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Abstract: ZnFe,Oy as an anode that is believed to attractive. Due to its large theoretical capacity, this
electrode is ideal for Lithium-ion batteries. However, the performance of ZnFe,O4 while charging
and discharging is limited by its volume growth. In the present study, carbon-coated ZnFe,Oy is
synthesized by the sol-gel method. Carbon is coated on the spherical surface of ZnFe;O4 by in situ
coating. In situ carbon coating alleviates volume expansion during electrochemical performance and
Lithium-ion mobility is accelerated, and electron transit is accelerated; thus, carbon-coated ZnFe,Oy
show good electrochemical performance. After 50 cycles at a current density of 0.1 A-g~!, the battery
had a discharge capacity of 1312 mAh-g~! and a capacity of roughly 1220 mAh-g~!. The performance
of carbon-coated ZnFe,O4 as an improved anode is electrochemically used for Li-ion energy storage
applications.

Keywords: zinc ferrate; carbon-coated; sol-gel; anode material; Li-ion storage

1. Introduction

Based on their high specific capacity, lightweight feature and small volumes, Li-ion
batteries are observed as promising energy storage devices. Since it was commercially
introduced by Sony in 1990, it received explosive development in the field of portable
electronics such as smart-phones, laptops and other wearable electronic devices. The design
of high-energy electrode materials should be the primary focus of researchers in order to
extend its application to the field of electric car and large-scale energy grid storage. Graphite
is a commercially available anode material for Li-ion batteries due to their low cost, long
cycle life and environmental friendliness. In spite of these advantages, the lower theoretical
capacity of 372 mAh-g~! along with potential safety concerns of dendrite formation and
short-circuiting forced researchers to find alternative anode materials to satisfy the growing
demand of LIBs [1-10].

Transition metal oxides of the form MxOy [11-15] (M = Mn, Co, Ni, Fe, etc.) are
studied as alternative anode materials due to their larger theoretical capacity and higher Li
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intercalation potential than commercial graphite. The pioneering work of Poizot et al. in
2000 provided the impetus for the application of 3d TMOs as anode material. Currently,
binary and ternary transition metal oxides combining different 3D transition metals are
studied due to their higher theoretical capacity that is greater than commercial graphite
electrodes. Moreover, a suitable combination of transition metal oxides results in better
electrochemical performance and electronic conductivity [16-18]. Li storage capacity in
this material is achieved through a reversible reaction between the Li-ion and metal oxide,
which forms nanocrystals of metals scattered in the Li;O matrix. Continuous Li inser-
tion and exertion cause large volume change, resulting in the pulverization of the anode.
As a consequence, the electrical connectivity between the active anode materials breaks
down, causing severe capacity fade over prolonged cycles. Two different techniques are
adopted by the researchers to overcome this drawback. One is to synthesize nanoparticles
with different morphologies such as nanoparticles, nanorods [19,20], nanosphere [21,22],
nanospindles [23,24], nanowires [25,26], TiO,-B [27] and ZnAl;Oy4 [28]. These nanostruc-
tured materials could better accommodate strains caused by Li insertion and extraction by
reducing the transport path of ions and electrons. This high surface area could induce Solid
Electrolyte Interface (SEI) thick-layer formation, which consumes more Li ions resulting in
irreversible capacity loss during initial cycles [27-30]. Shashan Yao et al. reported CoFe;Oy
as an electrocatalyst for Li batteries [29,30].

Secondly, carbon coating is the most widely used technique to protect the inner active
material from side reactions and maintains its high capacity. This layer acts as a buffer
medium to volume changes and provides better electrical conductivity for good stability.
Iron-based transition metal oxides are receiving more attention because of their natural
abundance, non-toxicity low cost and environmental friendliness. Specifically, ZnFe;O4
is studied more widely studied, in which divalent and trivalent ions occupy tetrahedral
A and octahedral B sites. It has a high theoretical capacity (1072 mAh-g~!) arising from
both conversion and alloying reactions. Its lower working voltage of 1.5 V for Li insertion
and extraction is useful in achieving high energy density. In addition to these advantages,
it still suffers from severe capacity fade, poor electronic conductivity and large volume
changes during Li insertion and extraction. Different approaches were used by researchers
to mitigate these problems [31-33].

