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Abstract: (1) Background: In recent years, several studies have described various and heterogenous
methods to sensitize nanoparticles (NPs) to pH changes; therefore, in this current scoping review,
we aimed to map current protocols for pH functionalization of NPs and analyze the outcomes of
drug-loaded pH-functionalized NPs (pH-NPs) when delivered in vivo in tumoral tissue. (2) Methods:
A systematic search of the PubMed database was performed for all published studies relating to
in vivo models of anti-tumor drug delivery via pH-responsive NPs. Data on the type of NPs, the pH
sensitization method, the in vivo model, the tumor cell line, the type and name of drug for targeted
therapy, the type of in vivo imaging, and the method of delivery and outcomes were extracted in
a separate database. (3) Results: One hundred and twenty eligible manuscripts were included.
Interestingly, 45.8% of studies (n = 55) used polymers to construct nanoparticles, while others used
other types, i.e., mesoporous silica (n = 15), metal (n = 8), lipids (n = 12), etc. The mean acidic pH value
used in the current literature is 5.7. When exposed to in vitro acidic environment, without exception,
pH-NPs released drugs inversely proportional to the pH value. pH-NPs showed an increase in tumor
regression compared to controls, suggesting better targeted drug release. (4) Conclusions: pH-NPs
were shown to improve drug delivery and enhance antitumoral effects in various experimental
malignant cell lines.

Keywords: pH-responsive nanoparticles; drug delivery; cancer therapy; nanocarriers

1. Introduction

The advancements made in nanotechnology in recent years has led to an unprece-
dented interest in developing targeted therapies for cancer based on nanoparticles (NPs).
NPs are defined as nano-sized particles with diameters ranging from 1 to 100 nm [1–3].
Although small, NPs have a large surface area and can be used as carriers for a wide range
of peptides [4], antibodies [5], drugs [6], or contrast agents [7]. NPs are widely used as a
platform for delivering drugs due to their stable high carrier capacity and their ability to
accumulate in tumors through the enhanced permeation and retention effect (EPR) [8,9].
Because of the accelerated angiogenesis, tumors are supplied by immature blood vessels
with a defective architecture with wide endothelial gaps through which molecules smaller
than 700 nm can penetrate [10–12]. This characteristic represents the core which led to NPs
becoming an important platform for research into cancer theranostics. Inversely, many tu-
mors are heterogenous and possess a dense extracellular matrix which increases interstitial
pressure by blocking the passive transport of NPs from the peritumoral vessels [9], which
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explains why NPs mostly accumulate in the peritumoral region but fail to penetrate the
deep tumoral tissue in experimental applications.

Studies have described techniques to improve the penetration of NPs by using the
tumor microenvironment as a targeting site for NPs. One of the constant distinct features
of the tumoral microenvironment is the acidic pH, between 0.3 to 0.7 units lower than the
pH of normal tissue [13]. Based on this trait, several studies have designed functionalized
NPs, making them responsive to pH changes. Once the pH-functionalized NPs (pH-NPs)
penetrate through the endothelium via the EPR effect, they respond to the acidic pH and
may either disintegrate and release drugs or change their size and shape, thus enhancing
their capacity to diffuse towards the tumors’ core. In recent years, several studies have
described various and heterogenous methods to sensitize NPs to pH changes; thus, in this
current scoping review, we aimed to map current protocols for pH functionalization and
analyze the antitumoral outcomes of drug-loaded pH-NPs.

