
Citation: Yang, X.; Jiang, P.; Xiao, R.;

Fu, R.; Liu, Y.; Ji, C.; Song, Q.;

Miao, C.; Yu, H.; Gu, J.; et al. Robust

Silica–Agarose Composite Aerogels

with Interpenetrating Network

Structure by In Situ Sol–Gel Process.

Gels 2022, 8, 303. https://doi.org/

10.3390/gels8050303

Academic Editors: Jannis Wernery

and Samuel Brunner

Received: 28 March 2022

Accepted: 10 May 2022

Published: 16 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Robust Silica–Agarose Composite Aerogels with
Interpenetrating Network Structure by In Situ Sol–Gel Process
Xin Yang 1,2,3, Pengjie Jiang 1,2,3, Rui Xiao 1,2, Rui Fu 1,2,3,*, Yinghui Liu 1,2,3, Chao Ji 1,2, Qiqi Song 1,2,3,
Changqing Miao 1,2,3, Hanqing Yu 1,2,3, Jie Gu 1,2,3, Yaxiong Wang 1,2,3 and Huazheng Sai 1,2,3,*

1 School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology,
Baotou 014010, China; yangxin975@163.com (X.Y.); jpj1692787089@163.com (P.J.); xrnpdf@163.com (R.X.);
liuyinghui0419@163.com (Y.L.); j1063708309@163.com (C.J.); songqiqiaa@163.com (Q.S.);
qingmc@163.com (C.M.); qing194810@163.com (H.Y.); gujie199504182021@163.com (J.G.);
wangyaxiong2021@126.com (Y.W.)

2 Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, Inner Mongolia
University of Science & Technology, Baotou 014010, China

3 Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science & Technology,
Baotou 014010, China

* Correspondence: furui14@mails.ucas.edu.cn (R.F.); shz15@tsinghua.org.cn (H.S.)

Abstract: Aerogels are three-dimensional nanoporous materials with outstanding properties, espe-
cially great thermal insulation. Nevertheless, their extremely high brittleness restricts their practical
application. Recently, although the mechanical properties of silica aerogels have been improved
by regulating the precursor or introducing a polymer reinforcer, these preparation processes are
usually tedious and time-consuming. The purpose of this study was to simplify the preparation
process of these composite aerogels. A silicic acid solution treated with cation exchange resin was
mixed with agarose (AG) to gel in situ, and then composite aerogels (CAs) with an interpenetrating
network (IPN) structure were obtained by aging and supercritical CO2 fluid (SCF) drying. Compared
to previous works, the presented CAs preparation process is briefer and more environmentally
friendly. Moreover, the CAs exhibit a high specific surface area (420.5 m2/g), low thermal conductiv-
ity (28.9 mW m−1 K−1), excellent thermal insulation properties, and thermal stability. These results
show that these CAs can be better used in thermal insulation.

Keywords: silica aerogels; agarose aerogel; nanocomposites; interpenetrating network; mechanical
properties; thermal insulation

1. Introduction

Aerogel is an ultraporous three-dimensional nanomaterial obtained by a special dry-
ing method of wet gel so that the liquid phase between the gel skeleton is replaced by
the gas phase, and the gel skeleton remains intact [1]. Moreover, aerogels have a low
density (~0.003–0.5 g/cm3), a high specific surface area (500–1200 m2/g), high poros-
ity (80%~99.8%), and low thermal conductivity (~15 mW m−1 K−1), which have good
application prospects in many fields such as separation, thermal insulation, energy stor-
age, batteries, and aerospace [2]. However, traditional inorganic oxide (e.g., silica (SiO2),
alumina (Al2O3), and zirconia (ZrO2)) aerogels have inherently high brittleness due to their
pearl-necklace-like network, which limits their widespread applications [3,4]. Therefore,
researchers constantly exploit a more appropriate approach to prepare silica aerogel ma-
terials with excellent mechanical properties, which is critical to meet the demand of their
future practical applications [5–7].

