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Abstract: Two series of novel amphiphilic compounds were synthesized based on carbamates and
ureas structures, using a modification of the synthesis methods reported by bibliography. The
compounds were tested for organic solvent removal in a model wastewater. The lipophilic group
of all compounds was a hexadecyl chain, while the hydrophilic substituent was changed with
the same modifications in both series. The structures were confirmed by FT-IR, NMR, molecular
dynamic simulation and HR-MS and their ability to gel organic solvents were compared. The SEM
images showed the ureas had a greater ability to gel organic solvents than the carbamates and formed
robust supramolecular networks, with surfaces of highly interwoven fibrillar spheres. The carbamates
produced corrugated and smooth surfaces. The determination of the minimum gelation concentration
demonstrated that a smaller quantity of the ureas (compared to the carbamates, measured as the
weight percentage) was required to gel each solvent. This advantage of the ureas was attributed
to their additional N-H bond, which is the only structural difference between the two types of
compounds, and their structures were corroborated by molecular dynamic simulation. The formation
of weak gels was demonstrated by rheological characterization, and they demonstrated to be good
candidates for the removal organic solvents.

Keywords: amphiphilic compound; organogel; self-assembly; carbamates; ureas; organogelator;
non-covalent interactions; gelling ability

1. Introduction

A great problem in the world is the water pollution by organic solvents in several
industries. To solve this problem, purification and reuse processes of wastewater have
been developed. A way to eliminate organic solvents of wastewater is adding amphiphilic
compounds (low molecular weight organogelators) able to capture and remove them by
filtration [1].

The design of new low molecular weight organogelators (LMWGs) has attracted a
great attention due to their wide range of applications. They are currently used in organic
waste recovery and consequently environmental sanitation [2,3] as vehicles for the transport
and drugs delivery in medicine [4–8] as scaffolds in tissue engineering for regenerative
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medicine [9,10], preparation of nanoparticles for nanoreactors [11,12], as well as sensors of
chemical bond breakage in hydrogels [13].

The chemical structures of gelators capable of forming organogels present groups as
amides [14–16], carbamates [17–20], amino acids [21], carbohydrates [22–27], ureas [28–33]
or a combination of these functional groups [34–40]. For this reason, all gelators of this
study are composed of a hydrophilic and hydrophobic part, resulting in amphiphilic be-
havior [41,42]. These amphiphilic compounds can trap polar and non-polar solvents to
form supramolecular networks by means of weak non-covalent interactions donor-acceptor
as gelator-gelator, gelator-solvent and solvent-solvent intermolecular interactions [43–51],
which are carried out by hydrogen bonding, dipole-dipole interactions, van der Waals
molecular interactions, molecular stacking, π-π interactions, C-H . . . π interactions, solvo-
phobic effects [52] or molecular surface stress. The literature indicates that a gelator is
efficient if immobilizes to the solvent at concentrations ≤2 wt.% [53].

A process of self-organization is known to be responsible for forming the supramolec-
ular networks, which can pick up or arrest organic solvents. However, this process is still
not clear. This phenomenon has been explored by few researchers and they have estab-
lished some hypothesis [54–56]. For example, Lara Estroff and Andrew Hamilton [57,58]
suggested that the organogels self-assembly process occurs in stages, beginning with the for-
mation of a primary structure through molecular recognition, thus promoting anisotropic
aggregates in one or two dimensions on a molecular scale ranging from Angstroms to
nanometres. In the second stage, the morphology of the aggregates is more defined due
to the formation of micelles, vectors, fibers, ribbons, leaves or other elements, depending
on the molecular structure of the organogelator. The structure ranges from nanometers to
micrometers. In the final stage, the tertiary structure of the gel is formed by the molecular
interaction of the aggregates, with a scale ranging from microns to millimeters. Scheme gel
formation and the removal of organic solvents is shown in Figure 1.
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The aim of this study was to synthesize two series of novel organic compounds, which
have not been reported in the literature: one of carbamates and the other of ureas, using
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a modification of synthesis methods reported by bibliography to increase the reaction
efficiency. Five compounds were synthesized in each series, the hydrophobic part was the
same (with a 16 carbons length of the hydrocarbon linear chain), while the hydrophilic
substituent was changed and, the same modifications were made for the carbamates and
ureas with the purpose to compare their ability to form supramolecular networks. The
compounds were characterized by known methods and their supramolecular network’s
ability was tested with four organic solvents (toluene, 1-4 dioxane, xylene and carbon
tetrachloride). These solvents were chosen according to the latest WHO global report on
contamination of organic solvent waste by the chemical industry sector reports them as
persistent organic pollutants (POPs) [59].

