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Abstract: The attention of the research community is focused not only on waste elimination, but
also on waste valorization. The natural marine biopolymer gel substance chitosan, which can be
derived from the waste substances of marine life, is a polymer-matrix-based nanocomposite. Chitosan
attracts special attention due to its potential applications, especially in wastewater treatment. In this
regard, magnetite-incorporated chitosan powders of nanometer scale were synthesized by a simple
co-precipitation method to attain the dual functions of chitosan gel and magnetite. The synthesized
magnetite-incorporated chitosan nanopowders were verified using X-ray diffraction (XRD), Fourier-
transform infrared (FTIR) spectroscopy, a vibrating-sample magnetometer (VSM), a scanning electron
microscope (SEM), and transmission electron microscopy (TEM) images, which showed that the
synthesized magnetite-incorporated chitosan was nanosized. The superior application of such a
material to offset the deterioration of the environment caused by insecticides is attained through a
photocatalytic reaction. The experimental results verified the function of magnetite-incorporated
chitosan, since it increased the composite-specific surface area, resulting in high methomyl molecule
oxidation. Methomyl oxidation reached almost complete insecticide removal (99%) within only one
hour of irradiance time. The optimal operational conditions were investigated, and the maximal
removal rate occurred when the aqueous solution was at an acidic pH of 3.0. The reaction was
affected by differing hydrogen peroxide and catalyst doses, and the optimized reagent was recorded
at the levels of 40 and 400 mg/L of catalyst and hydrogen peroxide, respectively. Also, catalyst
reusability was attained, confirming its sustainability, since it could be used for successive cycles.
From the current investigation, it is proposed that magnetite–chitosan nanoparticles could serve as a
promising photocatalyst for the elimination of insecticides from wastewater in a green manner.

Keywords: methomyl wastewater; chitosan biopolymer; photocatalyst; nanopowders; gel

1. Introduction

Recently, the ever-increasing significance of polymeric nanocomposites, in which
nanomaterials are embedded in a polymer matrix, has attained great attention due to their
potential application in numerous fields of science and technology [1,2]. Additionally,
environmentally friendly magnetite nanoparticles are regarded as important, due to their
abilities of environmental remediation and toxicological elimination [3]. This is a com-
pelling reason to probe novel routes for combining these two materials for wastewater
treatments. At the end of the 18th century, Charles Hatchett declared chitin to be a gel
biopolymer [4]. However, its real applications only originated in the 19th century. Chitosan

Gels 2023, 9, 864. https://doi.org/10.3390/gels9110864 https://www.mdpi.com/journal/gels

https://doi.org/10.3390/gels9110864
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gels
https://www.mdpi.com
https://doi.org/10.3390/gels9110864
https://www.mdpi.com/journal/gels
https://www.mdpi.com/article/10.3390/gels9110864?type=check_update&version=2


Gels 2023, 9, 864 2 of 18

is a derivative of chitin; it was this conversion that attracted both academic and indus-
trial attention for its wide applications [5–7]. Furthermore, the incorporation of chitosan
with magnetite, to acquire a multifunctional chitosan–magnetite composite, opens up new
avenues to attain sustainable applications [8]. The reliable characteristics of magnetite,
including its magnetic nature and its optical and electronic characteristics, make it a good
candidate to combine with the chitosan gel biopolymer [9–11]. One of the attractive features
of such a chitosan–magnetite composite is its superparamagnetic performance, which con-
firms the catalyst to be sustainable, recoverable, and recyclable. This chitosan–magnetite
composite has been previously applied to eliminate various types of dyes from aqueous
media; so far, it has not been applied to eliminate insecticides from wastewater, according
to the literature cited [12–14].

Green wastewater implementation, using natural resources and environmentally
friendly materials, is an important topic. Advanced oxidation processes (AOPs), using
green materials as powerful oxidants, have showed complete mineralization of pollu-
tants [8]. AOPs are signified as a prerequisite for safe wastewater disposal facilities [15,16].
However, further studies should be conducted to validate their potential economic ap-
plications. Liu et al. [13] combined ozone with ultraviolet light as a source of advanced
oxidation that also used hydrogen peroxide. The Fenton reaction is categorized as one of the
fundamental features of AOPs, as a homogeneous process. While this process has shown
significant wastewater elimination results, current research interests involve searching for
a novel Fenton technique, aimed at avoiding the current system’s limitations [9,17]. These
limitations include an acidic working pH range, resultant sludge residue from the treatment,
and the caustic chemicals applied [18–20]. Hence, developing a reusable catalyst could
be more cost-effective and overcome these limitations to become a sustainable catalytic
treatment. Moreover, the use of natural resources is a promising technique to attain such
criteria as an opportunity for eco-friendly oxidation. Furthermore, updated studies have
improved the oxidation of the Fenton reaction using nanoparticles [14].