Here, ZnFe;Oy is synthesized using the facile sol-gel method. The sol-gel method
is considered effective for modifying the surface of substrates. Obtaining a high surface
area and stable surfaces is the most important advantage of the sol-gel method. As a
source of both carbon and chelating agents, citric acid is used. The presence of carbon
content is effectively controlled by varying the concentration of citric acid, and its impact
on the electrochemical performance is studied. The optimized sample is studied by cyclic,
galvanostatic and electrical impedances. The results are impressive with a high capacity at
a current density of 100 mA-g~!.The capacity is still maintained above 1100 after 50 cycles
with very good stability. The results show that carbon-coated ZnFe,O4 will be a cost
effective and highly stable anode for Li ion batteries.

2. Results and Discussion

The XRD patterns of in situ carbon-coated ZnFe,O4 are shown in Figure 1 As shown
in Figure 1a, all peaks are well indexed and the diffraction peaks at angles of 17.98°, 29.6°,
35.14°, 36°, 42.72°, 52.78°, 56.32°, 61.96°, 70.61° and 73.57°, which corresponds to the hkl
plane of (111), (220), (311), (222), (400), (422), (511), (440), (620) and (533), respectively. The
XRD patterns show that the sample possesses a cubic spinel structure. All indexed peaks
and intensity wells match with the standard ICSD 98-006-6128 [34,35]. The well-indexed
highest point shows that the prepared sample has a good crystalline nature. The carbon
peak is not observed and remains in an amorphous nature. Thus, in situ carbon coated
ZnFe,O4 was successfully synthesized without affecting the basic nature of ZnFe,Oy4. The
simulated structure of ZnFeQO, is shown in Figure 1b.
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Figure 1. (a) The XRD patterns of Carbon coated ZnFe,O. (b) The simulated structure of ZnFe,Oj.

Figure 2 shows FESEM and HRTEM images of in situ carbon-coated ZnFe,O4. Mor-
phological analysis was performed to study the structural nature of the prepared samples.
Figure 2a—c show the FESEM images of the in situ carbon-coated ZnFe;O,. An agglomera-
tion with unevenly distributed particles was formed. The range of the particle size is about
100-200 nm. Upon observing Figure 2b, irregular particles have been formed with various
sizes, accumulation and uneven spread due to the combustion process produced by carbon
agglomeration. Carbon was coated on the sample by adding citric acid as a chelating
agent for the combustion method. The carbon source itself acted as a carbon source for
the prepared samples. Figure 2c shows the uneven spherical structure. The uneven nature
may be due to the presence of carbon on the sample. Figure 2d shows that in situ carbon
was coated on the surface of ZnFe,O4, which indicates that the carbon-coated ZnFe,O,
was successfully synthesized. The conductive carbon on the outer surface greatly increases
the performance of the electrode during electrochemical analysis. The SAED model for
the prepared samples is shown in Figure 2e. The clear points show that the sample was
purely crystalline, without any contamination particles. Figure 2f demonstrates the EDAX

spectra of the prepared samples to confirm the presence of the elements. The thickness of

the carbon coating is about 2-3 nm.
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Figure 2. FESEM images of in situ carbon-coated ZnFe,Oy (a) with 5 pm, (b) with 2 um and (c) with
1 pm. (d,e) HRTEM and SAED images of ZnFe,Oy. (f) EDAX. (g) SEM images of ZnFe,O4 without
carbon coatings.

