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Abstract: Drilling fluid systems for deep and ultra-deep wells are hampered by both high-temperature
downhole environments and lengthy cycle periods. Suppose that the gel particle-plugging agent, the
primary treatment agent in the system, fails to offer durable and stable plugging performance. In such
a scenario, the borehole wall is susceptible to instability and landslide after prolonged immersion,
leading to downhole accidents. In this study, novel core-shell gel particles (modified ZIF) with
ZIF particles employed as the core material and organosilicon-modified polyethylene polyamine
(PEPA) as the polymer shell were fabricated using PEPA, in-house synthesized (3-aminopropyl)
triethoxysilane (APTS), and the ZIF-8 metal-organic framework (MOF) as the raw materials to
enhance the long-term plugging performance of gel plugging agents. The modified ZIF particles
are nanoscale polygonal crystals and differ from conventional core-shell gel particles in that they
feature high molecular sieve catalytic activity due to the presence of numerous interior micropores
and mesopores. As a result, modified ZIF exhibits the performance characteristics of both rigid and
flexible plugging agents and has an excellent catalytic cross-linking effect on the sulfonated phenolic
resin (SMP-3) and sulfonated lignite resin (SPNH) in drilling fluids. Consequently, a cross-linking
reaction occurs when SMP-3 and SPNH flow through the spacings in the plugging layer formed
by the modified ZIF particles. This increases the viscosity of the liquid phase and simultaneously
generates an insoluble gel, forming a particle-gel composite plugging structure with the modified
ZIF and significantly enhancing the long-term plugging performance of the drilling fluid.

Keywords: plugging; core-shell gel particles; metal-organic framework materials; molecular sieve
catalytic activity; nanoscale crystals

1. Introduction

As the exploration and development of oil and gas resources in the Tarim Oilfield
gradually advance to deeper formations, the proportion of deep and ultra-deep wells
grow annually [1–3]. The downhole high-temperature conditions and long cycle time
requirements provide significant hurdles for the drilling fluid system’s treatment agent.
Moreover, deep formations contain a high proportion of hard, brittle rocks. If the plugging
agent fails to effectively block the seepage channels in the formation, it is likely to cause
wellbore instability and landslide, as well as drilling sticking and burial, which impedes
the progress of drilling operations [4–7].

To accomplish long-term, effective plugging of seepage channels, notably micro-pores
and -channels in the formation, rigid and flexible plugging agents are generally employed
simultaneously. In recent years, ultrafine calcium carbonate, nanoscale silicon dioxide, tita-
nium dioxide, and zinc oxide have been utilized as rigid agents. The flexible agent mostly
comprises modified asphalt and synthetic polymer gel particles [8–10]. Upon entering the
seepage channels with the drilling fluid, the rigid particles are settled by the throat-blocking
effect, initially filling the pores/channels and providing skeleton support. In contrast, the
flexible plugging agent with good deformability and film-forming characteristics fills the
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pores between the rigid particles and particles and the channel wall, improving the density
of the plugging layer and further blocking the seepage channels [11–14]. The capacity
of rigid plugging agents to migrate into irregular microfractures is, however, severely
constrained by the intrinsic agglomeration propensity of microscopic particles and their
rigidity, which does not permit deformation. In this scenario, the skeleton support effect
is inadequate, making it challenging for the flexible plugging agent to produce a thick
plugging layer, resulting in poor long-term plugging performance.

Recently, a novel form of plugging material known as core-shell particles has emerged.
The internal core consists of a rigid particle, such as nanoscale silica and ultrafine calcium
carbonate, whose surface is modified by grafting functional monomers to generate an
exterior flexible polymer coating layer. Thus, the functions of both rigid and flexible plug-
ging agents are integrated [15,16]. Based on their synergistic action, the external flexible
coating layer prevents the core-shell particles from surface energy effect-induced agglomer-
ation/settling and maintains their agglomeration stability via the steric hindrance effect, a
hydrophobic effect ascribed to the hydrophobic groups in the polymer, and electrostatic
repulsion resulting from the dissociation of siloxane groups into silicon hydroxyl groups,
when circulated with the drilling fluid. On the other hand, upon flowing into the seepage
channels with the drilling fluid, the core-shell particles settle at the pore throat facilitated
by the internal non-deformable rigid particles with the pH of the particle environment
dropping to nearly neutral levels due to the excessive contact of the drilling fluid with
the formation fluid. This weakens the repulsive effect between hydrophobic groups and
silicon hydroxyl groups significantly, which no longer prevents neighboring particles from
aggregating. Under the influence of hydrostatic column pressure differential and capillary
force, the exterior flexible coating layer deforms and expands, generating a dense and
robust plugging layer [17,18]. In addition, the silicone hydroxyl groups on the particle
surface condense with the silicone hydroxyl groups in the clay component of the channel
walls to form silicether bonds, eventually forming a dense and firm silicone gel plugging
layer [19–21] to guarantee the particles’ long-term plugging performance.

