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Abstract: Chondroitin sulfate (ChS), chitosan (Chi), and fish gelatin (FG), which are byproducts of
a fish-treatment small enterprise, were incorporated with glycerol (Gly) to obtain dense hydrogel
membranes with reduced brittleness, candidates for dressing in wound healing applications. The
mechanical properties of all samples were studied via Dynamic Mechanical Analysis (DMA) and
tensile tests while their internal structure was characterized using Attenuated Total Reflectance-
Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD) instruments. Their
surface morphology was analyzed by ThermoGravimetric Analysis (TGA) method, while their water
permeability was estimated via Water Vapor Transmission Rate (WVTR) measurements. Wettability
and degradation rate measurements were also carried out. Characterization results indicated that
secondary interactions between the natural polymers and the plasticizer create the hydrogel mem-
branes. The samples were amorphous due to the high concentration of plasticizer and the amorphous
nature of the natural polymers. The integration of ChS led to decreased decomposition temperature
in comparison with the glycerol-free sample, and all the materials had dense structures. Finally, the
in vitro endothelial cell attachment studies indicate that the hydrogel membranes successfully sup-
port the attachment and survival of primary on the hydrogel membranes and could be appropriate
for external application in wound healing applications as dressings.

Keywords: chitosan; fish gelatin; chondroitin sulfate; hydrogel membranes; wound dressing; in vitro
cell colonization; gelatin glycerol; biomedical applications; membranes; biomaterials

1. Introduction

In recent years, wound management methods have evolved considerably due to the
deeper understanding of the molecular and cellular processes that take place during the
healing process and the factors controlling it. Consequently, the design and functionality
of the wound healing patches has turned to the creation of multi-functional materials.
Wounds are dissimilar in nature and characteristics and depend on a variety of factors,
such as origin (burn, surgery, incision, etc.), the state of health of the person and, the
manifestation of infection [1]. Therefore, the requirements of the wound for a wound dress-
ing, depend entirely on its type. Modern patches must be biocompatible, non-cytotoxic,
non-inflammatory, have a rate of degradation commensurate with the rate of new tissue
formation and prevent/treat possible infections [2,3]. The most important property re-
quired for wound dressings and especially those intended for burns, is the ability to absorb
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and retain water. For this type of damage, it is necessary to keep the wound hydrated, to
absorb its secretions and accelerate the healing process by avoiding cellular dehydration
in order to promote collagen synthesis and angiogenesis [4]. Proper hydration increases
the healing rate, protects the wound from infections, and reduces pain [5]. The synthetic
process of the patches must be simple, fast, and economically advantageous. They must
also provide mechanical stability to the wound and be easily sterilized [1].

Hydrogels are hydrophilic macromolecular networks, synthesized through the for-
mation of physical and chemical crosslinking [6]. The characteristics of the hydrogels
depend significantly on the polymers used (natural, synthetic or a combination of the two)
and the interactions between them [7]. The formation of covalent bonds improves the
mechanical properties; however, it leads to a reduction in the degradation rate, affecting
the biocompatibility of the materials synthesized [8,9]. Physical crosslinking leads to the
formation of a relatively weak network through molecular and/or secondary interactions
such as electrostatic interactions, hydrogen bonds and hydrophobic interactions [7,10].
The disruption of the network in the case of physically crosslinked hydrogels can result
from changes in various conditions (pH, temperature, solvent) giving these materials
excellent properties (controlled release of bioactive agents and drugs). The main advan-
tage of hydrogels synthesized through physical crosslinking, is biocompatibility because
no crosslinker is required for the network formation and the potential toxicity problems
that can be caused by cross-linkers (genipin, glutaraldehyde, etc.) used during chemical
crosslinking are avoided [7,8]. Polysaccharide and protein-based materials have functional
groups, such as hydroxyl groups, carboxyl groups and amino groups, providing binding
sites appropriate to form secondary interactions. The weak interactions developed through
physical crosslinking stabilize the network and the dissolution of the hydrogel is avoided.

Natural polymers like chitosan, gelatin and collagen are widely used in wound man-
agement due to their attractive properties (biodegradation, biocompatibility etc.) [11,12].
However, their use is limited to developing porous materials through complicated synthetic
routes. The use of dense, non-porous hydrogel membranes in applications such as wound
healing is also limited. Sharma et al. developed a polyelectrolyte complex (PEC) using
chitosan and chondroitin sulfate for effective management of chronic wounds [13] Liu
et al. developed biodegradable and cytocompatible coatings or the Prevention of Implant-
Associated Infection [14]. Lu et al. developed chitosan hydrogels crosslinked with the
synthetic polymer PEG as candidate antibacterial wound dressings [15].