Raman spectroscopy is a quick and easy method for finding more information about
carbon. Carbon, ZnFe;O4 nanoparticles and ZnFe;O4@C nanohybrids are shown in
Figure 3. Carbon and ZnFe,04@C nanohybrids have G and D bands. The G band at
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about 1580 cm !, which corresponds to an E2g mode of graphite, comes from the vibration
of sp2-bonded carbon atoms. The D band at about 1345 cm~ !, which corresponds to a
point mode of Alg symmetry, comes from the defects and disorder of carbon materials.
The ID/IG of ZnFe,O4@C is higher than that of carbon, which is due to the smaller average
size of sp2 domains and more disordered degrees and defects. This is because sp2 domains
are smaller, and there are more defects. The increase in ID/IG also shows that GO is turned
into RGO during the reaction process. There are a lot of Raman bonds in ZnFe,O, and
ZnFe,04@C that look a lot like the bonds in ZnFe;O4 particles and ZnFe,O,@C nanocom-
posites that have been reported before. The Raman spectra of ZnFe,O4 and graphene
show that the properties of ZnFe,O4@C stay the same even after they are made into
nanohybrids [36,37].

/ D band

ZnFe,0,@C

Intensity(a.u)

Carbon

400 800 1200 1600 2000
Raman Shift(cm™)

Figure 3. The Raman spectra of carbon, ZnFe,O4 and ZnFe,O4@C.

XPS spectra were used to understand the chemical composition. Figure 4a shows an in
situ carbon ZnFepO4-coated survey spectrum that represents Zn, Fe, O and C characteristics,
respectively. As represented in Figure 4b, the spectrum of Zn 2p is shown. The peaks at
1022.5 and 1045.4 eV correspond to Zn 2ps,, and Zn 3p; /5, respectively. The XPS spectrum
of Fe 2p was shown in Figure 4c. The orbital pairs Fe 2p; /; and Fe 2p3, are characterized as
peaks of 724 and 711 eV. Figure 4d shows the XPS spectrum of O 1s. The top at 530 eV, from
left to right, indicates that the functional oxygen group and the peak at 536 are associated
with large oxygen molecules on the surface of samples. Figure 4e shows that the peak of
C1s spectra was observed. The maximum of 285 eV is C=C; the maximum of 285 eV is
C=H and the maximum fitness is C=N and C-OH. The successful preparation of in situ
carbon-coated ZnFe,O, has been proven once more.

Nuli et al. found that Li* was reversibly embedded and eliminated in ZnFe,Oy [36].
In 2010, Guo et al. discussed the Li storage mechanism of ZnFe;Oj as follows [35,37].

ZnFe,Oy4 + xLi* + xe~ — LixZnFe,Oy 1)
LixZnFe,O4 + (8 — X)Li* + (8 — x)e~ — Zn" + 4Li,O + 2Fe’ ()
Zn® + Lit + e~ [2] Lizn (3) Zn® + LiyO — ZnO + 2Li + 2¢~ 3)

2Fe” + 3Li,O — FepyO3 + 2Li * + 2e™ (4)
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Figure 4. The XPS spectra of ZnFe,Oy: (a) survey spectrum; (b) Zn 2p spectrum (c); Fe 2p spectrum;
(d) O1s spectrum; (e) C 1s spectrum.

In order investigate the electrochemical mechanism during charging and discharging,
CV analysis was performed to characterize the sample’s electrochemical characteristics.
The CV curves of carbon-coated ZnFe,Oy for the first 10 cycles was shown in Figure 5a.
The voltage range is 0.05-3 V at a rate of 0.1 mV s~!. As seen in Figure 5a, in the first cycle
of cathodic scanning, carbon-coated ZnFe,O, shows a sharp reduction peak at 0.5-0.6 V.
This was largely attributable to decreases in Fe** and Zn?* to Fe and Zn and Li-Zn and
Lip O, the mechanism of Li-ion intercalation in accordance with Equations (1)—(4) [38]. After
subsequent cycles of scanning, the reduction peaks of carbon-coated ZnFe,O, shifted to
1.0 V, which is due to changes in the internal structure of carbon coated ZnFe;O4. When
the first cycle was observed, a wide reduction peak of 1.6 V was observed due to the
oxidation of Zinc to Zn?* and iron oxide to Fe3*, the mechanism for Li intercalation/de-
intercalation [39]. Previous results of ZnFe,O4 [40] show that the peak area and current
of carbon-coated ZnFe,O,4 possess enhanced kinetics and faster ion and faster transport