Gel structures were examined by FT-IR and NMR, while their morphologies were
observed by SEM. The stability of the organogels was evaluated by determining the break-
ing point, revealing that urea gels form the stronger supramolecular networks than the
carbamate gels. This was attributed to the additional N-H bond in the urea compounds.
The gel structures were also corroborated by molecular dynamic simulation. The removal
efficiency of solvents in water was tested comparing the best carbamate with the best urea.

2. Results and Discussion
2.1. Synthesis of the New Carbamates and New Ureas

Two series of compounds were synthesized: five carbamates and five ureas which,
according SciFinder they have never been reported except the 5b structure, which has not
been reported to be used as gelator. The hydrophobic part of all the compounds was the
same (with 16 carbons hydrocarbon linear chain) whereas the hydrophilic part was changed.
The used synthesis methods were modified from those reported by bibliography, allowing
to obtain 85% and 90% of yield for carbamates and ureas, respectively (see Supplementary
Scheme S1 and Supplementary Scheme S2).

The carbamate and urea structures were corroborated by HR-MS and the results of
the values of the experimental and calculated molecular weights are close to each other,
confirming the obtaining of desired product (Tables S1 and S2, Supplementary Materials).

2.2. Gelation Test of New Carbamates and New Ureas

The ability of carbamates and ureas to self-assemble and form gels tested in presence
of organic solvents (xylene, toluene and 1,4-dioxane) using the inverting tube method. The
gelator was evaluated by weight rather than volume. In this way, the required minimum
gelation concentration (MGC) to form supramolecular networks was determined (see
Figures S44–S47, Tables S3–S5 and S7, Supplementary Materials).

The results show that the ureas have a greater capacity than the carbamates to gel
organic solvents, because it was always necessary to use a larger quantity of carbamates
to form the gel. This was observed for example, by comparing 3d carbamate and 5d
urea as gelators with the same organic solvent (toluene). The required quantity of car-
bamate for this case was 6.8 wt.%, while urea was only 1.1 wt.% (Tables S3 and S4,
Supplementary Materials).

A way to confirm the gel formation was analyzing the pure compounds
(Figures S1–S40, Supplementary Materials) and gelators by FT-IR. The spectra of car-
bamates pure show an absorption band close to 1691 cm−1 attributed to the carbonyl group,
while for the urea compounds this band appears at around 1620 cm−1. This is attributed to
the resonance effect of the oxygen and nitrogen atoms on the double bond of the carbonyl,
being this phenomenon stronger for the urea than the carbamate. Consequently, the urea
bond is longer, more polarized and weaker [60], meaning it is the carbonyl undergoes
stretching with a lower frequency energy (Scheme S3, Supplementary Materials).

Comparing the FT-IR spectra for the best gelator compounds, the spectrum of
3a carbamate organogel with xylene shows an intense and wide absorption band at
3350 cm−1 corresponds to the vibration of the NH stretch (Figures S42 and S43,
Supplementary Materials). The spectrum of 5a urea with carbon tetrachloride shows
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a broad and very weak band at 3347 cm−1 to the NH stretching vibration (Figures S45
and S46, Supplementary Materials). This means that the NH groups of the ureas are more
involved in the formation of bonds by hydrogen bridges than the NH groups of the car-
bamates [61,62]. Another relevant characteristic was the decrement in the intensity of the
absorption bands of the NH and carbonyl groups when the gels were formed. This effect is
greater in ureas than carbamates and it is related to the formation of molecular networks.

The materials were also characterized by 1H NMR. The spectra of pure carbamates
showed chemical shifts at δ close to 4.0 ppm for Hα protons, at about 3.3 ppm for Hβ

protons, except for 3e whose Hα proton resounds at 4.28 ppm due it is adjacent to the
aromatic system. Only carbamates 3a, 3d and 3e showed Hβ protons. On the other hand,
3b, 3c and 3e compounds displayed additional signals owing to their aromatic protons
(Table S1, Supplementary Materials).