To date, researchers around the world have mainly utilized precursor regulation [8]
and external doping [9] to enhance the mechanical capacity of silica aerogel materials.
Initially, the number of nanoparticles and their connection points in the aerogel skeleton
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were increased by promoting the amount of precursor, and then the strength of the aerogel
was improved in a limited range [8]. Following this, Rao et al. [10] prepared flexible
aerogels by supercritical drying after gelation of trialkoxysilane reagent RSiX3 (R is alkyl,
aromatic or vinyl; X is an alkoxy group) [11–13]. The inert group R on the precursor inhibits
the formation of rigid Si–O–Si bonds in the gel skeleton and decreases their number, so that
the gel skeleton can adapt to certain deformations and show good flexibility. Moreover,
researchers have used alkoxy silicon with an alkyl chain as a precursor to gel alone or
with other alkoxysilane precursors to endow aerogels more flexibility [14]. Similarly,
Gao et al. [15] and Guoqing Zu’s team [16–18] used similar flexible chain as precursors to
prepare SiO2 aerogels materials, which greatly reduced the brittleness of the gel skeleton
and allowed to obtain aerogel materials with a uniform microstructure and super flexibility.
However, these expensive precursors increase the production cost of aerogels. To reduce
the costs of preparation, researchers had synthesized silica composite aerogels using cheap
precursors. Waterglass (sodium silicate) may be a viable and inexpensive alternative to
alkoxide precursors. Therefore, sodium silicate produced from biomass ash, such as corn
stalk ash [19], rice hull ash [20], groundnut hull ash [21], and fly ash [22], is potential
candidate due to its low cost and facile production.

There are also some researchers who have enhanced the mechanical properties of silica
aerogels by implementing various reinforcers to toughen their structure [23,24]. In early
studies, the easiest way of improving the strength of silica aerogel was to use the fiber
reinforcement process. Various reinforced fibrous materials in dispersed or felt materials
made of fibers, such as ceramic fiber [25], polymer fiber [26], carbon fiber [27,28], glass
cotton mat [29], and polyethylene terephthalate (PET) nonwoven mat [30], have been
used as structural reinforcements [31]. However, these composite aerogels may have an
uneven distribution of reinforcing fibers during the gelation process, or the relatively
macroscopic structural reinforcements in size are incompatible with the nanoscale gel
skeleton of silica. Recently, improving the mechanical properties of silica aerogels by
polymer coating on the silica gel skeleton or depositing silica nanoparticles on the fibrous
polymer matrix has attracted more attention [32]. On the one hand, the silica sols were
prepared by the sol–gel method to prepare the silica wet gel, and immersed in the polymer
monomer (e.g., methyl methacrylate [33], styrene [34], isocyanate [35], and epoxy [36]),
which induced polymerization on the surface of the silica gel skeleton to form an isomorphic
coating structure (composite aerogel I obtained from route A in Figure 1). The isomorphic
covering method can effectively strengthen the aerogel skeleton, especially the joining of
secondary nanoparticles. However, this has also brought about some shortcomings or
new problems; for instance, the high cost of preparation and the formation of polymers
on the surface of the gel skeleton will fill the voids between primary nanoparticles. This
phenomenon shows that the specific surface area of aerogels is significantly reduced, which
also limits their application in some fields. On the other hand, the polymer solution has
been gelled to obtain polymer wet gels, and the polymer wet gels have been impregnated
with silica sols to make the silica sol gelation form an interpenetrating network (IPN)
structure (composite aerogel II route B in Figure 1) [37–39]. Although the mechanical
properties of silica have been improved by constructing flexible polymer substrates via
the above two methods, the diffusion of polymer monomers into the silica gel skeleton or
the diffusion of silica sols into the polymer matrix are both time-consuming [40] and their
preparation conditions are harsh (e.g., gelation at a low temperature to inhibit the gelation
of sols before they diffuse into the polymer matrix [41]).
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Figure 1. Schematic of the preparation process for composite aerogels via three different routes.

This study aimed to directly mix a polymer solution (i.e., AG solution) with a silicic
acid solution in situ to construct composite aerogels II with an IPN structure, as shown in
route C in Figures 1 and S1. In the preparation process of CAs, AG first gelled to construct a
nanofiber network, and then a SiO2 gel skeleton was formed in the AG nanofibers network
in situ to form an IPN structure. Compared to other works [40,42], the construction of
a composite aerogel gel skeleton did not require diffusion of one monomer into another,
which extremely simplified the preparation process. Moreover, the CAs benefited from the
fact that the gelation process of the natural polymer AG without any chemical cross-linking
agents and AG nanofibers in the IPN structure of the CAs were more loosely distributed.
Then, the CAs were prepared using inorganic Na2O·3SiO2 instead of organic TEOS as the
silica source and compounded with AG in situ. This preparation process not only cut down
the cost but also made the compound process more environmentally friendly. More impor-
tantly, the presented CAs displayed excellent mechanical properties, thermal insulation,
and thermal stability, thus promoting the application of aerogels in thermal insulation.