of electrons, which results in better electrochemical performance. The CV curve of pure
ZnFepOy is shown in Figure 5b.
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Figure 5. The electrochemical performance. (a) Cyclic Voltametry of carbon coated ZnFe;Oy.
(b) Cyclic Voltametry of pure ZnFeyOy; (c) charge/discharge profile of carbon coated ZnFeyOy;
(d) charge/discharge profile of pure ZnFe,Oy; (e) charge/discharge profile of carbon coated ZnFe, Oy
at different current densities; (f) the cyclic performance; (g) rate performance of the electrode.
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For further investigation, the prepared samples are assembled into a coin cell and
tested at a 0.05-3 V range of constant current load /discharge (0.1 Ag~?). Figure 5c shows
the charge/discharge curves of carbon-coated ZnFe, Oy for 50 cycles. During the process of
charging/discharging, the voltage plateau was observed, which corresponds to a redox
reaction of the sample. On the first discharge curve observation of carbon-coated ZnFe;Oy,
an obvious working plateau at 0.8 V was observed. After a few cycles, the plateau dis-
appears and starts slopping, which matches with the results of CV in Figure 5a. Due
to the oxidation of Zn to Zn?* and Fe to Fe’*, a plateau was observed at 1.6 V. As per
the charge/discharge curves (Figure 5b), the 25th and 50th cycles coincide with another,
which shows the enhanced stability of the carbon-coated ZnFe,O, electrode. The first
discharge capacity of the sample reaches 2267 mAh-g~! at 0.1 Ag~! and The capacity for
the first load is 1221 mAh-g~!. The charge/discharge curves of different current densities
(100-8000 mA-g 1) are shown in Figure 5c. The initial capacity loss may be due to lithiation,
which consumes irreversible Li ion and results in the formation of solid electrolyte inter-
phases [41]. The sample attained an efficiency of about 96% after a few cycles, indicating
carbon-coated ZnFe;O4 with good electrochemical performances. The charge/discharge
profile of pure ZnFe, Oy is shown in Figure 5d.

Figure 5e represents the cyclic curves of carbon-coated ZnFe,Oj, tested at a current
density of 100 mA-g~!. The sample is tested in the same voltage window (0.05-3 V) for all
electrochemical analyses. Wang et al. [42] reported that pure ZnFe;O, has a 1312 mAh-g~!
reversible capacity and 100 cycles have reduced the discharge capacity toward 361 mAh-g~!.
The reason for capacity loss is due to the poor electronic conductivity of ZnFe,O4. Com-
paring carbon-coated ZnFe,O4 with pure ones, the electrochemical performance of the
carbon-coated sample was greatly improved. The discharge capacity of ZnFe,O4 carbon
coated reaches 1312 mAh-g~! in the first cycle and maintained 1228 mAh-g ! after 50 cycles.
The high capacity is due to (i) carbon as a conducting layer in a composite that enhances
electron transport and (ii) in situ carbon-coated defects on ZnFe,O, surface are present
in chemical oxidation, where more Li ions are stored. Thus, the contact area between
electrode/electrolyte increases, and during intercalation/de-intercalation, Li ion/electron
movements accelerate. (iii) Carbon has a mechanical resilience in the exterior layer, re-
ducing the expansion in volume during electrical processes. The reversible capacities of
carbon-coated ZnFe;O, increases with the number of cycles. This is a common critical
feature of LIBs anode transition metal oxides. The reason is due to the gradual activation of
metal oxides and electrolytes and the reversible mechanism [35,43].