On the other hand, the 1H NMR spectra of ureas presented chemical shifts at 3.3 ppm
for the Hα protons and at 4.28 ppm for the Hβ proton of the 5e compound. The 5a, 5d
and 5e ureas presented signals for the Hβ protons, while 5b, 5c and 5e showed signals for
aromatic protons (Tables S2 and S6, Supplementary Materials).

The structural identity of the carbamates and of the ureas corroborated by HR-MS,
where their experimental and calculated molecular weights were very close to each other
(Tables S1 and S2, Supplementary Materials).

Gel morphology was analyzed by scanning electron microscopy. Results show clear
differences between surfaces of the formed supramolecular networks by carbamates and
ureas (see Figures S48 and S49, Supplementary Materials). Figure 2 shows SEM images
of the supramolecular structures in the gels prepared from 3c carbamate in dioxane. As
can be seen, entanglement network structures of different type are formed. Specifically,
Figure 2 shows gels an irregular entanglement network with average of 15 µm.
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SEM images of the supramolecular structures in the prepared from 5c urea in dioxane
are shown in Figure 3. Structures with irregular hollow shape and average sizes close to
10 µm exhibit a mixture of shapes.
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The gel formation for ureas was also corroborated by Yang et al. in 2021, where
structures of urea organogels were obtained as fibers and spheres, attribute to NH groups
of compounds [63].

To support the obtained NMR results of the organogels, the data of carbamates
and ureas were processed by computational displacement calculations and the formed
supramolecular interactions in the organogels were compared. Figure 4 presents a linear
correlation plot of calculated and experimental 1H chemical shifts values of organogels to
5d urea and 3d carbamate as example. The results show that protons (1H) are significantly
affected by intermolecular interactions, especially if they are compared with 13C chemical
shifts [64]. These results could confirm the possible interactions of carbamates and ureas
protons during the formation of the organogel (see Supplementary Figure S41). The linear
correlation for all organogels is presented in Figures S50–S59 of Supplementary Materials.

The 1H chemical shifts between 4.5–6 ppm show the largest deviation to the 5d urea
and 3d carbamate. The 5d urea presents a signal at 4.3 ppm (NH) attributed to the formed
hydrogen bonds between the organogel and the solvent, which cause a loss of correlation
between calculated and experimental data. This has been reported by Baryshnikov [65].
For 3d carbamate, this signal does not appear. For signals higher than 5 ppm attributed to
the short chain attached to OH, the deviation could be to the electronegative property of
oxygen atoms and a weak van der Waals interaction [66]. These findings can be supported
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by the structural analysis of 3d carbamate and 5d urea, which shows that the only difference
between them is the additional NH bonding for the ureas. In this way, a greater amount
of hydrogen bonds created to form supramolecular networks, either with the solvent or
between the molecules of the compound itself, increasing its gelling efficiency [67].
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Figure 4. Linear correlation plots of 1H chemical shifts values of organogels with 5d urea
and 3d carbamate.

The self-assembly ability of the best compounds (3d and 5d) was also proved for the
removal of organic solvents in water. Mixtures of toluene, xylene and 1,4-dioxane were
tested by separated in water at concentrations of 20 wt.% of solvent, while mixtures of
two and three organic solvents were prepared with water, where the concentration of
each solvent was 20 wt.% (see Figures S69 and S70, Supplementary Material). The organic
compound (carbamate or urea) was added following the same procedure described in
gelation test section. The formed organogel was separated and weighed to obtain the
removal efficiency of solvents. The gel was heated and the temperature at which it broke
down was also recorded. The experiments were made by triplicate and the results are
shown in Table 1.

Table 1. Results of organic solvents removal (toluene, xylene and 1,4-dioxane) in water.

Carbamate Compound Urea Compound

Mixture Solvent (g) Water (g) 3d (g) Removal
Efficiency (%) Solvent (g) Water (g) 5d (g) Removal

Efficiency (%)

D-W 0.2353 2.8036 0.0159 0.0 0.23 2.0783 0.0208 0.0

T-W 0.4884 2.3495 0.0201 28.00 0.4124 2.3160 0.1706 80.18

X-W 0.7671 3.2431 0.0252 82.53 0.7317 3.1273 0.0150 92.72

T-X-W 0.8819 1.2958 0.0258 58.95 0.0923 1.2584 0.0215 90.72

D-T-X-
W 1.3522 1.0093 0.0256 62.40 1.3614 1.0147 0.0124 73.12

D = Dioxane; X = Xylene; T = Toluene; W= Water.