The contamination of water by toxic effluents released from the industrial sector
represents a risk to both the environment and human health [21]. Due to various organic
and inorganic materials, as well as pathogenic organisms, contained in such wastewater
discharge, it is signified as a toxic effluent. Thus, direct discharge into the ecosystem causes
severe damage to water bodies [22,23]. In this regard, treating the effluents is a must.
Various efforts based on conventional water treatment techniques, including physical,
chemical, and biochemical treatments, have been introduced [24]. However, recently,
more efforts have been made to be sustainable, which could not be satisfied by traditional
treatments such as membrane systems, adsorption facilities, reverse osmosis, or biochemical
treatments [25–27]. This is due to these techniques not being able to attain complete
treatment, along with their lack of recyclability, which limits their applications [28,29].
Thus, the emergence of AOPs, which possess a high conversion rate when eliminating toxic
substances [30,31], has attracted researchers in the field of wastewater treatment, who wish
to use sustainable materials [32,33].

In line with the principles of green chemistry, chitosan, a biopolymeric material, was
incorporated with magnetite to form a composite substance, using a simple co-precipitation
methodology. Then, the prepared samples were characterized using X-ray diffraction
(XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating-sample magnetometer
(VSM), scanning electron microscope (SEM), and transmission electron microscopy (TEM)
images, which verified the presence of composite nanoparticles. Subsequently, to over-
come the global challenges of wastewater treatment and its negative effect on the water
quality, the use of such a composite for eliminating wastewater deterioration was intro-
duced. The system was applied for oxidizing the insecticide methomyl using an ultraviolet
Fenton reaction. The system parameters were studied, the optimized conditions were
recorded, and the results confirmed the efficiency of the system as a novel treatment for
agricultural wastewater.
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2. Results and Discussion
2.1. Characterization of the Composite Material
2.1.1. XRD Analysis

The X-ray diffraction (XRD) pattern of the synthesized composite is displayed in
Figure 1. As shown in Figure 1, strong diffraction peaks arose at diffraction angles of
2θ = 30.1, 35.6, and 43.2◦, which reflect the peaks of the [220], [311], and [400] planes
of magnetite [26,33]. According to the XRD graph, these magnetite nanoparticles were
crystalline in nature and coated the amorphous chitosan. Also, it should be noted that the
well-defined sharp diffraction peaks and the broadening of those peaks shows the small size
of these nanosized particles without producing damage to the magnetite crystal structure.
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Figure 1. XRD pattern of the chitosan–magnetite nanocomposite.

2.1.2. SEM Micrographs

The characteristic morphology of the chitosan–magnetite composite, as a photocat-
alyst, was explored by scanning electron microscope (SEM) analysis, and the images at
different magnifications are shown in Figure 2. According to the images, agglomerated
nanoparticles were found at the surface of the chitosan. Chitosan plays a vital role as
a crosslinker to establish a more spherical morphology of the nanoparticles. Magnetite
nanoparticles are shown as spherical particles with a narrow grain-size distribution, rep-
resenting the magnetite nanoparticles as displayed in the inset of the Figure 2, with the
smooth surface of chitosan. Crosslinked polymers can adsorb and retain large amounts
of water. Thus, such polymer matrices adsorb water and pollutants through diffusion
mechanisms and macromolecular relaxation during swelling processes. Therefore, such
polymers are suitable candidates for the treatment of polluted water, due to their superior
properties of high chemical stability, low economic cost, and the accessibility of recovery.
Due to the presence of large numbers of hydroxyl and amino groups, chitosan can easily
adsorb various pollutants. Furthermore, chitosan’s properties can be enhanced by adding
nanoparticles, or by crosslinking with synthetic polymers or biopolymers.
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Figure 2. SEM images of the chitosan–magnetite composite material at different magnifications.