2. Materials and Methods
2.1. Literature Search and Study Selection

As previously described [14–16], a systematic search of the PubMed database was
performed for all published studies relating to in vivo models of anti-tumor drug delivery
via pH-responsive NPs using the following search algorithm: pH AND nanoparticles AND
cancer AND delivery AND in vivo. The systematic search was carried out by adhering
to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines which were adapted to experimental studies [17]. The PRISMA checklist was
followed to conduct the methodology. Inclusion criteria were used according to the Prob-
lem/Population, Intervention, Comparison, and Outcome (PICO) formula (Table 1). All
studies published in English from the 1st of January 2017 to the 31th of December 2021
describing drug-loaded pH-responsive NPs for targeted delivery in tumors were selected
for full-text review. The experimental lot (population) consisted of pH-functionalized
nanoparticles tested in vitro to assess pH responsiveness and in vivo to assess the antitu-
moral effects of pH-NPs loaded with chemotherapeutics. Embryos, cell cultures, tumor
spheroids, and human studies were excluded. Nanogels or nano-emulsions were excluded.
The intervention was defined as administration of pH-responsive conjugated NPs in tumor-
bearing animals. Comparison criteria were further selected from subgroups of the included
studies. Primary outcomes were tumor uptake of pH-NPs and tumor regression rate.

Table 1. Overview of inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Experimental studies Clinical studies
Full text available in English Full text not available/other language used

Testing of pH-NPs in vitro and in vivo (animal model) In vitro/in vivo only
Descriptive data on type and synthesis of NPs Type of NPs not named/method of synthesis not described

Descriptive data on pH functionalization method No detailed data on how the NPs were functionalized
Data on animal model and malignant cell line used No data on animal model/malignant cell line

pH-NPs used to deliver chemotherapeutics Other use of pH-NPs (e.g., tumor imaging, hyperthermia)
Analysis of tumor uptake of pH-NPs and tumor regression No data on tumoral response to pH-NPs

Detailed description of methodology (is the
method reproducible?)

Methods not reproducible based on given data (requiring
supplemental data from authors)

ARRIVE score ≥ 15 ARRIVE score < 15

2.2. Data Analysis

The following data information regarding each included study was extracted: the
author name, the year of publication, the type of NPs, the pH sensitization method, the
in vivo model, the tumor cell line, the type and name of drug used for targeted therapy,
the type of in vivo imaging, method of delivery, and the outcomes regarding the cellular
uptake of NPs.
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2.3. Quality Assessment

Two authors (SM and BCM) independently examined the title and abstract of citations,
and the full texts of potentially eligible studies were obtained; disagreements were resolved
by discussion. The Essential 10 ARRIVE guidelines were used to quantify the quality of
included studies [18]. Each study was marked for each ARRIVE item with 0 if the data
were lacking, 1 if the data were incomplete, and 2 if the data were complete; thus, the final
score of each article could range from zero to a maximum of twenty. Only studies with a
minimum ARRIVE score of 14 were included (Figure 1). The reference lists of retrieved
papers were further screened for additional eligible publications.
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Figure 1. ARRIVE scores breakdown of included studies.

3. Results
3.1. Overview of Included Studies

An initial search of PubMed database found 2686 articles. After triage of title and
abstract, 324 full texts were assessed for inclusion. Records based on the title and abstract
were excluded if they did not answer our research question: “Can pH functionalized NPs
be used as drug carriers for targeted, in vivo, cancer therapy?”. Further, records were
excluded if any of the exclusion criteria were obvious within the title or abstract. Eligible
full texts were triaged according to the same principles (Table 1). The PRISMA flowchart
shows a breakdown of excluded full texts (Figure 2). One hundred and twenty fully eligible
manuscripts were included for in-depth analysis [19–139] (Table S1). Interestingly, 45.8% of
studies (n = 55) used polymers to construct nanoparticles—either natural polymers (such
as chitosan) or synthetic ones (Tables 2 and 3). The most common pH sensitization method
used acid-labile bounds (e.g., hydrazone, ester, imide) (Tables 2–6). BALB/c mice were part
of the chosen experimental model in 98.3% (n = 118) of studies. pH-NPs were used in a
wide array of malignancies, including breast carcinoma (40%, n = 48), hepatocarcinoma
(14.1%, n = 17), lung cancer (11.6%, n = 14), colon carcinoma (6.6%, n = 8), cervical cancer
(6.6%, n = 8), and melanoma cell lines (1.6%, n = 2) (Tables 2–6). Fluorescent imaging (70.8%,
n = 85) and transmission electron microscopy (24.1%, n = 29) were used to quantify in vivo
biodistribution of pH-NPs. Most studies (80.8%, n = 97) used control NPs which were not
pH-sensitized to compare biodistribution and tumor penetration. Furthermore, almost all
researchers (n = 119) compared cargo release from NPs in both physiological and acidic pH.
Four studies proved that NPs increase in size when exposed to low pH, due to associated
swelling and widening of membrane gaps, before drug release. The mean acidic pH value
used in the current literature is 5.7 [5–6.8], which is significantly lower than that measured
in tumor microenvironments, which can vary between 6.7 and 7.1, as previously reported.
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Table 2. Summary of methods used in studies.