In the same way, when the mixture was made with mixture of solvents in water, the
5d urea had removal efficiencies higher than 70%, meanwhile the 3d carbamate had removal
efficiencies close to 60% except to dioxane where in both cases the compounds do not
remove the solvent.
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The efficiency results of the organic solvents removal were confirmed by FT-IR. The
spectra of the initial mixture (water-solvent) and the final mixture (after capture of the
solvent) were analyzed, see Figures S60–S67, Supplementary Materials. The band around
720 cm−1 was considered to differentiate between the used organic solvents. The area under
the signal curve before and after the capture was calculated to obtain the experimental
capture efficiency of solvents and they were compared with the gravimetric results (Table 2).

Table 2. Results of the evaluation of the traces of the organic solvents in water before and after the
treatment with 3d and 5d.

Carbamate Compound 3d Urea Compound 5d

Mixture
Gravimetry

Removal
Efficiency (%)

FT-IR
Removal

Efficiency (%)

Gravimetry
Removal

Efficiency (%)

FT-IR
Removal

Efficiency (%)

T-W 28.00 19.30 80.18 80.70

X-W 82.53 79.3 92.72 89.80

T-X-W 58.95 58.7 90.72 90.40

D-T-X-W 62.40 64.90 73.12 65.40

The rheological properties of the organogels were studied by oscillatory rheology at
25 ◦C. From the amplitude sweep experiments, storage modulus (G’) and loss modulus
(G”) were determined as a function of strain (see Figure S68, Supplementary Materials).
The results show that G’ was higher than G” at low strain for all tested solvents systems in
water. However, these modulus present higher values when the gel was made with 5d urea
than those made with 3d carbamate, except to the mixture toluene-xylene-water, where
both properties had the same values. Results show that the flow point is presented at low
strains, typical behavior of weak gels [68,69]. However, these values are higher for gels
made with urea than those made with carbamate.

It has reported to establish the gel structure, the storage modulus (G’) must dominate
loss modulus (G”) both contributions independent of frequency [70]. For this reason, G’ and
G” for the gel were determined as a function of frequency (Figure 5) from 0.1 to 100 rad/s.

The results confirmed the elastic modulus was higher than viscose modulus at this
range of frequency for all systems but, organogels 5d urea presented higher values than
those with 3d carbamate. This is attributed to the formed hydrogen bonds are more
important than van der Waals interactions. The materials were not affected by the frequency,
which indicates that the organogels can support external forces in the range of used
frequency, except to the system toluene-xylene-water. This behavior was reported by L.E.
Ojeda-Serna [71], where oil-in-water organogels had an elasticity modulus higher than
viscous, also attributed to van der Waals forces between alkyl chains that are related to
aggregation to hydrophilic glycerol heads, which produces strong gels.

The results show that G’ and G” of organogels made of 5d urea and toluene and are
higher than those with xylene, indicating that formed organogels with toluene are more
rigid because they have more physical interactions.

Results of apparent viscosity (η) as a function of shear rate (y) for organogels made of
5d urea and 3d carbamate with mixture of solvents in water are presented in Figure 6. All
the gel samples showed a prominent shear thinning flow behavior (n < 1) characteristic of a
non-Newtonian behavior, but the degree of shear thinning was highest for urea organogels.
This means that urea organogels have greater resistance to gradual deformations than
carbamate organogels, because they have a greater interaction with all the solvents by the
presence of more hydrogen bond in their structure that was demonstrated with the capture
efficiency of solvents which was higher for ureas than the carbamates.
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3. Conclusions

Two series of novel amphiphilic compounds (carbamates and ureas) were synthesized
using a modification of synthesis methods reported by bibliography, which increased
the reaction efficiency. The lipophilic part of both series was a hexadecyl chain and the
hydrophilic substituent was changed, undergoing the same modifications in the carbamates
and ureas. The structures were confirmed by several techniques and their ability to gel
organic solvents was evaluated and compared. The ureas showed the greatest ability to self-
assemble, which was attributed to the additional N-H bond. It was observed that hydrogen
bonds worked cooperatively to stabilize and strengthen the supramolecular network.
The results of NMR for gel formation were confirmed by computational displacement
calculations, showing that the protons (1H) are significantly affected by intermolecular
interactions. The results of one solvent removal in water showed that the urea had removal
efficiencies above 80%, while with a mixture of solvents they had removal efficiencies
higher than 70%. The rheological properties of gels showed typical behaviors of weak gels.