In the present study hydrogel membranes were synthesized via a green process and
characterized via various instrumental and in-vitro methods. These hydrogel membranes
consisting of bio-based and bio-degradable materials such as Chitosan (Chi), Fish Gelatin
(FG), Chondroitin Sulfate (ChS), and Glycerol (Gly). The novelty of this work is the
development of dense hydrogel membranes by the incorporation of the ChS biomaterial
in a ChS-free material developed in a previous published work [16], to further improve
some properties. The comparison of these two groups of materials shown improvement
of cell-adhesion and water-uptake properties, which are significant properties for wound
healing applications, while the mechanical properties remain stable. The objective of
the current work is to study the effect of ChS integration on the overall properties of the
materials. ChS was selected because of its antioxidant, anti-inflammatory and anti-apoptotic
properties [17,18]. ChS has a wide range of bioactivities including tissue regeneration,
intracellular signaling, cell proliferation, and cell adhesion [19,20]. Fialkova et al. [21],
reported that topical application of ChS on the wound surface of rats after surgery resulted
in a significant reduction in edema of the tissue surrounding the wound compared to the
wound where ChS was not used. It was also shown that the application of ChS led to a
reduction in hyperemia and wound secretions in relation to wounds where ChS not applied.
However, the use of ChS in wound healing applications is still limited.
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2. Results and Discussion
2.1. ATR-FTIR Spectroscopy

Components’ inter- and intra-molecular secondary interactions were studied using an
ATR-FTIR instrument. ChS, Chi30Gly70, Chi13FG53Gly34 (chitosan/fish-gelatin/glycerol), and
Chi13FG50ChS3Gly34 spectra, obtaind from this instrument, are shown in Figure 1. Figure 1a
presents the spectrum of the ChS membrane. The broad peak between 3600–3200 cm−1 arises
from the stretching vibrations of the OH and NH groups [22]. The peak observed at
1610 cm−1 is representative of carbonyl groups (C=O). The peak at 1228 cm−1 is ascribed to
then negatively charged group -OSO3− of ChS [20]. The peaks at 1631 cm−1, 1637 cm−1 and
1637 cm−1 appear in Figures 1b, 1c and 1d respectively, attributed to stretching vibrations
of C=O. The peaks revealed at 1553 cm−1, 1543 cm−1 and 1543 cm−1, ascribed to bending
vibrations of N-H, while the peaks at 1240 cm−1, 1238 cm−1 and 1244 cm−1 indicate
bending vibrations of N-H groups [23]. The observed shifts of the peaks in the spectra
Figure 1c relative to the spectra Figure 1b, indicate hydrogen bonds formation between
chitosan and fish gelatin [23–25]. The shifts of Figure 1d relative to the spectra Figure 1b,
designate CONH2 formation (interactions between chitosan and chondroitin sulfate). The
increased intensity of the peak at 1244 cm−1 in Figure 1d confirm the interactions between
chondroitin sulfate and chitosan [20,23]. The observed peaks at 2926 cm−1 (Figure 1b),
at 2936 cm−1 (Figure 1c) and 2934 cm−1 (Figure 1d) are representative of asymmetrical
stretching vibrations of C-H groups while the peaks at 2879 cm−1 (Figure 1b), at 2876 cm−1

(Figure 1c) and 2883 cm−1 (Figure 1d) arises from symmetrical stretching vibrations of C-H
groups of chitosan. The broad peaks between 3500–3000 cm−1 indicate the existence of
stretching vibrations of O-H and N-H groups [23]. The shifts designate ionic interactions
between the natural polymers and hydrogel membrane formation from polyelectrolytes.
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Figure 1. FTIR spectra of chondroitin sulfate (ChS) (a), chitosan/glycerol (Chi30Gly70) (b), chi-
tosan/fish gelatin/glycerol membrane (Chi13FG53Gly34) (c) and chitosan/fish gelatin/chondroitin
sulfate/glycerol membrane (Chi13FG50ChS3Gly34) (d).
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2.2. XRD Analysis