Summary of Studies
Overview of Common Methods

Type/Method No. of Studies

Type of NPs

Polymeric 55
Lipid 12
MSN 13

Metallic 11
Other 29

pH Sensitization Method

pH-labile linkers 70
pH-triggered structural changes 35

pH-triggered hydrophobic to
hydrophilic transition 8

Other methods 7

Cancer Model

Breast malignant cell lines
(4T1, MCF-7, MDA-MB-231) 48

Cervical malignant cell lines
(HeLA) 8

Lung malignant cell lines
(A549) 14

Colorectal malignant cell lines
(CT-26, HCT116, SW480) 8

Liver malignant cell lines
(H22, HepG2, SMMC 7721) 17

Other 25

Types of Chemotherapeutics
Doxorubicin 69

Paclitaxel 9
Other 42
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Table 3. Overview of polymeric NPs: structure, pH sensitization method, tumor type, and
delivered drug.

First Author Publication Year Structure of NPs pH Sensitization Method Tumor Type Drug

Adeyemi [19] 2019 FA-chitosan-PEG-
polyethylenimine pH-triggered structural changes KYSE 30 scuamos cell

carcinoma Endostatin

Cao [21] 2019 TAT peptide-
polyphosphoester

pH sensitive transactivator of
transcription (TAT)

MDA-MB-231 breast
carcinoma cell line Doxorubicin

Chen [23] 2018 lactobionic
acid-chitosan-lipoic acid pH-labile amide linkers HepG2 liver cancer Doxorubicin

Chen [25] 2020 TPGS-HA polymer-PEG hydrophobic to hydrophilic
transition PC3 prostate cancer Docetaxel

Cheng [30] 2019 Poly(ortho ester
urethanes) copolymers pH-labile borate ester linkers MCF-7 breast

carcinoma cell line Doxorubicin

Cheng [28] 2018 carboxymethyl chitosan pH-labile hydrazone linkers MCF-7 breast
carcinoma cell line Doxorubicin

Cui [31] 2017 transferrin-PEG pH-labile hydrazone linkers MCF-7 breast
carcinoma cell line Doxorubicin

Debele [32] 2017
PEG-methacrylamide-

tocopheryl
succinate-histidine

pH-labile imidazole linkers HCT116 colon
carcinoma Doxorubicin

Deng [33] 2019
PEG-methylpropenoic

acid-glycerol-
cinnamaldehyde

pH-labile cinnamylaldehyde
linkers

4T1 breast carcinoma
cell line Doxorubicin

Du [36] 2017 PEG-PTTMA PTTMA disassembly in acidic
pH HeLa cervival cancer siRNA

Fan [39] 2017 polyethylenimine-PEG pH-labile borate ester linkers 4T1 breast carcinoma
cell line siRNA

Fang [40] 2020 chitosan-polysaccharide pH-labile borate ester linkers PANC-1 pancreatic
cancer Curcumin

Feng [41] 2020 PEG-PAH-DMA pH-triggered structural changes A549 NSLC cell line Paclitaxel

Gao [44] 2017

poly (L-γ-
glutamylcarbocistein-

RBC
membrane

pH-triggered structural changes NCI-H460 cell line Paclitaxel

Gibbens-
Bandala

[45]
2019 PLGA-polyvinyl alcohol hydrophobic to hydrophilic

transition
MDA-MB-231 breast
carcinoma cell line Paclitaxel

Gong [47] 2018 PEG-PPMT hydrophobic to hydrophilic
transition

CT-26 colon
carcinoma Docetaxel

Guo [49] 2018 PBLG-Sericin pH-labile carboxyl linkers A549 NSLC cell line Methotrexate