4. Materials and Methods
4.1. Materials

Hexadecyl chloroformate (96%), hexadecyl isocyanate (97%), N, N-dimethylethylenediamine
(99%), ethanolamine (99%), 2-aminophenol (99%), 1,2-phenylenediamine (99%), palladium on
carbon (10 wt%), hydroxylamine hydrochloride (99%), and vanillin (99%) were purchased from
Sigma-Aldrich (Burlington, MA, USA) and used without further purification. Dichloromethane,
ethyl acetate, hexane, acetone and ethyl alcohol were reagent grade from Alveg (Tlalnepantla
de Baz, Mexico).

4.2. Methods
4.2.1. Synthesis of New Carbamates and Ureas

The general procedure for synthesizing the carbamates began by dissolving alkyl or
aryl amines 2 (0.8 equiv.) in dichloromethane (DCM) in a round-bottomed flask under
vigorous stirring. Then, hexadecyl chloroformate 1 (1 equiv.) in dichloromethane was added
dropwise during 30 min at room temperature. The reaction progress was monitored by
thin layer chromatography (TLC). After two hours, the reaction mixture was extracted with
5 v/v% aqueous hydrochloric acid solution (3 × 15 mL) and water (2 × 15 mL). The organic
phase was dried (Na2SO4) and filtered and the solvent was evaporated under reduced
pressure. The product was purified by recrystallization or by silica gel (70–230 mesh) column
chromatography. The carbamates were obtained as a white or beige solid in a yield greater
than 85% (see Supplementary Materials and Scheme 1).
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The ureas were synthesized and purified following a procedure similar to carbamates
synthesis. Hexadecyl isocyanate 4 and the alkyl or aryl amines 2 reacted to form ureas 5.
The ureas were obtained as a white solid with a yield greater than 90% (see Supplementary
Materials and Scheme 2).
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4.2.2. Characterization of New Carbamates and Ureas

Melting points were determined by A.KRÜSS melting point meter (Model KSPIN,
Berlin, Germany). Purification of the reaction mixtures was accomplished by recrystal-
lization or column chromatography over silica gel (Merck 70-230 Boston, MA, USA) as a
solid support. The reaction progress was monitored by TLC (thin layer chromatography)
on silica gel 60 F254 aluminum plates (see Supplementary Materials). Fourier transform
infrared spectroscopy (FT-IR) was recorded using a double-beam Perkin-Elmer Model
1605 FT/IR spectrometer (Whaltham, MA, USA) with ATR equipment. The area under the
signal curve was calculated at 720 cm−1, before and after the capture of the solvents by an
Origin LabPro (Northampon MA, USA).

NMR spectra were recorded in CDCl3 or DMSO-d6 solution on a Varian (now Agilent)
NMR System 500 spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA), with
300 or 500 MHz for 1H NMR and 75 or 125 MHz for 13C, respectively. Chemical shifts were
reported in parts per million (ppm) relative to Me4Si as internal standard. The J -coupling
constants were expressed in Hz.

High-resolution mass spectroscopy (HR-MS) was analyzed on a micrOTOF-Q II with
electrospray ionization (ESI) (BrukerDaltonics, Billerica, MA, USA).

4.2.3. Gelation Test

The gelation properties were examined to each compound with four solvents. Briefly,
a sample of 1 mL of solvent was put in a capped vial and weighed. The compound was
added to solvent in quantities of 2 mg until saturation was reached. The mixture was
heated in a thermal bath until the solid was dissolved and a clear solution was determined.
The solution was cooled until gel formation and its temperature was registered. Finally, the
vial was inverted to assure that there was not flow of organic solvent out of the gel [12].
The gel was weighed, and the minimum gelation concentration (MGC) was obtained. After
that, the gel was heated and the temperature at which it broke down was recorded. All the
experiments were performed by triplicate.

4.2.4. Scanning Electron Microscopy

A gel sample was placed on a copper sample holder. The sample was submerged in
liquid nitrogen for 10 min. With this treatment, the morphology of gels was maintained.
Finally, the sample was put a vacuum condition and a layer of gold-palladium was sprayed
on the sample [72,73]. The samples were placed in a JEOL scanning electron microscope
(model JSM 7800F, Tokio, Japan) at 1 kV.