2.1.3. TEM Images

In order to illustrate and clarify the morphology of chitosan decorated with magnetite
nanoparticles as a composite, transmission electron microscope (TEM) analysis was con-
ducted, and the images are displayed in in Figure 3 at different magnifications. The images
exhibit that the chitosan is decorated with magnetite nanoparticles with a spherical shape.
The chitosan material was loaded with a homogeneous distribution of spherical magnetite
spheres. However, it is noteworthy that due to the dipole–dipole attraction forces linked
to the magnetite particles, some of the nanoparticles aggregated with one another. In
summary, the TEM images of the composite sample reveal the homogeneity of the sample,
which reflects the homogeneous dispersion of magnetite particles in the composite. It is
noteworthy that such preparation methods are based on co-precipitation and the use of
NaOH as a surfactant to control the semi-spherical shape, and the pH value is associated
with the particle-size distribution.
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(a) Transmission electron microscope (TEM) analysis. (b) The particle-size distribution of the chitosan–
magnetite composite.

Furthermore, the particle-size distribution of the chitosan–magnetite composite was
calculated, and the histogram is displayed in the inset of Figure 3b. The particle-size
distribution of the composite ranged from 5.22 to 30.26 nm, with an average particle size of
17.35 nm. These results confirm the nanosized range of the synthesized composite. Such
particle sizes are quite reasonable to offer a high surface area of the particles to enable
an efficient photocatalytic degradation reaction. Commonly, particle size has an effect on
the treatment, since it affects the surface area of the catalyst responsible for the pollutant
oxidation. Hence, a low particle size range is favorable, since such particles possess a high
surface area and, therefore, the number of active sites available for treatment is high.
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2.1.4. FTIR Analysis

Fourier-transform infrared (FTIR) spectroscopy of the prepared chitosan–magnetite
composite was conducted to confirm the encapsulation of the magnetite nanoparticles on
the chitosan, as well as the formation of the composite. The data displayed in Figure 4
show the spectra between 400 and 4000 cm−1. The absorption bands at 3431 cm−1 due to
−NH or –OH stretching vibrations signify the characteristic IR spectrum of chitosan, while
those at 2922 and 1471 cm−1 represent the –CH stretching of the copolymer of chitosan [32].
The amide II bands (−NH bending and C=N stretching) appeared at 1633 and 1469 cm−1,
respectively, for the presence of chitosan [8]. The characteristic peak at 557 cm−1 reflects
the Fe−O stretching vibration, which represents the stretching vibration of magnetite
nanoparticles [33]. Also, the peak of −CH stretching was confirmed at 2922 cm−1 [33].
Additionally, the C-O-C group is represented by the band at 1069 cm−1.
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2.1.5. VSM Analysis

VSM is still signified as efficient way to evaluate substances’ magnetism. This is
assessed as follows: the larger the hysteresis loop, the better the magnetic susceptibility [32].
Using this concept, the saturation magnetization of the attained chitosan–magnetite sample
was investigated, and the data are exhibited in Figure 5. The saturation magnetization of
the prepared sample was 13.12 emu/g, indicating the presence of magnetism even though
the chitosan was conjugated with the magnetite particles in the composite. However,
according to the literature, the saturation magnetization of pristine magnetite nanoparticles
is 69.48 emu/g [32], which is a lot higher than that of the proposed composite. But it is
noteworthy that the sample still possessed a magnetic characterization and could be signi-
fied as a good superparamagnetic material. Such characteristics indicate that the material
possesses the merits of easy solid–liquid phase separation after the wastewater treatment.
Thus, the catalyst is signified as sustainable, since it is recyclable for successive treatments.
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Figure 5. VSM measurement of the chitosan–magnetite composite material.

2.2. Studies on Methomyl Oxidation
2.2.1. Effects of Reaction Time and Methomyl Loading

In order to reach a real-scale application where the initial pollutant concentration was
altered, the methomyl wastewater loading was achieved as a function of reaction time.
Figure 6 jointly displays the reaction time of oxidation and the effect of the methomyl
loading using the chitosan–magnetite composite for the catalytic oxidation of a modified
Fenton system under UV illumination. The efficiency of such performances was evaluated
for various methomyl concentrations under oxidation with H2O2/chitosan–magnetite of
40 and 100 mg/L, respectively, at pH 3.0.