Guo [51] 2020 DMA-PEG pH-triggered structural changes MCF-7 breast
carcinoma cell line Doxorubicin

Hong [53] 2019 U11 peptide-PLGA pH-triggered structural changes A549 NSLC cell line
Doxorubicin

and
Curcumin

Jin [57] 2018 PEI-PLA pH-triggered structural changes A549 NSLC cell line Paclitaxel
Jung [58] 2020 PBA pH-labile borate ester linkers MG glioblastoma Doxorubicin

Khan [61] 2020 PLGA pH-triggered structural changes MCF-7 breast
carcinoma cell line Doxorubicin

Kou [64] 2017 lactose myristoyl
carboxymethyl chitosan pH-triggered structural changes Huh-7 hepatocellular

carcinoma Adriamycin

Lee [66] 2018 chitosan-PEG-acetyl
histidine pH-triggered structural changes CT-26 Pulmonary

Metastasis Model Piperlongumine

Li [70] 2018 DGL-PEG-Tat-KK-DMA pH-labile amide linkers HepG2 liver cancer Doxorubicin

Li [73] 2020 RGD-PEG-Arginine-SA pH-labile hydrazone linkers HN6 squamos cell
carcinoma GNA002

Li [75] 2021 PDA-HA pH-labile PDA coating 4T1 breast carcinoma
cell line Cisplatin

Liu [79] 2018 polycarbonate-PEG pH-labile acetal linkers BT 474 breast
carcinoma Bortezomib

Luo [87] 2021 PEG-TAT-HA pH-triggered structural changes H22 hepatocellular
carcinoma Disulfiram

Mhatre [89] 2021 polydopamine pH-triggered structural changes MDA-MB-231 breast
carcinoma cell line Niclosamide

Palanikumar
[96] 2020 ATRAM-BSA-PLGA pH-labile ester bonds MCF-7 breast

carcinoma cell line Doxorubicin
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Table 3. Cont.

First Author Publication Year Structure of NPs pH Sensitization Method Tumor Type Drug

Qu [100] 2018 carboxymethyl
chitosan

pH-labile phenylboronic
acid pinacol ester HepG2 liver cancer Doxorubicin

Quadir [101] 2017 PEG-PPLG pH-labile amine linkers MCF-7 breast
carcinoma cell line Doxorubicin

Ray [102] 2020 PEG pH-labile amine linkers PANC-1 pancreatic
cancer Gemcitabine

Saravankumar
[103] 2019

APT-PLGA-PVP-
AS1411
aptamet

pH-triggered structural
changes

A549 NSLC cell
line Doxorubicin

Shi [105] 2018 PEG-PLH pH-labile PSD linker A549 NSLC cell
line siRNA

Shi [106] 2021 PEG-PLL-DMA pH-labile amide linkers A549 NSLC cell
line siRNA

Soe [107] 2019 poloxamer-Tf-EDC-
NHS NR

MDA-MB-231
breast carcinoma

cell line
Doxorubicin

Su [108] 2020 PEG-PMT pH-labile tioether linkers Colon26 cell line Docetaxel

Wang [113] 2017 RGD-PLGA-PEG pH-labile amine linkers MCF-7 breast
carcinoma cell line Doxorubicin

Wang [115] 2018 chitosan-graphene
oxide

pH-triggered structural
changes (less electrostatic

interaction
HepG2 liver cancer Doxorubicin

Wei [118] 2020 PEG pH-labile amine linkers
(schiff base) B16F10 melanoma Doxorubicin

Xiong [122] 2019 TPGS-PEG pH-labile hydrazone linkers MCF-7 breast
carcinoma cell line Doxorubicin

Xu [123] 2018 DTPA-PEG-DMA pH labine amine linkers PC3 prostate
cancer Doxorubicin