4.2.5. Capture of Solvents in Wastewater Test

The organic solvent capture was examined for the best compounds: 3d (carbamate)
and 5d (urea). Four samples of solvents-water were tested. The sample was prepared with
20 wt.% of solvent in water. Then, it was put in a capped vial and weighed. The compound
addition (carbamate or urea) was made following the same procedure mentioned in the
gelation test section. Finally, the formed organogel was separated and weighed. The gel
was heated and the temperature at which it broke down was recorded. The experiments
were made by triplicate.
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4.2.6. Rheological Analysis

Rheological properties were evaluated with a Modular Compact Rheometer model
MCR-502, Anton Paar (Graz, Austria) using PP25 parallel plate geometry (25 mm diam-
eter, 0◦). Samples were placed in the center of the bottom plate. The upper plate was
immediately lowered to a gap of 1 mm and the measurement was performed. Amplitude
sweeps (strain = 0.001–100%) were carried out to determine the linear viscoelastic region
(LVR). Oscillation stress sweep was conducted at 0.01% of strain and range of frequency
of 0.1–100 rad/s was applied. In the frequency sweep, the angular frequency was varied
from 10−1 to 102 rad/s at constant 0.01% strain. Apparent viscosity of samples at shear
rate from 1 to 50 1/s was measured as a function of applied stress to check the structural
loss of the gel. All experiments were made at 25 ◦C by triplicate.