The XRD patterns of ChS, Chi13FG53Gly34 and Chi13FG50ChS3Gly34 are shown in
Figure 2. Figure 2a represents the XRD pattern of ChS. The broad peak appears at 2θ = 24◦,
confirms the amorphous nature of polysaccharide. The amorphous nature of chondroitin
sulfate ascribed to the low crystallinity profile of the main chain of the natural poly-
mer [26–28]. The rest of the materials showed a similar behavior (Figure 2b,c).The amor-
phous nature of the natural polymers utilized in the present work as well as the high
concentration of the plasticizer, led to the development of amorphous materials [29].
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Figure 2. XRD diffractograms of ChS (a), Chi13FG53Gly34 (b) and Chi13FG50ChS3Gly34 (c).

2.3. TGA Measurements

The results of the TGA measurements of Chi13FG53Gly34 and Chi13FG50ChS3Gly34 (be-
fore and after the integration of ChS are depicted in Figure 3. In all the thermograms a mass
loss in the range between ~80–150 ◦C is observed, showing the materials’ water removal.
A notable mass loss occurs in the temperature range 220–400 ◦C. This loss is ascribed to
materials’ functional groups disintegration and because of this the materials’ disruption.
Figure 3a shows the thermal decomposition of ChS-free material while Figure 3b the results
of ChS-containing material, respectively. In the first case the decomposition begins at
200 ◦C while after the integration of chondroitin sulfate, begins at 180 ◦C. The addition of
chondroitin sulfate led to decreased thermal stability perhaps due to poor miscibility of the
components. The remaining 20–30% of the mass is ascribed to remaining ash.

2.4. DMA Measurements

Dynamic mechanical analysis was used to examine the thermomechanical response
and the miscibility of the blends. In Figure 4 the results of the storage modulus as a
function of temperature of the hydrogel membranes Chi20FG20ChS5Gly55 (Figure 4a),
Chi17FG34ChS4Gly45 (Figure 4b), Chi13FG50ChS3Gly34 (Figure 4c) and Chi13FG53Gly34
(Figure 4d) are shown. All the materials showed a similar behavior in the range between
−70–120 ◦C. The integration of chondroitin sulfate did not improve the mechanical proper-
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ties of the materials, probably due to the low concentration used. The observed increase
in storage modulus after ~80 ◦C, is attributed to the removal of water which acts as a
plasticizer in these materials [30].
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Figure 5 shows the tan delta variation depending on temperature increase. The glass
transition temperatures (Tgs) of the hydrogel membranes Chi20FG20ChS5Gly55 (Figure 5a),
Chi17FG34ChS4Gly45 (Figure 5b), Chi13FG50ChS3Gly34 (Figure 5c) and Chi13FG53Gly34
(Figure 5d) are located at 0.9 ◦C, 4.4 ◦C and −8.7 ◦C respectively. The peaks appear in
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the range between 40–80 ◦C at Figure 5b–d, are attributed to the poor miscibility of the
natural polymers with the plasticizer and are the Tgs of chitosan and fish gelatin which did
not interact with chondroitin sulfate and glycerol. In Figure 5a only one Tg is observed,
indicating the development of a single-phase system.
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2.5. Tensile Properties

The average tensile strength and the respective strain to failure of the hydrogel mem-
branes are summarized in Table 1 and indicative stress-strain plots from the tested mem-
branes are presented in Figure 6. The Chi13FG53Gly34 can be regarded as the reference
membrane with an average stress of 6.03 MPa and a strain to failure equal to 152.95%.
According to the tensile tests the incorporation of ChS in the blend caused a decrease
of both the strength and the strain to failure values of the membranes. The smallest de-
terioration in terms of strength was observed for the Chi17FG34ChS4Gly45 specimens in
comparison to the reference membrane. On the other hand, the smallest decrease in the
strain to failure values was observed for the Chi13FG50ChS3Gly34 in comparison to the
reference membranes. An interesting observation is that although all the other membranes
failed in an abrupt manner, as indicated by curves Figure 6a,b,d, whereby a maximum
stress was observed and the specimens then ruptured suddenly, the Chi13FG50ChS3Gly34
specimens failed more gradually, sustaining the maximum stresses for an amount of strain.
This different and more ductile failure type was consistently observed in all the tested
specimens of this category. Literature values report normal human skin tensile strength in
the range 2.5–16 MPa and strain at break percentage 70% [31]. Such results are in agreement
with the experimental data of this study.
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Table 1. Mechanical properties of the hydrogel membranes Chi20FG20ChS5Gly55, Chi17FG34ChS4Gly45,
Chi13FG50ChS3Gly34 and Chi13FG53Gly34.