The results displayed in Figure 6 exhibit that even though all of the methomyl load-
ing could be oxidized by the H2O2/chitosan–magnetite-based Fenton reaction oxidation
protocols, the removal efficiency differed according to the methomyl load, where higher
loading reduced the efficiency to only 80%, compared to complete removal within 60 min
for the low concentrations (50 mg/L). To illustrate, hydroxyl radicals were traced through
the catalytic decomposition of the H2O2 reagent by the catalyst nanocomposite material.
This could be attributed to the fact that the hydrogen peroxide and catalyst were the same,
while the methomyl loading was increased, meaning that the OH radicals generated were
not sufficient to oxidize all of the methomyl molecules. Also, it is noteworthy that higher
removal efficiency was attained within the initial reaction time for all of the methomyl
concentration systems. Additionally, whereas chitosan was previously signified just as
an adsorbent substance, scattered literature [8,34] has proposed it as a photocatalyst due
to its photocatalytic activity. Additionally, the available active vacant adsorbent sites on
the chitosan–magnetite composite are not enough to adsorb methomyl molecules [33].
Hence, chitosan–magnetite is proposed as a recoverable photocatalyst that verifies the
merits of sustainability. The trend of increasing the methomyl loading resulted in a decline
in the oxidation efficacy, in accordance with the previously reported literature on treating
dye-polluted water [8].



Gels 2023, 9, 864 8 of 18Gels 2023, 9, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 6. Effects of reaction time and methomyl loading on the chitosan–magnetite-based oxidative 
system. 

2.2.2. Effect of Hydrogen Peroxide 
In the light of attaining the highest composite activity, it is essential to achieve the 

optimal concentration of hydrogen peroxide incorporated into the magnetite-decorated 
chitosan biopolymer. This leads to the initiation of the Fenton reaction with the supple-
mented optimal dose of H2O2. Therefore, the hydroxyl radicals generated can reach the 
maximal value. In this regard, initially, the hydrogen peroxide was combined with chi-
tosan–magnetite at concentrations varying from 100 to 800 mg/L (under acidic conditions 
(pH 3.0) and with a catalyst dose of 40 mg/L), and the methomyl removal efficiency was 
recorded. The results are exhibited in Figure 7, demonstrating that the increase in the 
hydrogen peroxide dose from 100 to 400 mg/L could greatly affect the oxidation effi-
ciency. However, an opposite trend was found when the dose reached 800 mg/L. This 
result could be associated with the presence of OH radicals, which are the main drivers of 
oxidation. The maximal occurrence of OH radicals is related to the optimal quantities of 
hydrogen peroxide and catalyst. The result leads to an increase in the photocatalytic 
methomyl removal efficiency. Also, the photocatalytic activity is highest when the hy-
drogen peroxide concentration is 400 mg/L, resulting in an increased oxidation yield [35]. 

Figure 6. Effects of reaction time and methomyl loading on the chitosan–magnetite-based oxida-
tive system.

2.2.2. Effect of Hydrogen Peroxide

In the light of attaining the highest composite activity, it is essential to achieve the
optimal concentration of hydrogen peroxide incorporated into the magnetite-decorated
chitosan biopolymer. This leads to the initiation of the Fenton reaction with the supple-
mented optimal dose of H2O2. Therefore, the hydroxyl radicals generated can reach the
maximal value. In this regard, initially, the hydrogen peroxide was combined with chitosan–
magnetite at concentrations varying from 100 to 800 mg/L (under acidic conditions (pH 3.0)
and with a catalyst dose of 40 mg/L), and the methomyl removal efficiency was recorded.
The results are exhibited in Figure 7, demonstrating that the increase in the hydrogen per-
oxide dose from 100 to 400 mg/L could greatly affect the oxidation efficiency. However, an
opposite trend was found when the dose reached 800 mg/L. This result could be associated
with the presence of OH radicals, which are the main drivers of oxidation. The maximal
occurrence of OH radicals is related to the optimal quantities of hydrogen peroxide and
catalyst. The result leads to an increase in the photocatalytic methomyl removal efficiency.
Also, the photocatalytic activity is highest when the hydrogen peroxide concentration is
400 mg/L, resulting in an increased oxidation yield [35].