2. Results and Discussion
2.1. Microstructures Characterization

The microstructures of agarose aerogel (AA-2), silica aerogel (SA-4), and CAs were
revealed by scanning electron microscopy (SEM) images (Figure 2). The 3D network struc-
ture of AA-2 consists of disordered and dispersed nanoscale AG nanofibers (Figure 2a).
The branching points were firmly fixed, and a 3D network structure was formed by hydro-
gen bonding or electrostatic attraction between the helical AG molecules and the flexible
chains [43,44]. An SEM image of the SA-4 is given in Figure 2b. It can be seen that
micrometer-sized SiO2 agglomerations with a typical aerogel structure were produced for
pure SAs. However, during the gelation process of the CAs, AG first formed a gel skeleton
due to the low-temperature self-coagulation of AG, and SiO2 gelled in the gel skeleton
of AG to form an IPN network structure. SEM images of the CAs showed that the IPN
structure was formed by a flexible AG and a rigid SiO2 gel skeleton (Figure 2c). CA-1 was
mainly composed of AG nanofiber aggregates when the content of SiO2 in the composite
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solution was low, with a handful of SiO2 nanoparticles attached to the gel skeleton of AG
by hydrogen bonding (Figure 2c1). For larger contents of SiO2, as in CA-2 and CA-3, a
SiO2 gel skeleton was gradually formed in the AG nanofiber network (Figure 2c2,c3). This
phenomenon indicates that a nanoscale IPN structure was constructed. When the content
of SiO2 in the CAs was improved further, the SiO2 gel skeleton became denser, as shown in
CA-4 (Figure 2c4). Compared to other composite aerogels enhanced with short fibers in a
dispersed [26] or cellulose nanofiber network [45], the AG nanofibers were more evenly
distributed in the CA network. Moreover, the IPN structure of the CAs made full use
of these strong link points to prevent them separating from each other to maintain the
macroscopic integrity of the sample.
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Figure 2. SEM images of AA-2 (a) SA-4, (b) and CAs (c) (CA-1 (c1), CA-2 (c2), CA-3 (c3), and
CA-4 (c4), respectively).

Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra of the sam-
ples are presented in Figure 3a. In the ATR-FTIR spectrum of AAs, the characteristic
peaks at 3395 cm−1 and 1049 cm−1 indicate the O–H stretching vibration and glycoside
stretching bond, respectively [44,46]. The peaks appeared at 2961 and 2880 cm−1 could be
corresponded to symmetric and the asymmetric vibrations of C–H groups, respectively [47].
There were emerging peaks for CAs at around 1065, 961, and 794 cm−1, attributed to
Si–O–Si stretching vibration, Si–OH bending vibration, and Si–O stretching vibration [48],
which was not found in the ATR-FTIR spectra of the AAs. Similarly, these characteristic
peaks also appeared in the SAs. This phenomenon shows that the CAs had Si–O–Si bonds
that formed a gel skeleton of silica, and Si–O bonds were formed by the reaction between
SiO2 and the AG surface. Moreover, ATR-FTIR spectrum of CA-1 and SA-1 was almost
similar. This phenomenon could be because of SiO2 nanoparticles were tightly attached to
the surface of the AG nanofibers during the formation of the SiO2 gel skeleton, which made
the weak absorption peak of AAs difficult to observe in the ATR-FTIR spectrum of the CAs.
Moreover, strong peak at 1049 cm−1 (glycoside stretching bond) for AA-1 and characteristic
peak at 1065 cm−1 (Si–O–Si) for CA-1 were almost overlapping in the ATR-FTIR spectra.
Thus, it is impossible to distinguish in the CAs. However, in the 930~960 cm−1 (in the
red box of Figure 3), the CAs have the common characteristic peak of both AAs and SAs,
which indicates that the CAs are composite of AG and SiO2. Therefore, the peak of O–H at
3395 cm−1 of the CAs was weaker than that of the AAs. This further indicates that silica
was successfully formed in the AG skeleton and combined with AG in CAs. In conclusion,
ATR-FTIR spectra analysis proved that CAs had successfully been prepared.
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Figure 3. (a) ATR-FTIR spectra of AA-1, CA-1, and SA-1. SEM images, (b) weight concentration from
EDS, (c) and EDS elemental mapping images (d) for the C, O, and Si elements of CA-2.