Specimen Stress (MPa) Strain (%) % Change in
Stress

% Change in
Strain

Chi20FG20ChS5Gly55 2.64 ± 0.23 52.87 ± 2.61 −56.22 −65.43

Chi17FG34ChS4Gly45 3.33 ± 1.00 62.35 ± 1.46 −44.78 −59.24

Chi13FG50ChS3Gly34 2.89 ± 0.24 110.3 ± 7.75 −52.07 −27.88

Chi13FG53Gly34 6.03 ± 0.46 152.95 ± 8.85 reference reference
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2.6. SEM Measurements

SEM was used to study the influence of the synthetic procedure and the incorpo-
ration of ChS on the surface morphology of the hydrogel membranes. Representative
surface and cross section SEM images of the hydrogel membranes Chi20FG20ChS5Gly55 (a),
Chi17FG34ChS4Gly45 (b), Chi13FG50ChS3Gly34 (c) and Chi13FG53Gly34 (d) are illustrated in
Figure 7. All the samples show dense morphology, while no pores or voids are observed.
The solvent evaporation method used to develop the hydrogel membranes is an effective
method for the development of hydrogel membranes with continuous and dense structure.

2.7. Water Uptake

Water uptake constitutes an important characteristic in wound dressings because
a moist environment is required to enhance wound healing and to avoid dehydration
in the wound area [32]. In the present study, the water uptake results are expressed as
Swelling Ratio (%) and are shown in Figure 8. The results verify the important role of
chondroitin sulfate in water uptake ability. The swelling ratio of the hydrogel membranes
Chi20FG20ChS5Gly55 (Figure 8a), Chi17FG34ChS4Gly45 (Figure 8b), Chi13FG50ChS3Gly34
(Figure 8c) and Chi13FG53Gly34 (Figure 8d) is 209%, 294%, 462% and 186%, respectively.
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Comparing the results depicted in Figure 8c with the results in Figure 8d, it is clear that
the incorporation of chondroitin sulfate led to increased water uptake ability due to the
hydrophilic nature of the natural polymer ChS. As can be seen from Table 2, the sample
Chi13FG50ChS3Gly34 contains the highest concentration of fish gelatin. The higher water
uptake capacity of that sample is attributed to the hydrophilicity of fish gelatin [16].
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Table 2. Code names and compositions of the hydrogel membranes.

Sample Code Chitosan
(w/v)

Fish Gelatin
(w/v)

Chondroitin Sulfate
(w/v)

Glycerol
(v/v)

Chi20FG20ChS5Gly55
(% wt. 20/20/5/55) 2% 2% 0.03% 4%

Chi17FG34ChS4Gly45
(% wt. 17/34/4/45) 2% 4% 0.03% 4%

Chi13FG50ChS3Gly34
(% wt. 13/50/3/34) 2% 8% 0.03% 4%

Chi30Gly70
(% wt. 30/70) 2% - - 4%

Chi13FG53Gly34
(% wt. 13/53/34) 2% 8% - 4%
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2.8. Degradation Rate

Degradation rate (%) results of the current study are presented in Figure 9. It is obvious
from this figure that the higher the fish gelatin concentration the higher the degradation
rates. This phenomenon occurs because of fish gelatin high solubility in water. The fish-
gelatin concentration increase cause an increase of non-active functional groups in the blend.
Thus, no hydrogen bonds formed with chitosan, chondroitin sulfate and glycerol groups.
The degradation rates were further increased after the addition of ChS. The higher degra-
dation rate (93% mass loss the 10th day) exhibited by the Chi13FG50ChS3Gly34 membrane
while the ChS free membrane Chi13FG53Gly34 showed reduced degradation rate (67% mass
loss the 10th day). The higher degradation rate observed for the Chi13FG50ChS3Gly34
relative to Chi13FG53Gly34 membrane is maybe attributed to poor miscibility of the blend
components after the integration of ChS due to lack of binding sites.