Despite the aforementioned benefits of core-shell gel particles, as the well depth
increases, the polymer coating layer becomes prone to thermal degradation due to the long-
term high-temperature conditions of the downhole, resulting in a reduction in plugging
performance [22–24]. To maintain sustainable drilling operations, it is vital to enhance
the long-term plugging performance of these materials. Water-based drilling fluids for
deep-well drilling are predominantly polysulfide systems; the two main treating agents,
sulfonated phenolic resin (SMP-3) and sulfonated lignite resin (SPNH), have excellent
temperature resistance and undergo subsequent cross-linking reactions to form block gels
in the high-temperature downhole environment, which is conducive for resisting thermal
degradation and preserving their polymeric properties [25–29]. Based on their properties,
if both SMP-3 and SPNH can be incorporated into the formation of the plugging layer, it
is anticipated that the sustainable plugging performance of the plugging agent would be
improved without the addition of other agents or an increase in agent concentration.

The downhole cross-linking mechanism of SMP-3 and SPNH is such that the active
hydrogen on the phenolic ring exhibits significant electrophilicity in a strongly alkaline
environment of the drilling fluid and easily undergoes dehydration condensation with the
hydroxymethyl group on the adjacent phenolic ring to form a phenolic ring connected by a
stable methylene bridge, resulting in a high molecular weight of the polymer, an increase in
viscosity of the system, and gelation or solidification under a high degree of cross-linking.
The cross-linking reaction can be accelerated by raising the pH and mineralization level, as
well as the temperature and reaction time [30–32]. However, in the seepage channels, the
drilling fluid is significantly diluted by the neutral formation fluid, resulting in a significant
reduction in pH, drastically lowering the electrophilic effect-based reaction activity between
the active hydrogen and the hydroxymethyl group in SMP-3 and SPNH, thereby inhibiting
the liquid phase viscosity increment, filtration loss reduction by cross-linking, and the
generation of an insoluble gel to participate in the formation of the plugging layer [33–36].
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Therefore, for SMP-3 and SPNH to participate in the formation of the plugging layer, it is
important to increase their cross-linking reaction activity in a neutral environment.

Metal-organic framework (MOF) materials are a class of crystalline porous frame-
work materials with a multidimensional periodic network structure generated by the
self-assembly of metal ions or metal cluster units with organic ligands via coordination
interactions [37,38]. They appear as microscopic or nanometric crystal particles with
well-developed pore structures and large specific surface areas [39,40]. Based on these
characteristics, MOFs have highly effective molecular sieve catalytic properties, with some
containing transition metals with Lewis acid properties, equipping them with Lewis acid
catalytic activity. Furthermore, the framework configuration of MOFs allows for the easy
incorporation of hydrophilic polymeric macromolecules into their structures and increasing
structural defects appropriately can significantly improve their suspension stability in the
aqueous phase while simultaneously enhancing their catalytic activity [41–44]. Zeolitic
imidazolate frameworks (ZIFs) are a significant subclass of MOFs that predominantly
employ transition metals, such as Co, Zn, Fe, and Ni, as the central ion and imidazole or its
derivatives as bidentate bridging ligands. The angle of the coordinate covalent bond formed
is similar to that of Si–O–Si in the zeolite. Therefore, the topology and pore structure of ZIFs
are comparable to those of zeolites, and ZIFs possess not only excellent structural strength
but also exceptional temperature resistance [45–47]. Experiments demonstrated their su-
perior structural stability in both strong alkaline and neutral conditions, where the ZIF
framework improved the thermal and chemical stability of the introduced polymer [48–51].
For example, Dai et al. discussed the recent advances in ZIF-8-derived composites with
outstanding stability for adsorption and photocatalytic wastewater pollutant removal [52].
Chen et al. synthesized ZIF-8 membranes on polyvinylidene fluoride (PVDF) hollow fiber,
and excellent separation performances were obtained [53].