2.2.3. Effect of Chitosan–Magnetite Nanocomposite Loading

In an effort to achieve optimized catalyst use for appropriate applications, the effect
of the catalyst (chitosan–magnetite) loading on the performance of the photocatalytic
oxidation was tested. In this regard, the loading of the chitosan–magnetite nanocomposite
was checked to investigate the oxidation capabilities of H2O2/chitosan–magnetite (Figure 8).
The data exhibited in Figure 8 display the effects of the Fenton oxidation on different
chitosan–magnetite loadings, from 10 to 80 ppm; however, all other operating parameters
were kept constant (400 mg/L for H2O2, and pH of 3.0). The maximal methomyl removal
effectiveness was reached with a complete (99%) insecticide removal when 40 mg/L
catalyst was used as a source of the Fenton reaction, whereas it reached 90, 91, and 97%
removal within 60 min for chitosan–magnetite concentrations of 10, 20, and 80 mg/L,
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respectively. This might be due to the H2O2 dose of 400 mg/L, which was kept constant in
all experiments. Hence, the attained yield of •OH radicals generated was not sufficient to
achieve complete methomyl removal. This means that the hydrogen peroxide should be in
balance to maximize the hydroxyl radicals’ production and prevent the reduction in the
effective amount of •OH radicals. A similar validation was previously recorded by [35]
when treating wastewater via the photo-Fenton reaction test.
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2.2.4. Effect of pH on the Composite Performance

The effect of the initial solution pH on the methomyl oxidation was assessed through
changing the pH in the range from 3.0 to 9.0, with 400 mg/L hydrogen peroxide and
40 mg/L chitosan–magnetite catalyst under UV irradiance. The data exhibited in Figure 9
reveal that the methomyl oxidation rate improved with the decline in the pH value, and
the optimal operational pH value was in acidic conditions, corresponding to the value of
3.0. But increasing the pH value resulted in deterioration in the methomyl oxidation rate.
Remarkably, alkaline pH values were critical, since they decayed the oxidation rate.
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The effect of pH on the methomyl oxidation can be clarified by the surface charge of
the chitosan–magnetite catalyst. According to the previous data cited, the point of zero
charge of the chitosan–magnetite catalyst composite was recorded at pH 7.23 [8]. Hence,
the surface of the chitosan–magnetite catalyst could be negatively or positively charged,
due to dissociation of the basic character of the catalyst at a pHPZC of 7.9. Therefore, the
alteration in the medium’s pH imitates the surface charge of the catalyst and, hence, affects
the photocatalytic and adsorption efficiencies. Consequently, this might be illustrated by
the presence of low electrostatic interactions between the methomyl molecules and the
chitosan–magnetite catalyst at alkaline pH, hence reducing the oxidation rate is [35].

2.2.5. Temperature Effect, Oxidation Kinetics, and Thermodynamic Determination

It is essential to demonstrate the effect of temperature for “real practical applications”,
since it affects reaction rates. Also, in real life, the discharged aqueous effluent may be at
various temperatures. With this in mind, the aqueous methomyl solution’s temperature
was varied from 26 to 60 ◦C to assess the effect of temperature on the oxidation reaction.
The experimental data displayed in Figure 10 demonstrate a reduction in the methomyl
oxidation rate with the elevation of the solution temperature in the studied range. Almost
complete (99%) methomyl removal was attained in about 60 min of reaction time at room
temperature, but at higher temperatures (i.e., above room temperature (26 ◦C)) the efficiency
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declined. It is noteworthy that the optimal temperature corresponded to 26 ◦C for achieving
better oxidation, in accordance with the previous work reported in [36] on treating landfill
leachate through the Fenton reaction. Nevertheless, the overall yield of hydroxyl radicals
is reduced at high temperatures, further reducing the methomyl oxidation. Also, a high
aqueous solution temperature decomposes hydrogen peroxide into O2 and H2O; hence,
a reduction in the overall oxidation is also achieved. However, scattered works have
found that high temperatures enhance the OH radicals’ generation and, thus, enhance
the oxidation rate [37–39]. Additionally, it is notable that some other researchers have
specified that temperature has a small terminal effect on the Fenton system compared to
the abovementioned parameters.
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The oxidation kinetics is useful for the estimation for the reactor design and the system
control, which both affect the process’s cost. Kinetic studies of oxidation are essential for
the heterogeneous combination of a chitosan–magnetite catalyst with hydrogen peroxide
to eliminate and oxidize methomyl in an aqueous matrix and check the complexity of inter-
mediates formed during the Fenton-based system. For further examining the oxidation
test through the chitosan–magnetite Fenton system, a kinetics study was conducted. Based
on the overall methomyl content, the kinetics study was carried out, the methomyl oxida-
tion was examined as a function of time, and the data were fitted in linearized integrated
equations for both first- and second-order kinetics models (as exhibited in Table 1).