2.9. Water Vapor Transmision Rate (WVTR)

The results of Water Vapor Transmission Rate (WVTR) measurements interpretation
are presented in Figure 10. For the Chi20FG20ChS5Gly55, Chi17FG34ChS4Gly45,
Chi13FG50ChS3Gly34, and Chi13FG53Gly34 hydrogel membranes the WVTR values are
1605, 1218, 1064, and 934 g·m−2·d−1, respectively. The higher the fish gelatin concentration
in the blends the lower the water vapor permeability. The incorporation of chondroitin
sulfate with the fish gelatin increases the WVTR values comparing with the relevant WVTR
values of the ChS free material (Figure 10c versus Figure 10d). The vapors permeate the
ChiFGChSGly membranes through an adsorption and diffusion process [31]. According
to the literature reports the WVTR values of human skin varies from 204 g·m−2·day−1 to
5138 ± 202 g·m−2·day−1 depending on the type and healing stage of the wound [1,31]. The
WVTR values of the examined ChixFGxChSxSGlyx membranes were in the range of 1064
to 1605 g·m−2·day−1. Such values indicate the appropriation of the examined hydrogel
membranes for wound dressing.
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2.10. Attachment of Endothelial Cells on Hydrogel Membranes In Vitro

To test the biocompatibility of the Chi13FG53Gly34 and Chi13FG50ChS3Gly34 hydrogel
membranes, we addressed the attachment of primary endothelial cells. The choice of
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primary endothelial cells was dictated by the fact that (1) these cells are very sensitive
and do not easily attach to all surfaces and (2) due to their application in regenerative
medicine and tissue repair. Indeed, angiogenesis (the formation of blood vessels from pre-
existing ones) is critical for tissue regeneration and normal tissue function, as blood vessels
transport nutrients, oxygen and blood cells to all tissues, while removing waste materials
and carbon dioxide. The endothelial cells form a single cell layer that lines all blood vessels
and regulates exchanges between the bloodstream and the surrounding tissues, all cells
are located within 100 to 200 µm of blood vessels—the diffusion limit for oxygen [33]. We
found that endothelial cells attached successfully on both hydrogel membranes 4h after
their addition, providing strong evidence that there is no cytotoxicity and allowing the
further use of the membranes in in vitro and in vivo experiments. EC. attachment to the
Chi13FG50ChS3Gly34 membrane was statistically significantly higher (p < 0.05) compared
to the Chi15FG50Gly35 membrane as shown in Figure 11. This finding is supported by the
work of Thalla et al. reporting the incorporation of chondroitin sulfate improves membrane
properties by increasing endothelial cell adhesion [34–36].
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drogel membranes. Numbers of attached ECs at 4 h are expressed as fold change relative to
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* p < 0.05. Images of ECs infected with H2B-mCherry lentivirus after 4h on hydrogel membranes
Chi13FG50ChS3Gly34 (c) and Chi13FG53Gly34 (d).

3. Conclusions

In the present study, hydrogel membranes of dense chitosan/fish gelatin/chondroitin
sulfate/glycerol were synthesized. The solution casting-evaporation procedure was adopted
for this synthesis and the use of chemical crosslinkers was rejected because of their poten-
tial cytotoxicity effects. Materials’ properties changed because of the chondroitin sulfate
addition and the effect of its integration in the final product was evaluated. The increase
of fish gelatin content as well as the incorporation of chondroitin sulfate in the blend,
led to increased water uptake ability. Furthermore, the integration of chondroitin sulfate,
led to increase in WVTR and degradation rate. The attachment of endothelial cells was
supported by both the hydrogel membranes Chi13FG53Gly34 and Chi13FG50ChS3Gly34, con-
firming that there is no cytotoxicity, and the ChS containing membrane showed enhanced
endothelial cell attachment. Finally, as indicated from the overall materials’ properties, the
effective wound dressing and wound healing could be achieve using the product proposed
in this study.
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4. Materials and Methods
4.1. Materials

Sigma–Aldrich (St. Louis, MO, USA) was the supplier of medium molecular weight
chitosan (75–85% deacetylated), cold water fish skin derived gelatin, glycerol, heparin, and
dPBS (dulbecco’s Phosphate Buffered Saline). Acros Organics chondroitin sulfate sodium
salt (Geel, Belgium) was also purchased for this project needs. Honeywell Fluka Research
Chemicals (Charlotte, NC, USA) was the supplier for acetic acid while M199, fetal bovine
serum (FBS) and penicillin-streptomycin were purchased from Gibco™—Thermo Fisher
Scientific (Waltham, MA, USA). Calcein provided by eBioscience (San Diego, CA, USA)
and lentivirus production H2B-mCherry plasmid provided from Addgene (Watertown,
MA, USA) were also used for project’s purproses.