According to the microstructure of CA-2 (Figure 3b), energy-dispersive X-ray spectra
(EDS) were captured to investigate the weight concentration and element distribution
of CA-2 (Figure 3c,d). AA-1 showed carbon and oxygen peaks without silicon peaks
(Figure S2), while SA-1 displayed silicon and oxygen peaks (Figure S3). However, there
were not only carbon and oxygen peaks but also silicon peaks in the EDS of CA-2 (Figure 3c).
These appearances further indicate that successful combination of SiO2 and AG. From the
EDS mapping images (Figure 3d), it can be seen that the distribution of Si in CA-2 was
relatively even, which also illustrates that the gel skeleton of silica was relatively uniformly
distributed in the CAs.

2.2. Nitrogen Adsorption–Desorption Test

The N2 adsorption–desorption curves, Barrett–Joyner–Halenda (BJH) pore size dis-
tributions, specific surface areas, and average pore sizes of the CAs, AAs, and SAs are
shown in Figures 4 and S4 and Table 1. In the N2 adsorption–desorption isotherm, the
CAs, AAs, and SAs showed a type IV isotherm of the hysteresis loop [49,50], indicating
the formation of mesoporous structure (Figures 4a and S4a,c). The hysteresis loops of the
CAs became more obvious as the SiO2 concentration increased. With the decrease in the
concentration of AG, the N2 adsorption of the AAs decreased, while the SAs increased
with the increase in the SiO2 content. This phenomenon also proves that the N2 adsorption
of the CAs gradually increased with the increase in the SiO2 content. Remarkably, the
most probable distribution of the pore size of the CAs was mainly around 30 nm, and the
diameter of a small amount of the pores was between 3 and 7 nm in the BJH pore size
distributions (Figure 4b), which also occurred in the SAs (Figure S4d). Although the BJH
pore size distributions showed that the CAs had a mesoporous structure to a certain extent,
the total mesoscale pore volume of the CAs was relatively higher than that of the AAs
(Table 1 and Figure S4b) and lower than that of the SAs (Figure S4d). The pore volume of
the CAs was slight increase with the increase in SiO2 content (Table 1). These results could
be due to some of the SiO2 nanoparticles tightly adhering to the AG nanofibers to restrain
the formation of a mesoporous structure, which was in agreement with the SEM analysis.
Moreover, with the increase in SiO2 concentration, the density of the CAs increased to a cer-
tain extent and the porosity slightly decreased owing to the formation of SiO2 gel skeleton.
The specific surface areas of the CAs gradually increased from 272.4 to 420.5 m2/g with an
increase in the SiO2 content according to the results of a BET test (Table 1). Compared to the



Gels 2022, 8, 303 6 of 15

other silica-based aerogels, the CAs showed lower density and larger specific surface area
(Table 2). On the one hand, when the concentration of SiO2 was low, the specific surface
area of the CAs was a little higher than that of the natural AAs due to many SiO2 aggregates
without interconnection and was attached in the AG nanofibers network to increase the AG
surface roughness (Table 1). On the other hand, a greater and rougher SiO2 gel skeleton
formed in the AG nanofiber network as the concentration of SiO2 increased further, which
made the specific surface areas of the CAs gradually increased. The average desorption
pore size (10.5–11.8 nm) of the CAs is presented in Table 1, showing almost the same trend
as the specific surface area, while the average desorption pore size showed a smaller range
of variation than the specific surface area because of it only reflecting the pore size of the
mesoporous range according to the BET analysis. Therefore, the content of SiO2 has an
important impact on the gel skeleton of AG–SiO2 composite aerogels.
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CAs samples.

Table 1. Physical properties of composite aerogels (CAs), agarose aerogels (AAs), and silica
aerogels (SAs).