In order to further observe the cycling performance of carbon-coated ZnFe,O, at
different current densities, electrode tests were conducted for rate performance. Current
density increased from 100 to 8000 mAh-g~! and then back to 500 mA-g~! respectively. As
shown in Figure 5f,g, at the current densities of 100, 200, 500, 2000, 4000 and 8000 mA- g’l,
the discharge capacity is about 1312, 1059, 806, 471, 207 and 119 mAh-g~!. It then return
to 500 mA-g~!, and the discharge capacity still reaches 645 mAh-g~!, which shows the
good reversibility nature of carbon-coated ZnFe,O,4. Compared with pure ZnFe;Oy4 [44]
without carbon coating, the performance of carbon-coated ZnFe,Oj is greatly improved.
The previous reported studies [45-63] are shown in Table 1.

Figure 6 shows the EIS spectra of carbon-coated ZnFe,O, and displays anode ma-
terials” load transmission resistance. The spectrum consists of half of the circle and an
inclining line, as illustrated in Figure 6a,b. The half circle in the high frequency region
features resistance toward the charge transfer of the electrode to the electrolyte. The low
frequency slope shows an impedance in Warburg, which is the diffusion of lithium ion
in electrodes [64—67]. Compared with pure ZnFe,O, (Figure 6a), the resistance of carbon-
coated ZnFe,Oy is smaller. Carbon-coated ZnFe,O,4 shows faster ion transfer because the
addition of carbon increases the electronic conductivity of carbon-coated ZnFe,;Oy, thus
improveing electrochemical performances. Electrochemical and the impedance results
show that carbon-coated ZnFe,O, have enhanced electrochemical performance compared
to anode materials.
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Table 1. Comparison of cycling performance with different ZnFe,O4-based electrodes by synthesis

methods.

Current

Electrode Materials Synthesis Method mA.g-1 Cycle mAh.g-1
3D Porous ZnFe;Oy Sol-Gel 1000 400 711 [45]
ZnFe,O4 Nanofibers Electro Spinning 50 50 1142 [46]
N-doped Carbon coated ZnFe;Oy4 Electro Spinning 200 200 881 [47]
Di‘;;zzgrz E}ﬁe Hydrothermal Method 100 100 952 [48]
ZnFe;O4/double graphene Microwave irradiation 1000 200 475 [49]
Porous ZnFe, Oy Hydrothermal Method 200 80 868 [50]
ZnFe;Oy/C Ionic Liquid 500 190 1091 [51]
Acetylene Black/ZnFe;O4/C Thermal Decomposition 1000 200 430 [52]
ZnFe;Oy4 /hollow fiber Electro spinning 200 260 1026 [53]
ZnFe,O4 Nanorods Co-Precipitation 100 50 983 [28]
ZnFe;O4@C/graphene Hydrothermal Method 250 180 705 [54]
3D- ZnFe,O4/Graphene Hydrothermal Method 100 50 770 [55]
ZnFe,O4 Nanosphere/G Solvothermal 100 50 704 [31]
ZnFe;O4/Graphene Cathodic Deposition 200 200 881 [56]
ZnFep;O4/Nanoflake/g Hydrothermal Method 100 100 730 [57]
Carbon Coated ZnFe,O4 Nanowires Micro-Emulsion 100 100 1292 [58]
ZnFe;O,4/C Planetary Ball-Mill 100 60 1100 [59]
ZnFe,O4/Graphene Hydrothermal Method 100 50 956 [60]
ZnFe,O4/C Planetary Ball-Mill 400 160 1300 [61]
MWCNT/ZnFe, Oy High-Temperature 60 50 1152 [62]
ZnFe;O4 Nano-Octahedral Hydrothermal Method 1000 300 730 [25]
ZnFe;O4/Graphene Solvothermal 400 90 398 [63]
ZnFe,O4 Nanofibers Electro spinning 60 30 733 [32]
In situ ZnFe,O4/C Sol-Gel 100 50 1312 (This Work)
70 100
60 ZnFe,0, a» 90 4 (b) LTl crE?
o / 80
L B S — 1 =
E o] ™ Tme / £ o
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Figure 6. The impedance spectra of (a)ZnFe;O4. (b) Carbon-coated ZnFe;Oy.
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3. Conclusions