Xu [124] 2021 chitosan pH-labile ester linkers HepG2 liver cancer Doxorubicin

Yadav [125] 2020 RGD-chitosan-Cy5.5 pH-labile amine linkers
MDA-MB-231

breast carcinoma
cell line

Raloxifene

Yan [126] 2017 POEAd-galactose-LA pH-labile ester linkers HepG2 liver cancer Doxorubicin

Yang [127] 2018 glycol Chitosan-PDPA hydrophobic to hydrophilic
transition (PDPA)

MCF-7 breast
carcinoma cell line Paclitaxel

Yu [128] 2019 PLGA-CPT-DMMA-
PEI

pH-triggered structural
changes

MCF-7 breast
carcinoma cell line Doxorubicin

Zhang [129] 2017 TPGS-MSN pH-labile ester linkers
SMMC 7721

hepatocellular
carcinoma

Doxorubicin

Zhang [131] 2018 DMA-Cystamine-PEG pH-labile ester linkers A549 NSLC cell
line Paclitaxel

Zhou [138] 2020 polyphosphazene pH-labile hydrazone linkers HeLa cervival
cancer Doxorubicin

Legend: FA, folic acid; TPGS, tocopheryl polyethylene glycol 1000 succinate; HA, hyaluronic acid; PEG, polyethy-
lene glycol; PTTMA, poly(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl)ethane methacrylate; DMA,
dimethylmaleic acid; PAH, polyallylamine; RBC, red blood cell; PLGA, poly(lactic-co-glycolic acid); PPMT, poly(o-
pentadecalactone-co-N-methyldiethyleneamineco-3,30-thiodipropionate; PBLG, poly(c-benzyl-L-glutamate); U11
peptide, urokinase plasminogen activator receptor (uPAR) targeting peptide; PEI, polyethyleneimine; PLA,
polylactic acid; PBA, phenylboronic acid; DGL, dendrigraft poly-L-lysine; TAT, tumor-associated antigens;
RGD, arginine–glycine–aspartic peptide; DTPA, 3,3′-dithiodipropionic acid; Cy5.5, cyanine; SA, stearic acid;
PDA, hydrochloride dopamine; ATRAM, acidity-triggered rational membrane peptide; BSA, bovine serum
albumin; PPLG, poly (γ-propargyl L-glutamate); APT, aptamer; PVP, poly(N-vinylpyrrolidone); PLH, poly(L-
histidine); PLL, poly-L-lysine; EDC, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride; NHS, N-
hydroxysuccinimide; PMT, poly(ω-pentadecalactone-co-N-methyldiethyleneaminesebacate-co-2,2’-thiodiethylene
sebacate); DTPA, 3,3′-dithiodipropionic acid; POEAd, poly(ortho ester diamide); LA, lactobionic acid; PDPA,
poly(2-(diisopropylamino)ethyl methacrylate); CPT, C18-PEG2000-TPP.
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Table 4. Overview of mesoporous silica NPs: structure, pH sensitization method, tumor type, and
delivered drug.

First Author Publication Year Structure of NPs pH Sensitization Method Tumor Type Drug

Chen [24] 2020 MSN-citraconic-poly-
L-lisine acid-labile disulfide linkers 4T1 breast

carcinoma cell line Doxorubicin

Cheng [27] 2017 Polydopamine-FA-
PEG-MSN

pH-labile polydopamine
coating

HeLa cervival
cancer Doxorubicin

Ding [34] 2020 MSN-carboxymethyl
chitin-GRP78 peptide pH-labile thioketal linkers H22 hepatocellular

carcinoma Doxorubicin

Ding [35] 2020
MSN-lipidbilayer-

TLS11a
aptamer

pH-labile TAT peptide 4T1 breast
carcinoma cell line Doxorubicin

Kundu [65] 2020 MSN-FA pH-labile PAA linker MCF-7 breast
carcinoma cell line Umbelliferone

Li [73] 2020 Gal-P123-MSN pH-triggered structural
changes (DC lipid)