Sample Bulk Density
(g/cm3) Porosity a (%) SBET

(m2/g)

Average
Pore Size b

(nm)

Pore Volume c

(cm3/g)

Compression
Modulus

(MPa)

Thermal
Conductivity

(mW m−1 K−1)

CA-1 0.079 96.0 272.4 10.5 0.78 0.68 28.9
CA-2 0.107 94.8 304.8 10.4 0.86 2.90 30.5
CA-3 0.123 94.0 375.3 11.1 1.21 5.05 32.3
CA-4 0.128 93.8 420.5 11.8 1.32 6.23 34.6
AA-1 0.029 98.4 269.1 13.6 0.88 0.21 32.2
AA-2 0.021 98.8 239.0 14.1 0.76 0.13 30.4
AA-3 0.019 98.9 227.8 14.2 0.65 0.08 28.7
AA-4 0.018 99.0 219.9 14.3 0.60 0.04 26.3
SA-1 0.062 97.0 742.3 13.8 2.55 d e
SA-2 0.089 95.8 754.8 14.8 2.61 d e
SA-3 0.107 94.9 767.0 14.9 3.06 d e
SA-4 0.116 94.5 839.0 16.7 3.25 d e

a The porosity includes both mesopores and all void space. b Mean pore diameter determined using a nitrogen
desorption branch and BJH. c Pore volume is the single point pore volume with p/p0 = 0.985 during BET test.
d, e: The related parameters could not be measured or calculated because SAs are extremely fragile.
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Table 2. Comparison of the properties of the CAs and other silica-based aerogel materials.

Materials Density
(g/cm3)

SBET
(m2/g)

Pore Volume
(cm3/g)

Compression
Modulus

(MPa)

Thermal
Conductivity

(mW m−1 K−1)
Ref.

AG–SiO2 composite aerogel 0.079~0.128 272.4~420.5 0.73~1.09 0.68~6.23 28.9~34.6 This work
polyurethane foam not reported not reported not reported not reported 20~50 [18]

mineral wool not reported not reported not reported not reported 35~80 [18]
SiO2/PI nanocomposite aerogel not reported not reported not reported 1.9 31.1~41.6 [51]

SiO2–SSNF aerogel 0.085~0.093 not reported not reported 30~70 25~29 [9]
silica nanotube aerogels 0.025 327~427 0.99~1.15 0.3~1.9 30.2~32.6 [23]
fumed silica insulation 0.5~1.2 not reported not reported 0.15 33 [52]

ZrO2 fiber/GF and fumed
SiO2/Al2O3

0.733~0.761 not reported 0.04~0.05 0.02~0.18 50~77 [53]

hydrophobic silica-based aerogel 0.047~0.077 28.4~337.0 0.059~0.267 0.2 24 [54]
silica aerogels blanket/ board 0.08~0.2 600~800 not reported not reported ≥15 [55]