If the chemically inert rigid particles in the core-shell particles can be replaced with
suitable ZIFs and suitable polymers can be incorporated into their framework structures
as flexible coating layers, then novel core-shell gel particles with ZIFs as the cores can be
synthesized. Its performance when circulated with the drilling fluid is identical to that
of standard materials. However, when it flows into the seepage channels and forms a
plugging layer, the ZIF core induces the cross-linking reaction between SMP-3 and SPNH
in the drilling fluid as it passes through the interparticle spacings. This raises the viscosity
of the liquid phase, and the strongly cross-linked insoluble material simultaneously forms
a particle-gel composite plugging layer with the core-shell particles, resulting in a dense
and durable plugging performance.

In this study, in-house synthesized (3-aminopropyl) triethoxysilane (APTS) and polyethy-
lene polyamine (PEPA) underwent an addition reaction to produce an organosilicon-
modified PEPA polymeric macromolecule, which was then introduced into the framework
structure of the in-house prepared ZIF-8 via a post-synthetic modification to obtain the final
polymer-modified ZIF product. Modified ZIF has superior thermal and chemical stability,
is not prone to agglomeration, and can catalyze the cross-linking reaction between SMP-3
and SPNH to form a gel even in a neutral environment, thereby increasing the viscosity
of the liquid phase and promoting the formation of a composite plugging layer by highly
cross-linked insoluble matter and modified ZIF to ensure a durable plugging performance.
By substituting the original plugging agents with modified ZIFs, the rheological properties
of drilling fluids are successfully tuned, and its filtration loss reduction performance can be
significantly enhanced.

2. Results and Discussion
2.1. Physicochemical Characterization of Modified ZIF
2.1.1. SEM Analysis of the Modified ZIF

According to Figure 1, the morphology of the prepared modified ZIF is a highly regular
prismatic polyhedron with a particle size in the region of 150–200 nm. Both the crystal form
and particle size exhibit strong uniformity. The SEM image reveals that the modified ZIF
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particles are nanoscale particles, facilitating their penetration into the formation’s microfine
seepage channels.
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Figure 1. SEM image of the modified ZIF.

2.1.2. XRD Analysis of the Modified ZIF

The observed XRD pattern (Figure 2) of the modified ZIF reveals strong, substantial,
and sharp distinctive peaks that are in excellent agreement with the typical diffraction
peaks in the standard spectral line of ZIF-8 [54]. This suggests that the modified ZIF and
ZIF-8 are consistent. Combining the preceding results with the morphology observed by
SEM (Figure 3), it is evident that the synthesized ZIF does not lose its crystallinity as a
result of the introduction of polymer macromolecules and, thus, retains good crystallinity.
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2.1.3. FTIR Analysis of the Modified ZIF

As shown in Figure 3, the same characteristic peaks at 1626 and 1433 cm−1 appear in
both FITR spectra of the ZIF and modified ZIF, attributed to the bending vibration of N–H
and C–N in the 2-methylimidazole ring, respectively. The main difference between the
two FITR spectra is that the FITR spectrum of the modified ZIF exhibit characteristic peaks
of N–H in the primary amine group, C=O in the amide group, and Si–O in the siloxane
group at 3170, 1713, and 1021 cm−1, respectively, and the characteristic peak of -CH3 at
2884 cm−1 intensified and became significant. This confirms the successful introduction of
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organosilicon-modified PEPA macromolecules into the ZIF framework in the modified ZIF,
and the molecular structure of the modified ZIF is consistent with our expectations.
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Figure 3. FTIR spectra of ZIF and modified ZIF.

2.2. Performance Study of the Modified ZIF in Drilling Fluid
2.2.1. Simulated Liquid Phase Environment

Since the modified ZIF is exposed to prolonged high-temperature conditions in the
strongly alkaline and highly mineralized drilling fluid before entering the seepage chan-
nels of the formation, it must have excellent structural stability to maintain its catalytic
activity and thus promote the cross-linking reaction between SMP-3 and SPNH for gel
formation. To formulate a typical polysulfide drilling fluid system, a deionized aqueous
solution containing 7 wt% KCl was synthesized, and its pH was adjusted to 11 using
NaOH. The aqueous solution was utilized to simulate the liquid phase environment for
the modified ZIF, and a certain amount of the modified ZIF was added to the solution to
form a suspension. The mixture was subsequently aged at 200 ◦C for 32 h to investigate the
physicochemical properties of the modified ZIF after aging.