4.2. Hydrogel Membrane Synthesis

For the Chi20FG20ChS5Gly55 hydrogel membrane synthesis, in a beaker A (Figure 12)
containing 19 mL of distilled water, 0.5 g of fish gelatin was added and allowed to stir
until completely dissolved. Then, while stirring the solution, 0.5 g of chitosan was added
followed by the addition of 4% (v/v) acetic acid. The solution was left to stir for 10 min.
In a second beaker B (Figure 12), 0.125 g of chondroitin sulfate were dissolved in 5 mL of
water and this solution was then added dropwise to beaker A (Figure 12), under stirring.
After the addition of chondroitin sulfate the solution turned from pale yellow and clear to
white translucent. The transformation of the solution from clear to translucent is attributed
to the formation of polyelectrolyte [20]. Subsequently 4% (v/v) glycerol was added, and
the solution remained under stirring overnight. The final solution contains 0.5 g (2% w/v)
fish gelatin, 0.5 g (2% w/v) chitosan, 0.125 g (0.031% w/v) chondroitin sulfate and 1.26 g
(4% v/v) glycerol. The solution is then placed in an ultrasonic bath for 30 min in degas
mode to remove the bubbles. It is then transferred to polystyrene plates to evaporate
the solvent and form the hydrogel membrane. The same procedure was followed for the
synthesis of the rest of materials and the synthetic procedure of Chi13FG53Gly34 is the same
but without the addition of ChS. The quantities used are listed in Table 2 and the synthesis
is illustrated in Figure 12.
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4.3. ATR-FTIR Analysis

A coupled instrument, of Jasco FT/IR-4100 spectrometer (JASCO, Interlab, S.A.,
Athens, Greece) and Jasco IRT-5000 microscope (JASCO, Interlab, S.A., Athens, Greece), was
used to carry out ATR-FTIR measurements on the prepared membranes characterization.
ATR device of the instrument includes a ZnSe prism with a 250 µm contact area, around
2.0 µm (@1000 cm−1) penetration depth, and capable for measurements down to 650 cm−1.

4.4. XRD Analysis

A PANalytical X’PertPRO diffractometer was employed for XRD crystallinity mea-
surements using CoKα radiation. The X’Celerator detector of this instrument was operated
at 40 kV voltage and 40 mA current. The 2θ range 2◦–60◦ was scanned on all membrane
samples.

4.5. Thermogravimetric Analysis (TGA)

Setsys Evolution- Setaram thermogravimetric instrument was used for TGA, TG-DSC,
and TG-DTA analysis of ~30 mg of sample placed in a platinum crucible. All tested samples
were heated from ambient to 700 ◦C with a temperature increasing rate of 10 ◦C·min−1

while the gas (N2) flow rate was set at 25 mL·min−1.

4.6. Dynamic Mechanical Analysis (DMA)

Thermomechanical properties were determined using a Q800 (TA Instruments, New Castle,
DE, USA) instrument in film tension mode and a deformation amplitude set at 15 µm. Storage
modulus (E′) and loss factor (tanδ) were estimated scanning the temperature range from−70 ◦C
to 120 ◦C with a temperature increasing rate of 3 ◦C/min and a frequency of 1 Hz.

4.7. Mechanical Properties

ASTM D638 stadard was adopted to evaluate the tensile properties of the different
membranes. A hand made horizontal tensile testing stage was used. Samples were cut
to type V dumbbell shape and a 0.1 min−1 strain rate was applied to tested samples until
failure. A linear variable differential transformer (LVDT) was used to record the elongation
of each speciment. Three independent samples per each type of membrane were tested
using a 44.5 N load cell (or a 445 N load cell for the pure specimens) to measure the load.
According to theory and Equation (1), strain was calculated by dividing the elongation
values with the initial effective length of each specimen.

strain =
∆`
`0

(1)

where ∆` is the elongation value and ` the initial effective length.
Similarly, according to theory and Equation (2), stress was estimated by dividing the

load values with the cross-sectional area of each specimen.