The rate constants were then investigated by calculations based on linearized equations
(Table 1). The correlation coefficient (R2) values were used to determine the best-fitting
model. High values of the correlation coefficient represent the goodness of fit of a model.
We compared the R2 values estimated from the aforementioned equations to suggest the
best-fitting model. Thus, oxidation followed the second-order reaction kinetics, since the
correlation coefficient values were the highest (0.86–0.94) in comparison to the first-order
reaction kinetics model. Correspondingly, the reaction time half-life (t1/2) values were
also calculated using half-life equations derived for first- and second-order kinetics (the
results are tabulated in Table 1). It was determined that the t1/2 values calculated through
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the second-order kinetics equation were closely linked to the experimental data. This
estimation was in accordance with the previous cited data in research articles [39–41].

Table 1. Parameters of first- and second-order kinetics models for methomyl oxidation by the
chitosan–magnetite Fenton system.

Kinetics Model Parameters

Values

T, ◦C

26 ◦C 40 ◦C 50 ◦C 60 ◦C

Pseudo-first-order
(C t = Co − ek1t)

k1 (min−1) 0.129 0.090 0.101 0.072
t1/2 (min) 9.6 6.8 7.7 5.3

R2 0.6 0.59 0.54 0.59

Pseudo-second-order
(
(

1
Ct

)
=

(
1

C0

)
− k2t)

k2 (L·mg−1·min−1) × 10−2 1.57 0.53 0.31 0.28
t1/2 (min) 1.27 3.77 6.45 7.14

R2 0.86 0.94 0.92 0.90

To obtain a good overall understanding of the reaction system, it is essential to
further understand the effect of temperature on the reaction’s thermodynamics. The
thermodynamic activation values of the parameters were assessed via the Arrhenius fit
(lnk2 =lnA− Ea

RT ), which is based on the second-order kinetics model, since it fitted the
experimental data well, where A and R are a pre-exponential factor and the gas constant,
respectively, while Ea is the energy of activation, which is determined from this relation
by plotting lnkS versus 1/T, giving a linear relation (Figure 11) whose slope is match-

ing (−Ea/R). Then, the Eyring equation (k2 = kBT
h e(−

∆G′
RT )) (kB and h are Boltzmann’s and

Planck’s constants, respectively) was used to evaluate the thermodynamic parameters.
Enthalpy (∆H′) and the entropy (∆S′) of activation can be estimated from (∆H′ = Ea − RT)
and (∆S′ = (∆H′ − ∆G′)/T), respectively [42].
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In summary, Table 2 shows the thermodynamic parameters, as well as the energy of
activation. The data reveal that the oxidation proceeds in a non-spontaneous manner, since
the Gibbs free energy of activation is positive, which means that the oxidation is endergonic.
This non-spontaneity is verified by the negative values of entropy (∆S′) and positive values
of the enthalpy of activation ( ∆H′) through the whole temperature range. Negative values
of ∆S′ were attained because of the increase in randomness of the methomyl molecules and
the ·OH radical species generated [32]. The reaction is endothermic in nature (∆H′> 0), and
the ∆S′ decreased with the increase in temperature. This is consistent with the previous
findings in the literature [8] on treating aqueous contaminants.

Table 2. Thermodynamic parameters for methomyl oxidation by the chitosan–magnetite-based
Fenton system.