2.3. Mechanical Properties

Sufficient mechanical strength plays a significant role in the application of thermal
insulation materials. The mechanical properties of the prepared CAs were studied by a
compressive test and a three-point bending test. Amusingly, brittle SAs combined with ex-
tremely soft AAs could produce CAs with an amazing pliability and compressive property.
The mechanical properties of the AAs prepared with different concentrations of AG are
presented in Figure 5a. The AAs could withstand compressive stress over 80%. When the
strain was less than 20%, the compressive stress of the AAs with a low concentration in-
creased at a slow rate, while those AAs with a higher concentration increased more rapidly.
This explains that the gel skeleton of the AAs with a higher concentration gradually became
more compact, which was equivalent to reducing the space of deformation. It is worth
noting that the AAs did not have an obviously brittle point at higher stress. This was mainly
because the gel skeleton of the AAs, with flexibility itself, can easily be deformed without
breaking when it was impacted by external force. In significant contrast to the brittleness
of traditional SAs, the CAs were compressed to more than 80% strains without cracks,
demonstrating remarkable flexibility and nonbrittleness (Figure 5b). All of the stress–strain
curves of the CAs displayed three stages, including a linear elastic district at low strain
values (below 10%), a plastic district with a relatively gently growth curve at middling
strain values (from 10% to 60% strain), and the final densification stage with a rapidly rose
stress at high strain values (over 60% strain) [56,57]. The compression modulus of the CAs
gradually increased at a low SiO2 content, and then dramatically increased to 6.23 MPa for
CA-4 (Table 1). It is worth mentioning that the compression modulus of the CAs is higher
than that of some silica-based aerogels, such as silica/polyimide (SiO2/PI) nanocomposite
aerogel (1.9 MPa), silica nanotube aerogels (0.3~1.9 MPa), and hydrophobic silica-based
aerogel (0.2 MPa) (Table 2). This further confirmed the excellent mechanical properties of
the CAs prepared by compounding AG and silica. In particular, the dramatic increase in
compressive stress with a high concentration was caused by the formation of more rigid gel
skeletons of SiO2 in the AG nanofibers network to resist the impact of external forces more
effectively. Therefore, by using this synthesized in situ method, CAs with the IPN structure
can be obtained by relying on the SiO2 concentration. Furthermore, the CAs were able to
withstand a large diametral deformation (i.e., approximately 4–10 mm) without breaking
and the breaking force was in the range of around 6–10 N, as proved in the three-point
bending tests with a fixture span of 15 mm (Figure 5c). During this process, a crack of CA-1
appeared just after 10 mm diametral deformation as shown in Figure 5d. This indicates
that the CAs had good flexibility. When the concentration of SiO2 gradually increased, the
diametral deformation gradually decreased. This may be because the free movement of the
AG nanofiber was restricted when more and denser rigid gel skeletons were formed in AG
nanofibers network, which resulted in the compression of the free deformation space of
AG nanofiber network [41].
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2.4. Thermal Insulation Performance

The CAs displayed low thermal conductivity, which was almost similar to native
SAs [58] (Table 1). It is slightly superior to those of traditional insulating materials such as
polymer foam (20~50 mW m−1 K−1) and mineral wool (35~80 mW m−1 K−1) [18] and is
competitive to those of the similar silica-based aerogels [9,23,55–58] at a room temperature
(Table 2). For the four kinds of CAs with different SiO2 content explored in this work, the
thermal conductivity of those CAs increased to some extent with the increased of SiO2
content. This could be understood as the gel skeleton of the CAs being mainly composed
of a large number of AG nanofibers with a loose microstructure, so that CA-1 showed
relatively lower thermal conductivity. When the concentration of SiO2 further increased
(CA-3 and CA-4), more and denser gel skeletons of SiO2 were formed in the AG nanofibers,
leading to a density increase and a decrease in porosity. This could increase the heat
transfer caused by contact between the solids, resulting in slightly increasing the thermal
conductivity. However, the thermal conductivity of the CAs was still low because of their
mesoporous structure. Therefore, the concentration of SiO2 is critical to prepare CAs in
terms of their thermal insulation properties.

To further prove the thermal insulating performances, the surface temperature differ-
ence of the CAs during the heating and cooling processes was recorded using an infrared
thermal camera as shown in Figures 6 and S5. Optical photos of the CAs of the main and
side views are shown in Figures 6a and S5a. The temperature difference change of the CAs
at different heat source temperatures (60, 90, 110, and 130 ◦C) in the same view is shown
in Figures 6b and S5b, which show that the temperature difference gradually increased
as the hot plate gradually increased, and the temperature difference could reach 68 ◦C
when the temperature was close to 130 ◦C. Although the thermal conductivity of CA-1 was
relatively low at room temperature, the infrared photo of CA-1 did not show a good thermal
insulation effect compared to the other CAs at a high temperature. This may be because the
high porosity of CA-1, but the lack of mesoporous content that can more effectively inhibit
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the diffusion of air molecules, resulting in poor thermal insulation after heating. With the
increase in the solid concentration, the gradual formation of more SiO2 gel frameworks in
the AG nanofiber network could inhibit the heat transfer more effectively. In the meantime,
the temperature difference of the CAs was approximately 40–50 ◦C at a low temperature
(–60 ◦C) as shown in Figures 6c and S5c. This illustrates that the CAs had excellent thermal
insulation properties, whether in a high- or low-temperature environment.
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2.5. Thermal Stability