4.2.7. DFT Results of NMR Chemical Shift and IR Spectra

DFT calculations were performed using Gaussian 09 (Revision C.01) software (Walling-
ton, CT, USA) and the results were visualized with GaussView 6.0 (Wallington, CT,
USA). Structures were full optimized from the experimental data, using the Becke’s three-
parameter (B3) hybrid exchange functional with the correlation functional of Lee Yang
and Parr (LYP) [67,74]. The geometry optimizations for each species were calculated using
6-31G basis set with polarization functions in all atoms; IR frequencies were calculated
using TZV basis sets of Ahlrichs and for calculate NMR chemical shifts the CC-pVDZ basis
sets were employed. The reported NMR chemical shifts were calculated using GIAO-B3LYP
method as implemented in Gaussian, all chemical shift values were corrected with scaling
factors [67] for 1H and 13C, respectively. The optimization and computational IR spectra
were calculated in vacuum and solvent effect, specifically chloroform was considered in
NMR chemical shifts calculations.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels8070440/s1, Experimental carbamate methods, Scheme
S1. Synthesis of carbamates 3 starting from hexadecyl chloroformate 1 and amines 2; Figure S1. FT-IR
of carbamate 3a; Figure S2. 1H NMR of carbamate 3a; Figure S3. 13C NMR of carbamate 3a; Figure
S4. HR-MS of carbamate 3a; Figure S5. FT-IR of carbamate 3b; Figure S6. 1H NMR of carbamate
3b; Figure S7. 13C NMR of carbamate 3b; Figure S8. HR-MS of carbamate 3b; Figure S9. FT-IR of
carbamate 3c; Figure S10. 1H NMR of carbamate 3c; Figure S11. 13C NMR of carbamate 3c; Figure
S12. HR-MS of carbamate 3c; Figure S13. FT-IR of carbamate 3d; Figure S14. 1H NMR of carbamate
3d; Figure S15. 13C NMR of carbamate 3d; Figure S16. HR-MS of carbamate 3d; Figure S17. FT-IR of
carbamate 3e; Figure S18. 1H NMR of carbamate 3e; Figure S19. 13C NMR of carbamate 3e; Figure
S20. HR-MS of carbamate 3e; Scheme S2. Synthesis of ureas 5 starting from hexadecyl isocyanate 4
and amines 2; Figure S21. FT-IR of carbamate 5a; Figure S22. 1H NMR of urea 5a; Figure S23. 13C
NMR of urea 5;a Figure S24. HR-MS of urea 5a; Figure S25. FT-IR of carbamate 5b; Figure S26. 1H
NMR of urea 5b; Figure S27. 13C NMR of urea 5b, Figure S28. HR-MS of urea 5b; Figure S29. FT-IR of
carbamate 5c; Figure S30. 1H NMR of urea 5c; Figure S31. 13C NMR of urea 5c; Figure S32. HR-MS of
urea 5c; Figure S33. FT-IR of carbamate 5d; Figure S34. 1H NMR of urea 5d; Figure S35. 13C NMR of
urea 5d; Figure S36. HR-MS of urea 5d; Figure S37. FT-IR of urea 5e; Figure S38. 1H NMR of urea 5e;
Figure S39. 13C NMR of urea 5e; Figure S40. HR-MS of urea 5e; Table S1. Results of carbamates 3
in FT-IR, 1H NMR, and HR-MS; Table S2. Results of ureas 5 in FT-IR, 1H NMR, and HR-MS; Table
S3. Comparative gelation properties of carbamates 3 (minimum gelation concentration, measured as
the percentage of weight) with different organic solvents (CH3-(CH2)14-CH2-(OCONH)-R 1); Table
S4. Comparative gelation properties of ureas 5 (minimum gelation concentration, measured as the
percentage of weight) with different organic solvents (CH3-(CH2)14-CH2- (HNCONH)-R 1); Table S5.
Gel formation temperatures and breaking temperatures (Tg)/(Tb) for carbamates 3a-3e and ureas
5a-5e; Table S6. Chemical shifts (δ ppm) of the N-H bonds of carbamates 3a-3e and ureas 5a5e; Table
S7. Solubility parameter, molar volume and the Flory-Huggins parameter for several solvents; Figure
S41. The only difference between the carbamates and the ureas is an additional NH bond in the
latter 3e/5e; Figure S42. FT-IR spectrum of neat carbamate 3a; Figure S43. FT-IR spectrum of the gel
formed by carbamate 3a with xylene; Figure S44. Supramolecular network formed by carbamate
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3a with xylene; Figure S45. FT-IR spectrum of neat urea 5a; Figure S46. FT-IR spectra of the gel
formed by urea 5a with carbon tetrachloride; Figure S47. Supramolecular networks formed by urea
5a with carbon tetrachloride; Figure S48. Photographs of the flasks and scanning electron microscopy
micrographs of the gels obtained by interacting carbamates 3a-3e with different organic solvents;
Figure S49. Photographs of the flasks and scanning electron microscopy micrographs of the gels
obtained by interacting ureas 5a-5e with different organic solvents; Scheme S3. Resonant effect on the
nitrogen and oxygen atoms on the double bond of the carbonyl; Figure S50. Linear correlation plots
of a 13C and 1H chemical shifts values of organogel with urea 5a; Figure S51. Linear correlation plots
of a 13C and 1H chemical shifts values of organogel with urea 5b; Figure S52. Linear correlation plots
of a 13C and 1H chemical shifts values of organogel with urea 5c; Figure S53. Linear correlation plots
of a 13C and 1H chemical shifts values of organogel with urea 5d; Figure S54. Linear correlation plots
of a 13C and 1H chemical shifts values of organogel with urea 5e; Figure S55. Linear correlation plots
of a 13C and 1H chemical shifts values of organogel with carbamate 3a; Figure S56. Linear correlation
plots of a 13C and 1H chemical shifts values of organogel with carbamate 3b; Figure S57. Linear
correlation plots of a 13C and 1H chemical shifts values of organogel with carbamate 3c; Figure S58.
Linear correlation plots of a 13C and 1H chemical shifts values of organogel with carbamate 3d; Figure
S59. Linear correlation plots of a 13C and 1H chemical shifts values of organogel with carbamate 3e;
Figure S60. FT-IR spectrum of the traces of toluene in water before and after the treatment with 3d;
Figure S61. FT-IR spectrum of the traces of toluene in water before and after the treatment with 5d;
Figure S62. FT-IR spectrum of the traces of xylene in water before and after the treatment with 3d;
Figure S63. FT-IR spectrum of the traces of xylene in water before and after the treatment with 5d;
Figure S64. FT-IR spectrum of the traces of toluene- xylene in water before and after the treatment
with 3d; Figure S65. FT-IR spectrum of the traces of toluene- xylene in water before and after the
treatment with 5d; Figure S66. FT-IR spectrum of the traces of dioxane-toluene- xylene in water
before and after the treatment with 3d; Figure S67. FT-IR spectrum of the traces of dioxane-toluene-
xylene in water before and after the treatment with 5d; Figure S68. Storage modulus (G’) and loss
modulus (G”) as a function of strain for organogels of urea 5d (G’ -�)) (G”-•) and carbamate 3d
(G’-�) (G”-
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