Thermodynamic
Parameters

T/◦C

26 ◦C 40 ◦C 50 ◦C 60 ◦C

∆G′ (kJ/mol) 83.56 92.50 96.94 100.25
∆H′ (kJ/mol) 34.91 34.73 34.65 34.57
∆S′ (J/mol K) −162.70 −180.50 −188.75 −193.18
Ea (kJ/mol) 37.39

2.2.6. Catalyst Stability Assays

To confirm the catalyst’s sustainability, catalyst recovery and reuse were evaluated.
Initially, the catalyst was collected after fresh or successive use. The catalyst was recoverable
and, thus, no expected byproducts were attained. The material was collected via filtration.
Subsequently, it was washed with distilled water. Thereafter, the washed material was
dried in an electric oven (150 ◦C) for one hour. With the same illumination time, the
catalyst activity was checked using a catalytic Fenton reaction (Figure 12). A high removal
efficiency of 91% was achieved after the first use, in comparison to 99% for fresh use.
However, this declined to 82% after the next use, which is still considered to be a high
removal efficiency. These results confirm the catalyst’s sustainability. However, the decline
in the efficiency is linked to the insecticide’s occupation of the catalyst surface. This could
be linked to the composite material’s active sites, which might be occupied by some organic
intermediates, which shield those active centers and, thus, block them from attacking the
organic pollutants. Consequently, the overall reaction rate was reduced [26].
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2.2.7. Comparative Investigation

Table 3 shows the Fenton oxidation based on the current environmentally benign
investigation, compared with the findings of previously studies. Some previous studies
cited in the literature were assessed and compared with the present data based on the
results of the current work. The comparative data summarized in Table 3 are based on
the comparison of previous composite-based Fenton oxidation systems with the current
composite’s performance.

Mixed copper oxides have been investigated as Fenton source materials [43–46]; how-
ever, scattered authors [8,23,46] have used magnetite-based campsite as a Fenton source.
Such magnetite-based campsite has been recorded as a superior catalyst, since it is an easily
recoverable substance, offering the opportunity for reuse. Thus, such studies possess the
advantage of using a recyclable material. Also, using a waste material in the composite
to convert the catalytic oxidation is a win–win technology, such as in the current study,
where we introduced chitosan from marine waste, as well as the works introduced in
other research [33,44] that used aluminum-based sludge material. Not only is the use of
catalysts from waste streams environmentally benign, it also minimizes the cost of the
treatment. Thus, the current study combined catalyst reusability through a gel polymer
“chitosan”-based composite and environmental sustainability by using chitosan waste
material. A remarkably small amount of material was used in comparison to other studies,
suggesting the significance of the current work’s composite as an economical and benign
substance. In summary, it is essential to mention that complete pollutant oxidation was
achieved in the current work.

Table 3. Comparative investigation between the current study and various composites from Fenton
systems reported in the literature.

Composite Type Induction Source
of Fenton System Pollutant Pollutant

Load
Catalyst

Dose pH Oxidation
(%) Ref.

Chitosan–
magnetite Ultraviolet Methomyl

insecticide 50 ppm 3.0 g/L 3.0 Complete
oxidation

Current
work

Chitosan–
magnetite Ultraviolet Basic blue

dye 10 ppm 2.4 mg/L 7.0 Complete
oxidation [8]

LaFeO3/BiOBr Ultraviolet Rhodamine B
dye 5 ppm 0.1 mg Not

available 98.2% [14]

Mixed copper
oxides

Microwave
irradiance

Methomyl
insecticide 50 ppm 3.0 g/L 6.5 91% [43]

Silica-supported
iron Solar radiation Methomyl

insecticide 100 ppm 103 mg/L 2.8 98% [44]

Magnetite–
CeO2-g-C3N4

Visible light
Tetracycline
hydrochlo-

ride
50 mg/L 50 mg/L 2.7 96.63% [46]

Silver/bismuth/iron
oxides Visible light Methyl

orange 40 ppm 0.6 g/L Not
available 97% [11]

Cellulose–
magnetite Ultraviolet Red K-HL

dye 50 ppm 1 g/L 3.0 99% [45]

Alum sludge
waste–magnetite Ultraviolet Methomyl

insecticide 50 ppm 50 mg/L 6.0 Complete
oxidation [22]

Titanium/iron
oxides Ultraviolet light Methyl

orange 80 ppm 200 mg/L 4.5 97% [34]
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Table 3. Cont.

Composite Type Induction Source
of Fenton System Pollutant Pollutant

Load
Catalyst

Dose pH Oxidation
(%) Ref.