2.2.2. SEM Analysis of the Modified ZIF after Aging

The modified ZIF particles are predominantly 150–300 nm in size and retain their
typical polygonal crystal morphology (Figure 4), demonstrating that the modified ZIF can
still retain its nanoparticle properties and structure after aging.
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2.2.3. XRD Analysis of the Modified ZIF after Aging

The XRD patterns of modified ZIF before and after aging at 200 ◦C for 32 h are
compared in Figure 5. Significant crystalline characteristic peaks are still present in the
XRD pattern of the modified ZIF after 32 h of aging at 200 ◦C, and the peak positions are
essentially the same as before aging, indicating that the aged ZIF particles are still crystals
with high crystallinity and their structures have not collapsed.
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2.2.4. Particle Size Distribution of Modified ZIF after Aging

As depicted in Figure 6, the particle size of the aged modified ZIF is highly concen-
trated in the range of 150–300 nm, indicating that the particles do not agglomerate under
high temperatures and remain as typical nanoscale particles, which is conducive to their
migration into microfine seepage channels to achieve the “sealing tail” plugging effect.
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Figure 6. Particle size distribution of modified ZIF after aging.

2.2.5. BET Analysis of Modified ZIF

If the ZIF derivative plugging agent is to retain its catalytic activity in the high-
temperature downhole environment, it must retain its molecular sieve properties after
prolonged exposure to high-temperature and high-salinity conditions. Therefore, the
modified ZIF was subjected to BET analysis, and the adsorption–desorption isotherm
and pore structure were examined. Figure 7 demonstrates the results. The Brunauer–
Emmett–Teller (BET) surface area of modified ZIF before and after is 1125.6291 m2/g and
998.6053 m2/g, respectively, indicating the specific surface area of the material was not
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significantly reduced after aging. Furthermore, the pore size distribution (PSD) confirms
that the modified ZIF after aging still has a porosity that consists of plenty of micropores
and mesopores.

Gels 2023, 9, 44 7 of 14 
 

 

 
Figure 6. Particle size distribution of modified ZIF after aging. 

2.2.5. BET Analysis of Modified ZIF 
If the ZIF derivative plugging agent is to retain its catalytic activity in the high-tem-

perature downhole environment, it must retain its molecular sieve properties after pro-
longed exposure to high-temperature and high-salinity conditions. Therefore, the modi-
fied ZIF was subjected to BET analysis, and the adsorption–desorption isotherm and pore 
structure were examined. Figure 7 demonstrates the results. The Brunauer–Emmett–
Teller (BET) surface area of modified ZIF before and after is 1125.6291 m2/g and 998.6053 
m2/g, respectively, indicating the specific surface area of the material was not significantly 
reduced after aging. Furthermore, the pore size distribution (PSD) confirms that the mod-
ified ZIF after aging still has a porosity that consists of plenty of micropores and meso-
pores. 

  
(a) (b) 

 

 

Figure 7. (a) Adsorption–desorption isotherm and (b) pore size distribution of ZIF before and after 
aging. 

2.2.6. Catalytic Performance of the Modified ZIF on SMP-3 and SPNH 
To study the catalytic performance of the modified ZIF on the cross-linking reaction 

between SMP-3 and SPNH in a pH-neutral environment after contacting the formation 
fluid, a deionized water solution of 7.0 wt% KCl was prepared, followed by the addition 
of 3 wt% SMP-3 and 3 wt% SPNH, and then 4 wt%-modified ZIF was added to form a 

1 10 100 1000
0

2

4

6

8

10

12

B
ul

k 
de

ns
ity

 (%
)

Partical size (nm)

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

400

Relative pressure (P/P0)

A
ds

or
pt

io
n 

ca
pa

ci
ty

(c
m

3 /g
 S

TP
)

 After Aging
 Before Aging

a

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pore Diameter (nm)

dV
/d

lo
g(

D
)(

cm
/g

)

After Aging
Before Aging

b

Figure 7. (a) Adsorption–desorption isotherm and (b) pore size distribution of ZIF before and
after aging.