Outstanding thermal stability of materials is crucial for their thermal insulation ap-
plication, so the thermal stability of the materials was determined by thermogravimetric
analysis (TGA), as shown in Figure 7. First, SA-4, AA-2, and the CAs lost approximately
10% of their weight at 30–250 ◦C. This may be because of the adsorption of water molecules
on the sample gel skeleton surface [7,58]. However, the weight loss of SA-4 at 250–700 ◦C
was eventually maintained at 10%. Moreover, the temperature of decomposition of AG in
the CAs gradually shifted from approximately 250 ◦C to approximately 260 ◦C (Figure 7)
as the SiO2 concentration increased. When the weight gradually decreased to 80% of the
initial weight, as shown by the dark blue arrow in Figure 7, the temperature corresponding
to the CAs gradually increased from 260 ◦C to approximately 300 ◦C as the SiO2 content
increased. Therefore, SiO2 was able to restrain decomposition of the AG gel skeleton, which
improved the thermal stability of the CAs. Furthermore, AA-2 completely degraded at
approximately 510 ◦C and lost almost 100% of its weight. Nevertheless, the CAs completely
degraded at approximately 650 ◦C and lost approximately 25%–50% of their weight. This
illustrates that more and denser SiO2 gel skeletons formed in the AG nanofibers network as
the concentration of SiO2 increased, which is beneficial for improving the thermal stability
of CAs.
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3. Conclusions

In this work, robust composite aerogels were prepared by an AG solution mixed with
a silicate solution in situ to gradually form an IPN structure. In the gelation process of the
CAs, the flexible AG firstly gelled to construct a nanofiber network due to AG’s self-gelling
feature, and then a rigid SiO2 gel skeleton was formed in the loose AG nanofibers network
to form an IPN structure. Compared to other polymer toughening technologies that can
effectively improve aerogels, the time-consuming diffusion of a reaction substance into
other wet gels was not involved here, which made the preparation process simpler and more
efficient. Furthermore, cheaper water glass (Na2O·3SiO2) was used to instead of traditional
TEOS as a silicon source, which greatly reduced the costs and was environmentally friendly.
In addition, the CAs displayed a low density (0.079 g/cm3), high porosity (96.0%), high
specific surface area (as high as 420.5 m2/g), and excellent mechanical properties. Especially,
the CAs also exhibited good thermal insulation properties and thermal stability, which is
important for its application in the field of thermal insulation. This work offers a novel and
facile design of composite aerogels, which also provides new ideas for the preparation of
high-performance composite aerogels.

4. Materials and Methods
4.1. Materials

First, 732 cation exchange resin and sodium silicate (Na2O·3SiO2) were purchased
from Macklin Biochemical Co., Ltd. (Shanghai, China). Agarose (AG) was bought from
Beijing Wobisen Technology Co., Ltd. (Beijing, China). Sulfuric acid (H2SO4), sodium
hydroxide (NaOH), ammonium hydroxide (NH3·H2O) and ethanol were obtained from
Beijing Chemical Reagent Co., Ltd. (Beijing, China). All chemicals were of analytical grade
and were used as received without further purification.
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4.2. Preprocessing of 732 Cation Exchange Resin

First, the strong acid styrene 732 cation exchange resins was washed with hot water at
70–80 ◦C to remove impurities and make the effluent colorless. Next, the cation exchange
resin in the exchange column was soaked in 1 mol/L of H2SO4 (2 times the amount of
resin) for 2 h, rinsed with 1 mol/L of H2SO4 (4 times the amount of resin), and washed to
neutral with deionized water.

4.3. Preparation of AG–SiO2 Composite Aerogels

First, the sodium silicate solutions were poured into the excess cation exchange resin
to remove Na+ in the exchange column to obtain silicic acid solutions (pH = 2~3). The silicic
acid solution (SiO2 in solution, 10% w/w) and AG solution (3% w/w) were stirred to mix at
80 ◦C with different volume ratios of AG to silicic acid solution (1:1, 1:2, 1:3, and 1:4), and
their pH was adjusted to 5~6 by 0.1 mol/L of NH3·H2O (less than 0.2 µL). Then, the mixed
sols were poured into Petri dishes (90 mm) or centrifuge tubes (5 mL) to form AG–SiO2
composite gels. Those composite gels in the Petri dishes with a diameter of 90 mm were cut
into 15 mm × 15 mm × 20 mm cubes by blade. The composite gels were aged in a mixture
of ethanol and water at 50 ◦C for 1.5 h to harden the silica gel skeleton and completely
replace the liquid in the composite wet gels with ethanol. The composite wet gels were
dried by supercritical CO2 fluid at a flow rate of 5–15 L/h at 11 MPa and 40 ◦C for 2.5 h to
obtain AG–SiO2 composite aerogels, labeled as CA-1, CA-2, CA-3, and CA-4 according to
volume ratio of AG and silicate mixture solution (1:1, 1:2, 1:3, or 1:4).