Aluminum-
based

waste–magnetite
Ultraviolet Levafix blue

dye 50 ppm 2 g/L 2.0 Complete
oxidation [23]

TiO2@NH2-MIL-
88B(Fe) Visible light Methylene

blue 100 ppm 200 mg/L 7.0 Complete
oxidation [34]

3. Conclusions

The current investigation effectively tailored and perceptively fabricated magnetic
chitosan and converted it from a marine gel waste into a valuable photocatalyst through
the co-precipitation method. The morphology and structure of the synthesized magnetite–
chitosan substance were effectively investigated and studied. The photocatalytic exper-
iments revealed that the Fenton-based chitosan-conjugated magnetite nanoparticles, as
a source of the Fenton reaction, could completely oxidize methomyl in wastewater. The
oxidation rate reached 99%, which is almost complete removal, within 1 h of irradiance
time, which verifies the effective oxidation of methomyl molecules from contaminated
water. Additionally, the operative parameters were optimized, and the kinetics of the
reaction was examined. The kinetics data showed the reaction following the second-order
reaction kinetics model, with an activation energy that reached 37.39 kJ/mol. Also, the
catalyst was recovered for reuse, and its sustainability was verified, which confirmed the
catalyst as an eco-friendly material from various perspectives. Hence, the proposed catalyst
is a promising candidate for eliminating insecticides from agricultural effluent.

4. Materials and Methods
4.1. Synthesis of Chitosan–Magnetite Nanocomposite

Chitosan, as a marine polysaccharide derived from a marine creature, i.e., shrimp shell
waste, was introduced as a gel biopolymeric material. Chitosan was applied in its dried
form and decorated with magnetite to form a nanocomposite that was synthesized by co-
precipitation, followed by the hydrothermal route [33]. Droplets of acetic acid were added
to a definite weight of chitosan, which was then placed in distilled water and subjected to
mixing through stirring. In the meantime, ferrous and ferric salts were also dissolved in
distilled water. Then, the mixture solutions were mixed together prior to the addition of
droplets of sodium hydroxide to elevate the pH to about 10 during heating. The prepared
mixture had a 5-to-1 ratio of chitosan to magnetite. The result was a precipitate that was
collected and then subjected to successive washing to reduce the pH, and then the formed
material was dried to attain the powder composite for use.

4.2. Methomyl Oxidation Test

The insecticide C5H10N2O2S (“Methomyl”) was used as a simulated aqueous agricul-
tural waste stream. Initially, a 1000 ppm stock solution was prepared, to which successive
dilution was applied when various concentrations were required. Hydrogen peroxide (30%
w/v) was used to initiate the catalysis of the chitosan–magnetite reagent. Both reagents
were the source of the Fenton reaction. The pH of the insecticide solution was adjusted to
the needed values by using sulfuric acid or sodium hydroxide (Sigma-Aldrich, Darmstadt,
Germany). Notably, the chemicals used were applied as received from the supplier, without
extra purification or treatment.

First, 100 mL of “Methomyl” insecticide solution was poured into a glass container in
order to investigate the effect of the methomyl concentration on the extent of the Fenton
oxidation. Next, both reagents, namely, the chitosan–magnetite composite and H2O2, were
added at the required concentrations to the methomyl solution. Subsequently, the whole
mixture was subjected to magnetic stirring to ensure good dispersion under the ultraviolet
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irradiance. In this regard, a UV lamp (15 W, 230 V/50 Hz, with 253.7 nm wavelength)
was used as the ultraviolet source. The operating parameters were investigated, i.e.,
illumination time (from 10 to 60 min), methomyl loading (50 to 500 mg/L), hydrogen
peroxide concentration (100 to 800 mg/L), catalyst (10 to 80 mg/L), and temperature
(26 to 60 ◦C). After specific time intervals, the samples were subjected to spectrophotometric
analysis. All of the runs were conducted in triplicate, and the averages were displayed.
The solution temperature during the runs was adjusted to the desired values prior to the
addition of Fenton’s reagent. The graphical representation of the catalyst preparation and
treatment steps is displayed in Figure 13.
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4.3. Characterization Techniques

The phase structure of the prepared composite was determined through XRD with
an X-ray pattern model X-lab Shimadzu X-6000 X-ray diffractometer that worked with
a scan step of 0.02◦. Also, FTIR analysis was conducted in the wavenumber region of
400–4000 cm−1, using a Jasco FTIR-4100 (Hachioji, Tokyo 193-0835, Japan). Composite
morphology was explored using scanning electron microscopy (SEM) (model: Quanta
FEJ20, Beijing, China) and transmission electron microscopy (TEM) (model: Tecnai G20,
FEI, Bellaterra, Barcelona, Spain).
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