2.2.6. Catalytic Performance of the Modified ZIF on SMP-3 and SPNH

To study the catalytic performance of the modified ZIF on the cross-linking reaction
between SMP-3 and SPNH in a pH-neutral environment after contacting the formation
fluid, a deionized water solution of 7.0 wt% KCl was prepared, followed by the addition
of 3 wt% SMP-3 and 3 wt% SPNH, and then 4 wt%-modified ZIF was added to form a
suspension after stirring. The suspension was aged for 32 h at 200 ◦C. After that, the
suspension was vacuum-filtered to separate the insoluble material from the filtrate. The
insoluble material was then rinsed with excess deionized water and resuspended by stirring
in deionized water. The suspension was then filtered and separated a second time. The
process was performed three times, and the resulting substance was pure and insoluble.
The relevant physicochemical parameters of the insoluble matter and the filtrate from the
initial separation were investigated.

2.2.7. FITR Spectra of Insoluble Matter

As shown in Figure 8, after 32 h of aging in the simulated liquid phase, the FITR spectra
of the insoluble matter are highly consistent with that of the modified ZIF, demonstrating
that modified ZIF is the primary component of the insoluble matter. However, the former
exhibits three peaks at 3353, 759, and 788 cm−1 that are absent in the latter; these three
peaks are consistent with the stretching vibration peaks of associate hydrogen bonds and
the bending vibration peaks of disubstituted and trisubstituted benzene in the FITR spectra
of SPNH and SMP-3, respectively. This verifies the excessive cross-linking reaction between
SPNH and SMP-3 catalyzed by the modified ZIF to produce gels, as well as an integrated
particle-gel composite structure in conjunction with the modified ZIF.

2.2.8. Gel Permeation Chromatography (GPC) Determination of the Filtrate

The molecular weights of the identical amount of SMP-3/SPNH mixtures aged in a
7.0 wt.% KCl deionized aqueous solution and in the filtrate after the initial separation were
evaluated using GPC. The results are depicted in Figure 9 and Table 1.

As shown in Figure 9, the GPC spectrum of the SMP-3/SPNH mixture aged in the
filtrate exhibited a significant overall rightward shift relative to that of the SMP-3/SPNH
mixture aged in the KCl solution. The peak appears on the right side of a larger molecular
weight, indicating that the molecular weight of the SMP-3/SPNH mixture aged in the
filtrate is greater than that aged in the KCl solution. As shown in Table 1, the weighted
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average molecular weight (Mw), number average molecular weight (Mn), and peak molec-
ular weight (Mp) of the mixture after aging in the KCl solution are 3.89 × 104, 3.65 × 105,
and 2.93 × 104, respectively. In contrast, the Mw, Mn, and Mp of the mixture after aging in
the filtrate are 6.65 × 104, 7.12 × 105, and 18.74 × 105, representing a significant increase.
It demonstrates that the modified ZIF can catalyze the cross-linking reaction between
SMP-3 and SPNH in a neutral environment, resulting in a considerable rise in the gels’
molecular weight.
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Figure 9. GPC spectra of SMP-3/SPNH aged in the 7.0 wt.% KCl deionized aqueous solution and the
filtrate.

Table 1. Molecular weights of SMP-3/SPNH aged in the 7.0 wt.% KCl deionized aqueous solution
and the filtrate.

Sample State Mn Mw Mp Polydispersity

SMP-3/SPNH
Mixture

Solution 3897 36,544 2927 9.378
Filtrate 6651 71,235 187,374 10.712

Combining the results of Sections 2.2.7 and 2.2.8, the modified ZIF can induce the
cross-linking of SMP-3 and SPNH in a neutral environment, resulting in a rise in their
molecular weights and the degree of cross-linking. The water-soluble matter with a low
degree of cross-linking can increase the viscosity of the filtrate, thereby increasing its flow
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resistance, whereas SMP-3 and SPNH with a high degree of cross-linking form insoluble
gels, forming a particle-gel composite structure with the modified ZIF, which is conducive
to improving the plugging performance.