4.4. Preparation of AAs

The preparation process of the AAs was similar to that of the CAs, with only the
silicic acid solutions being replaced by deionized water. In the first place, different con-
centrations of the AG solutions were prepared by mixing the AG solution (3% w/w) with
deionized water in a microwave at different volume ratios (1:1, 1:2, 1:3, and 1:4). Then,
the AG solutions were poured into a Petri dish with a diameter of 90 mm and cooled
naturally at room temperature to prepare AG gel. Next, the AG hydrogels were cut into
15 mm × 15 mm × 20 mm cubes by a blade. Finally, the AG hydrogels were replaced by
anhydrous ethanol solvents and dried by SCF to obtain AAs, labeled as AA-1, AA-2, AA-3,
and AA-4 according to the concentrate of AG (1.5%, 1.0%, 0.75%, or 0.6%), as shown
in Figure S6.

4.5. Preparation of SAs

The preparation process of the SAs was similar to that of the CAs, with only the AG
solutions being replaced by deionized water. First, different concentrations of silicic the acid
solution was prepared by mixing silicic acid solution (10% w/w) with deionized water at
different volume ratios (1:1, 1:2, 1:3, and 1:4). Then, the silicic acid solutions were adjusted
to pH = 5~6 by 0.1 mol/L of NH3·H2O (less than 0.2 µL) and poured into centrifuge tubes
to achieve gelation. Next, the SiO2 gels were aged in a mixture of ethanol and water at 50 ◦C
for 1.5 h to harden the silica gel skeleton. Finally, SAs were obtained by the ethanol solution
replacement method and SCF drying, labeled as SA-1, SA-2, SA-3, and SA-4 according to
the concentrate of SiO2 (5%, 6.7%, 7.5%, or 8%), as shown in Figure S7.

4.6. Characterization

The micromorphology, functional groups (FTIR), pore size distributions, density,
porosity, and the specific surface areas of the CAs were determined. The mechanical
properties, thermal insulation properties and thermal stability were also evaluated. The
detailed characterization methods are provided in the Supplementary Materials. The
abbreviations in the work are shown in Table 3.
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Table 3. Abbreviations and full names of the work.

Abbreviations Full Names Abbreviations Full Names

AG agarose BJH Barrett–Joyner–Halenda
SiO2 silica TGA thermogravimetric analysis
CAs composite aerogels SEM scanning electron microscopy

AAs agarose aerogels ATR-FTIR attenuated total reflection
fourier transform infrared

SAs silica aerogels EDS energy-dispersive X-ray spectra
SSNF SiO2/SnO2 nanofibers SCF supercritical CO2 fluid

GF glass fiber TEOS tetraethyl orthosilicate
PI polyimide IPN Interpenetrating network

BET Brunner−Emmet−Teller PET polyethylene terephthalate

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/gels8050303/s1: Figure S1. Flowchart illustrating the overall processes used in this work;
Figure S2. SEM images (a), weight concentration from EDS (b) and EDS elemental mapping images
(c) for C and O elements of the AA-1; Figure S3. SEM images (a), weight concentration from EDS
(b) and EDS elemental mapping images (c) for O and Si elements of the SA-1; Figure S4. (a) N2
adsorption-desorption isotherms and (b) BJH pore-size distribution of AAs. (c) N2 adsorption-
desorption isotherms and (d) BJH pore-size distribution of SAs; Figure S5. (a) Optical photo at main
and side views, respectively, of the CAs. FLIR images of the CAs (b) on the heating base plate at
different temperatures (60, 90, 110, and 130 ◦C) and (c) on aluminum plate of dry ice (–60 ◦C) at main
and side views, respectively.; Figure S6. Image of the AAs; Figure S7. Image of the SAs.
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