Huh-7
hepatocellular

carcinoma
Irinotecan

Li [68] 2017 DM1-MSN-PDA pH-labile PDA coating SW480 colorectal
cancer cell line EpCAM

Liao [76] 2021 Chitosan-MSN pH-labile imidazole linkers 4T1 breast
carcinoma cell line Doxorubicin

Liu [80] 2019 MSN pH-labile calcium carbonate LNCaP-AI prostate
carcinoma Doxorubicin

Mu [94] 2017 MSN-PLH-PEG hydrophobic to hydrophilic
transition

H22 hepatocellular
carcinoma Sorafenib

Saroj [104] 2018 MSN pH-labile PAA linker PC3 prostate
cancer Bicalutamide

Zhang [130] 2017 MSN-pH-responsive
peptide pH-responsive peptide MCF-7 breast

carcinoma cell line Doxorubicin

Zhao [136] 2018 MSN-TPGS pH-labile ester linkers MCF-7 breast
carcinoma cell line Doxorubicin

Legend: MSN, mesoporous silica nanoparticles; FA, folic acid; PEG, polyethylene glycol; GRP78P, glucose
regulated protein 78 peptide; TAT, tumor-associated antigens; Gal, gala tosyl; DM1, maytansinoid conjugate; PDA,
hydrochloride dopamine; PLH, D-alpha-tocopherol polyethylene glycol 1000-succinate; PAA, polyacrylic acid.

Table 5. Overview of gold NPs: structure, pH sensitization method, tumor type, and delivered drug.

First Author Publication Year Structure of NPs pH Sensitization Method Tumor Type Drug

Aguilar [20] 2021 polycaffeic acid-FA-Au pH-labile catechol-boronic
acid linkers

SCC7 squamos cell
carcinoma Bortezomib

Essawy [38] 2020 Au-hydrazine pH-labile hydrazone linkers HBPC oral
carcinoma Doxorubicin

Guo [50] 2018 Au-Chitosan-AS1411
aptamer

pH-triggered structural
changes

A549 lung cancer
cell line Methorexate

Kumar [63] 2020 Au pH-labile peptide linker
(Lys-Phe-Gly)

BT 474 breast
carcinoma Doxorubicin

Liu [81] 2018 Au-iron oxide-PEG pH-labile oleic acid linkers SGC-7901 gastric
adenocarcinoma Herceptin

Mahalunkar
[91] 2019 Au-PVP-FA pH-triggered structural

changes
MCF-7 breast

carcinoma cell line Curcumin

Sun [110] 2019 Au-AS1411 aptamer pH-triggered structural
changes

HeLa cervival
cancer Doxorubicin

Legend: FA, folic acid; Au, gold; PEG, polyethylene glycol; PVP, polyvinylpyrrolidone.



Gels 2022, 8, 232 8 of 17

Table 6. Overview of lipid-based NPs: structure, pH sensitization method, tumor type, and
delivered drug.

First Author Publication Year Structure of NPs pH Sensitization Method Tumor Type Drug

Juang [59] 2019 lipid-PEG pH-labile imide linkers HCT116 colon
carcinoma Irinotecan and microRNA

Li [69] 2017 TF-PEG-GMS pH-labile hydrazone
linkers

A549/DTX lung
cancer cell line Docetaxel and Baicalin

Li [71] 2019 LDL-OA pH-labile hydrazone
linkers

4T1 breast carcinoma
cell line Doxorubicin

Sun [111] 2021 DSPE-PEG pH-triggered structural
changes

LNCaP-AI prostate
carcinoma Doxorubicin

Tan [112] 2017 PAA-OA pH-labile oleic acid linkers A549 NSLC cell line Erlotinib

Men [92] 2020 lipid-HA-PBAE pH-triggered structural
changes A549 NSLC cell line Doxorubicin