2.2.9. Performance Evaluation of the Modified ZIF-Containing Drilling Fluid

Two formulations of field-typical polysulfide drilling fluids were chosen for evaluation:
(1) 2% bentonite + 0.3% NaOH + 3% SMP-3 + 3% SPNH + 6% viscosity-reducing agent
SMC + 4% ultrafine calcium carbonate + 2% modified oxidized asphalt TYJS-1 + 1%
bituminous lignite HLQ-2 + 7% KCl + 1% oil-based lubricant EPL-1, and (2) 3.5% bentonite
+ 0.5% NaOH + 3% SMP-3 + 3% SPNH + 4% ultrafine calcium carbonate + 4% sulfonated
asphalt FY-1A + 7% KCl + 2% extreme pressure lubricant HY-202. Using barite, both
systems were weighted to 2.0 g/cm3 density. In system 1, the plugging agents are ultrafine
calcium carbonate, TYJS-1, and HLQ-2. In system 2, the plugging agents are ultrafine
calcium carbonate and FY-1A. The blocking agents in the two systems were replaced with
5 wt% modified ZIF, and the performance of the drilling fluid systems before and after
the replacement was evaluated prior to and after aging at 200 ◦C for 16, 32, and 48 h,
respectively. Table 2 presents the results.

Table 2. Performance tests of drilling fluids before and after replacement.

Drilling Fluid Scenario AV/(mPa·s) PV/(mPa·s) YP/Pa FL(API)/mL FL(HTHP)/mL

(1) Before
replacement

Before aging 56.5 43.0 13.5 2.6/0.5 mm -
Aging for 16 h 44.5 34.0 10.5 3.2/0.5 mm 7.8/1.6 mm
Aging for 32 h 41.5 34.0 7.5 3.4/0.8 mm 8.6/1.6 mm
Aging for 48 h 37.5 31.0 6.5 3.6/0.8 mm 10.2/2.2 mm

(1) After
replacement

Before aging 53.5 42.0 11.5 2.4/0.5 mm -
Aging for 16 h 51.5 40.5 11.0 2.4/0.6 mm 7.0/1.2 mm
Aging for 32 h 53.5 41.0 12.5 2.2/0.6 mm 7.4/1.4 mm
Aging for 48 h 56.5 43.0 13.5 2.4/0.6 mm 7.4/1.4 mm

(2) Before
replacement

Before aging 57.0 46.0 11.0 2.4/0.5 mm -
Aging for 16 h 44.5 35.5 9.0 3.2/0.7 mm 7.6/1.4 mm
Aging for 32 h 42.5 35.0 7.5 3.4/0.8 mm 8.8/1.8 mm
Aging for 48 h 39.5 33.0 6.5 3.8/0.8 mm 10.8/2.2 mm

(2) After
replacement

Before aging 56.5 43.0 13.5 2.4/0.5 mm -
Aging for 16 h 49.5 35.5 14.0 2.6/0.5 mm 7.0/1.4 mm
Aging for 32 h 52.5 41.0 11.5 2.2/0.5 mm 7.2/1.4 mm
Aging for 48 h 54.5 43.0 11.5 2.2/0.6 mm 6.8/1.6 mm

As demonstrated in Table 2, the rheology and filtration loss reduction of both drilling
fluid systems prior to aging remained identical after replacing the original plugging agents
with 4% modified ZIF. After aging at 200 ◦C, the apparent viscosity, plastic viscosity, and
dynamic shear force of the drilling fluids prior to replacement decrease significantly as the
aging duration increases, while API and HTHP filtration losses increase gradually. The
API filtration losses of the two drilling fluids before replacement increased by 38.4% and
58.3% after 48 h of aging, whereas the HTHP filtration losses increased by 30.8% and 42.1%,
respectively. In addition, the thickness of the API and HTHP mud cake also increased
significantly. The rheological properties of the drilling fluids after replacement and aging
are consistent with their properties before aging; not only did they not show a significant
decrease, but the apparent viscosity, plastic viscosity, and dynamic shear force of system 1
after aging for 48 h were marginally greater than those prior to aging. This suggests that
SMP-3 and SPNH in the system cross-linked under the catalytic action of the modified ZIF,
generating a gel structure to enhance the molecular weight and thus maintain the viscosity
of the system. Similarly, the API and HTHP filtration losses remained unchanged prior
to and after aging for systems with modified ZIFs. The thickness of the API mud cake
only increased from 0.5 to 0.6 mm and that of the HTHP cake from 1.2 and 1.4 mm to 1.4
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and 1.6 mm, respectively, after 48 h of aging. The aforementioned results suggest that the
modified ZIF has no negative effect on the rheological properties of drilling fluids and
retains its catalytic activity despite being exposed to drilling fluids at elevated temperatures
for extended periods of time. By cross-linking SMP-3 and SPMH in the system, it is possible
to prevent the system from exhibiting a considerable drop in viscosity after prolonged
exposure to high temperatures. In addition, the insoluble matter with a high degree of cross-
linking forms a particle-gel composite plugging layer with the modified ZIF, considerably
improving the drilling fluids’ long-term plugging performance.

