio 950/1100 cm−1 (C); Figure S2: 1H NMR spectrum
(400 MHz, D2O, ambient temperature) (A) and 13C–{1H} NMR spectrum (100.6 MHz, D2O, ambient
temperature) (B) of oligo (poly (ethylene glycol) fumarate) (OPF) macromer; Figure S3: Relation-
ships between G′/G′′ moduli of OPF cryogels (OPF 4 wt.%) and the amount of PEGDA (A) and
OPF/PEGDA cryogels (OPF 4 wt.%, PEGDA 2 wt.%) and the amount of MAETAC (B); Figure S4:
Overall swelling index (total water content %) for OPF-based cryogels; Figure S5: Frequency sweep
analysis of OPF-based cryogels (group D). The measurement of frequency dependence of storage
(G′) and loss (G′′) moduli was performed within LVR at δ = 0.5% strain deformation. Cryogel
compositions (wt. %) are shown in parentheses.
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