Cavalcante
[22] 2021 DSPE-PEG-OA pH-labile oleic acid linkers 4T1 breast carcinoma

cell line Doxorubicin

Li [67] 2017 DSPE-PEG pH-labile imine linkers FTC-133 thyroid
cancer Doxorubicin

Lo [85] 2020 DSPE-PEG pH-labile oleic acid linkers SAS squamos
carcinoma cell line

Daunorubicin and
Irinotecan

Ma [90] 2021 DSPE-PEG pH-triggered structural
changes HepG2 liver cancer hydroxycamptothecin

Pang [98] 2020 lipid-polymeric NPs pH-labile dihydrazide
linkers A549 NSLC cell line Erlotinib

Xie [120] 2018 DSPE-PEG pH-labile imine linkers MCF-7 breast
carcinoma cell line Methotrexate

Legend: PEG, polyethylene glycol; TF; transferrin; GMS, glyceryl monostearate; PAA, polyacrylic acid; HA,
hyaluronic acid; PBAE, poly(b-amino ester; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; OA,
oleic acid.

3.2. Types of NPs Used

The sensitization of various NPs to acidic pH was measured. Those that were poly-
meric in nature were most common (Tables 2 and 3); however, mesoporous silica nanoparti-
cles (MSNPs) (Table 4), gold-based NPs (Table 5), or lipid-based NPs (Table 6) were other
common options. Polymeric NPs were synthetized through emulsion–solvent evaporation
methods or by nanoprecipitation. Polymers have the advantage of being biocompatible
and biodegradable and can be designed to either incorporate drugs or simply attach drugs
to their matrix via pH-labile linkers. Chitosan was commonly used to form nanocomposites
because it is a positively charged biocompatible polymer with good stability in blood circu-
lation which can form complexes with anionic peptides. Another way of using polymers
in the design of pH-NPs is by coating the surface of other types of NPs to increase in vivo
stability (e.g., PEGylated lipid NPs) (Table 6). Polyethylene glycol (PEG) is hydrophilic and
biocompatible, thus coating the surface with PEG (e.g., PEGylation) ensured a longer and
more stable intravascular circulation with low immunogenicity. MSN-NPs were another
widely used platform for designing pH-responsive drug carriers (11.6%, n = 14) synthetized
via the solution–gel method (Table 4). Their main advantage is their porous structure
which allows inner encapsulation of drugs, but also the surface linkage of tumor-targeting
peptides (e.g., folic acid, transferrin) and pH-responsive binders (e.g., imidazole, hydrazine)
can prove useful too.

3.3. Outcomes of pH-NPs

When exposed to in vitro acidic environment, without exception, pH-NPs released
drugs inversely proportional to the pH value (Figure 3). In all scenarios, both control
and pH-NPs showed similar biodistribution and good stability in vivo; however, pH-NPs
showed an increase in tumor regression compared to controls, suggestive of better targeted
drug release. As seen in Figure 4, the volume of tumors was lower in groups treated with
pH-NPs compared to non-pH-NPs.
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4. Discussion

Our results show that NPs may be used as pH-responsive platforms with excellent
results in tumor penetration and tumor regression rates. pH-NPs, regardless of being
metallic or polymeric, were shown to have good tumor penetration in most experimental
malignant cell lines in vivo.

Polymers were the most common nanomaterials used in the synthesis of pH-NPs.
Besides being used for surface coating to increase the colloidal stability of NPs, polymers
(e.g., PEG, PLGA, PHA) were used in the core structure of NPs, making polymeric NPs
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a widely used platform due to their key advantages: biocompatibility, high stability, non-
toxicity, easy synthesis, and versatility. Chemotherapeutics can be linked onto or within
the polymers via electrostatic interactions. Once assembled, polymeric NPs have high
stability in blood circulation and can maintain the EPR effect, which allows them to escape
in the tumoral microenvironment, where drugs are released in a controlled fashion [140].
Mesoporous silica nanoparticles (MSN NPs) were also commonly used to design pH-
responsive nanocarriers. The main advantage of MSN NPs is their large surface area and
large porous structure, in which a high volume of drugs can be encapsulated. Their surface
can be also chemically modified to attach various linkers which react to pH changes [141].
Lipid NPs are usually spherical in shape and formed by a bilayer lipid membrane and an
aqueous core. They are highly biocompatible and can transport hydrophilic, hydrophobic,
and lipophilic drugs; however, lipid NPs can be cleared by the reticuloendothelial system.
For this reason, their surface is usually coated with polymers (e.g., PEGylation) to increase
their biostability [142]. Gold NPs can be pH-functionalized using surface pH-responsive
linkers. Gold NPs have unique optical characteristics, making them suitable for cancer
theranostics and photothermal therapy [143].