3. Conclusions

Organosilicon-modified PEPA was synthesized via an addition reaction of PEPA with
an in-house prepared APTS organosilicon monomer. It was then employed to conduct
a post-synthetic modification reaction of an in-house synthesized ZIF-8, resulting in the
formation of core-shell particles (modified ZIF) with the ZIF particles serving as the core
material and the organosilicon-modified PEPA as the shell coating layer. The modified
ZIF particles are nanoscale crystal particles with an average particle size between 150 and
200 nm and have excellent thermal and chemical stability in the drilling fluid. After 32 h
of aging at 200 ◦C, the particles maintained their nanoscale polygonal crystal structure
without agglomeration and had more interior micropores and mesopores in addition to
high theoretical catalytic activity. While increasing the viscosity of the liquid phase, the
modified ZIF can catalyze the cross-linking reaction between SMP-3 and SPNH in a neutral
environment for gel formation. Furthermore, the insoluble matter with a high degree of
cross-linking forms a particle-gel composite structure with the modified ZIF to improve
its plugging performance. By replacing the original plugging agents with the modified
ZIF, the rheological properties of the drilling fluid can be effectively tuned. Long-term
high-temperature action does not result in a considerable decrease in the viscosity of the
drilling fluid, thereby significantly improving the filtration loss reduction of the drilling
fluid compared to the traditional plugging agent.

4. Materials and Methods
4.1. Preparation of Modified ZIF

First, 27.52 g of APTS (preparation method reference) was dissolved in excess an-
hydrous ethanol, mixed well, and poured into a three-necked flask. The solution was
then heated slowly to 65 ◦C while being agitated under a protected N2 atmosphere. Then,
dropwise additions of anhydrous ethanol containing 73.62 g PEPA dissolved in advance
were made. The total concentration of raw materials in the mixture was 20 wt.%, and the
reaction was kept for 24 h under N2 protection to produce a light-yellow viscous liquid.
Next, rotary evaporation was used to remove the anhydrous alcohol from the reaction
system, after which the residue was dissolved in excess acetone to remove unreacted APTS,
followed by rotary evaporation to remove the acetone. The light-yellow viscous liquid
obtained after three repetitions of the preceding procedure was organosilicon-modified
PEPA. The product’s 1H NMR spectrum is depicted in Figure 10.

As depicted in Figure 10, the characteristic shift of the primary amine proton at
1.53 ppm, the chemical shift of the proton in the methylene group bonded to the carbonyl
group at 2.37 ppm, the characteristic shift of the methyl proton in the Si–OCH3 group at
3.35 ppm, and the chemical shift of the methylene proton bonded to the Si in the Si–OCH3
group at 0.56 ppm indicate that the molecular structure of the prepared product is as
expected [50].

For the subsequent preparation of modified ZIF, 12.73 g of ZIF-8 (preparation method
reference) was dissolved in 75 mL of anhydrous ethanol, and 27.29 g of organosilicon-
modified PEPA pre-dissolved in excess anhydrous ethanol was added to the mixture
while stirring. The temperature was increased to 60 ◦C while stirring continuously, and
the reaction was then held for 24 h. The reaction system was then subjected to rotary
evaporation under reduced pressure to remove a portion of the anhydrous ethanol, followed
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by centrifugation to extract the crude product. To collect the insoluble material, the crude
product was next washed with deionized water and anhydrous ethanol in succession. The
washing process was performed three times, and then the product was vacuum-dried. The
resultant white powder was polymer-modified ZIF (henceforth referred to as modified
ZIF), whose structure is depicted schematically in Figure 11.
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4.2. Structural Characteristics

Fourier transform infrared spectra (FT-IR) were obtained with a Nicolet 6700 spec-
trophotometer. The total specific surface area and nanopore size distribution of the ob-
tained products were measured by a Brunauer–Emmett–Teller (BET) nitrogen adsorption-
desorption test at −196 ◦C under nitrogen. The crystal type of the synthesized ZIF samples
was characterized by X-ray diffraction (XRD) in the 2θ range of 10~50◦.
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