σ =
F
S

(2)

where F is the load applied to the sample for elongation and S is the cross-sectional area of
the sample.

4.8. Scanning Electron Microscopy (SEM)

JEOL JSM-6510 LV (JEOL Ltd., Tokyo, Japan) SEM instrument was employed to
characterize the surface structure of the samples by the applications of 5 kV acceleration
voltage. For such characterizations an equiped X-Act EDS-detector (Abingdon, Oxford
Instrunments, Oxfordshire, UK) was used. To avoid samples charging the membranes were
firstly sputter-coated with gold in vacuum for 30 s, and a 5 kV acceleration voltage was
applied for the examination tests.
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4.9. Water Uptake Study

Circular disk shape samples of 12 mm diameter were tested for the water uptake ability.
Membranes were immersed in distilled water and the swelling property was estimated by
immediately weighing at 3 min, 1 h, and 24 h after the excess water removal using a filter
paper as absorbant material. Equation (3) was used for the membranes’ swelling ability
estimation.

SR =
Ws −Wd

Wd
(3)

where SR is the swelling ratio, Ws is the weight of the membrane measured at each specific
time point, and Wd is the initial weight of the membrane. Swelling ratio (SR) is the indicative
value of the swelling ability.

4.10. Degradation Rate Study

Degradation rate study of hydrogel membranes was carried out by systematic mea-
suring of the weight loss of samples. Circular disk shape samples of 12 mm diameter and
initial weight m0 were immersed in 5 mL of distilled water and weighted after the 1st, 2nd,
3rd, 6th, 7th, 9th, 10th, 13th, 14th, 15th and 16th day. Weighing carried out after the excess
water removal with filter paper as absorbant. The (%) degradation rate was determined
according to Equation (4).

% degradation =
m0 −mi

m0
× 100 (4)

where m0 is initial mass of the hydrogel membrane and mi is the mass of the membrane at
the end of the ith day.

4.11. Water Vapor Permeability

Membranes were placed on top of the circular mouth of glass bottles contained 5 mL
of distilled water. The mouth perimeter was sealed using commercial glue and the water-
vapor permeability of membranes was estimated according to a procedure reported in
literature [31]. The water vapor transmission rate measurements were carried out at 37 ◦C
and calculated according to the Equation (5).

WVTR =
Wi −W0

t·A (5)

where WVTR is the Water Vapor Transmission Rate (g·m−2·d−1), Wi is the weight of the
handmade device at specific time ti, W0 is the initial mass of the system (t0 = 0), and A is
the cross-sectional area of the glass bottle mouth.

4.12. Attachment of Endothelial Cells, In Vitro, on Hydrogel Membranes ECs Adhesion Assay

Human endothelial cells (ECs) originated from an umbilical vein (HUVECs) source
via an isolation method which was described previously [33]. Such cells were cultivated in
M199 basal medium using 20% fetal bovine serum and 30 µg/mL endothelial cell growth
(ECGS) as supplement, 4.7 U/mL heparin and 1% penicillin-streptomycin. Cells were pas-
saged at a ratio of 1 to 3 and were used up to passage 3. After the isolation cells were infected
with a H2B-mCherry lentivirus, which imparts a red fluorescent nuclear signal. Lentiviral
particles were prepared according to standard protocols. The Chi13FG50ChS3Gly34 and
Chi13FG53Gly34 hydrogel membranes were cut into 6mm diameter pieces, washed twice for
30 min with dPBS (dulbecco’s Phosphate Buffered Saline and placed into a 24-well culture
plate. 30,000 HUVECs infected with H2B-mCherry lentivirus were added to each well
and cultured at 37 ◦C, 5% CO2. 4 h later the medium was changed to remove unattached
cells and images of attached ECs were taken using a Leica DM IRBE fluorescence mi-
croscope. The number of attached cells was measured using ImageJ software. Three
independent experiments were performed. The relative number of attached cells on the
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two polymeric hydrogel membranes from three independent experiments were expressed
as mean ± the standard deviation value.

Statistical analysis was performed using SPSS 22.0 (SPSS, Inc). Normality tests were
applied to all measurement variables. The one-way analysis of variance (ANOVA) was
used for comparison between the two membranes and obtained significant probability
values were also corrected for multiple testing (Bonferroni correction). Cell attachment at
4 h for each membrane was analysed using paired t-test. p, 0.05 was accepted as the level
of statistical significance.
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