In the present study, an electrochemical investigation was conducted on carbon-
coated ZnFe,Oy as an anode for energy storage applications. The in situ carbon-coated
ZnFe;O4 with spherical structure was prepared by using the sol-gel technique. Based on
previous reports on ZnFe,Oy4’s poor stability, electronic conductivity and electrochemical
performances have been improved on the surface of ZnFe,O4’s sphere structure with carbon
coating. As a result, it is observed that the discharge capacity of ZnFe,Oj is 1312 mAh-g !
at 100 mA-g~!, and the capacity retention is 95% after 50 cycles. The above results show
that cycling and the rate performance of ZnFe;O4 carbon-coated was enhanced by the
addition of carbon. The electrochemical performance of carbon-coated ZnFe;O; is suitable
for enhanced anode materials for Li-ion batteries.

4. Experimental

The nanocrystalline powders of ZnFe, Oy are synthesized by means of the conventional
sol-gel assisted combustion method. This is carried out in two stages in which the xerogel
is initially prepared using the sol-gel method, followed by the combustion method at
high temperatures. The calculated amounts of zinc acetate, iron acetate and citric acid are
mixed together in 100 mL of distilled water. After that, the pH of the solution is carefully
controlled at 7 by using ammonia water. Here, citric acid is used as both a chelating agent
and carbon source. The resulting solution is constantly maintained at 80 °C in a stirrer until
the water molecules evaporated. The resulting xerogel transforms into a fluffy powder
while drying at 120 °C for 12 h. Finally, the sample is calcinated at 600 °C for 4 h to obtain
the final sample. The preparation procedures are shown in Figure 7

K Iron Acetate

Citric Acid )
\/ %

— o —

Finally Xerogel

formed after 4
Maintained at 80 C water molecules hours

evoporated
Dried at 120 C

Carbon \ A
) -y
Zinc ferrate ’

Figure 7. The preparation of in situ carbon-coated ZnFe,O, by the sol-gel method.

After few hours

4.1. The Electrochemical Studies

The battery tests are performed using CR2032 coin cells in an argon atmosphere inside
a glove box. The cathode was the prepared sample, the anode comprised Li metal and the
separator was polypropylene. The electrolyte was constructed by combining LiPF6 with
EC and DEC (1:1 v/v). The cathodes were made by combining 2.5 g of prepared active
material with 0.5 g of ketjen black and 0.5 mg of teflonized acetylene black (TAB-2). Before
fabricating coin cells, the prepared mixture was pasted on a stainless-steel current collector
and dried in a vacuum oven at 160 °C. The charge-discharge cycle was carried out using
the Arbin BT-2000 battery tester system. An electrochemical workstation was used to
conduct EIS analyses (SP-150, Biologic, Seyssinet-Pariset, France).
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4.2. Characterization Details

Full-Prof software is used to calculate crystal values and structural analysis by X-ray
diffraction (Cu K radiation, Rigaku, Tokyo, Japan). A scanning electron microscope (Hitachi,
Tokyo, Japan) coupled with an EDX module and a high-resolution transmission electron
microscope were used to examine surface morphology and elemental composition (HRTEM,
JEOL, Tokyo, Japan). The molecular structures of the material were analyzed by using
Nuclear Magnetic Resonance Spectrometer (NMR; HWB NMR, Birmingham, UK).
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