The tumor specificity of pH-NPs was further enhanced using tumor-targeting peptides
linked to the surface of NPs which can target specific receptors commonly expressed
by cancers. The folate receptor is known to be overexpressed in various tumors [144]
and was used as a target for NPs coated with folic acid, which facilitates the receptor-
mediated endocytosis of NPs, where drug cargo can be released in the acidic intracellular
environment. Other studies used Fe ions attached to the surface of NPs, as many tumors use
Fe for cellular proliferation [145]. Increased expression of transferrin on tumors promotes
NPs attachment and internalization [146]. Xie et al. [120] used methotrexate as an antitumor
agent and also as a tumor-targeting agent due to its structural similarity to folic acid and
capacity to bind to folate expressed by tumors. Gong et al. [49] used arginine–glycine–
aspartate triad (RGD peptide) which is a low-toxicity, highly stable peptide with increased
affinity to integrins, which in turn are overexpressed by tumoral neo-vessels.

Doxorubicin is the most used chemotherapeutic in current experiments. Doxorubicin
is an anthracycline with potent antimitotic and cytotoxic activity. Its mechanism of action
involves intercalation between base pairs where it inhibits DNA synthesis and, in addition,
inhibits topoisomerase II activity, thus reducing DNA replication [147,148]. Despite having
excellent antitumor activity, its use is limited by important side effects, such as cardiotoxicity
and myelosuppression [148]. In a conjugated form, incorporated in the hydrophobic core
of nanocarriers, doxorubicin can be administered in higher doses, and can be released at
the tumor site where nanoparticles accumulate through enhanced permeability release
or by active tumor targeting through pH-dependent conversion, as demonstrated in the
included studies.

Drugs are usually loaded into NPs either through core encapsulation or surface
bounding. Core encapsulation refers to the organization of NPs around drugs, usually due
to their amphipathic property, and the hydrophobic end safeguards the drugs in the center,
while the hydrophilic end forms a protective shell, enabling a safe transport of cargo to the
tumor. Another way is to attach drugs to the surface of NPs, especially when PEGylation is
used to coat the surface. PEG is a stable carrier and binder, and various linkers can be used
to attach drugs or tumor-targeting receptors to its surface.

Acid-labile Schiff base linkages were the core from which nanoparticles, regardless of
type, were designed to respond to pH changes. Imine Schiff bases undergo hydrolyzation
under acidic conditions and such are used as linkers when nanoparticles are assembled.
Once the peritumoral acidic pH is sensed, the linkers break, causing disruption of the
nanocarriers and release of drugs. In other scenarios, the nanocarriers were coated with
tumor-targeting peptides (e.g., folic acid, AS1411 aptamer) which interacted with cancer
cells and allowed for the nanocarriers to reach the intracellular environment, via endocytic
pathways, where the drugs were released. Another pH sensitization method is the use
of electrostatic interactions. pH-NPs were coated with a negative-charged surface which
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reverted to a positive charge in the acidic environment, leading to the release of positively
charged peptides, which were linked to drugs [42].

Functionalized NPs may become a cornerstone in cancer treatment as they can over-
come the barrier of systemic toxicity produced by non-targeted chemotherapeutics and can
increase the amount of drug delivered to the tumor. Designing NPs responsive to acidic
pH has proven to be a solid option. However, we must consider that, in most studies, the
maximal effects of pH-NPs were at a pH lower than 6.5. To ensure similar outcomes in
clinical studies, pH-NPs need to be ultra-sensitized to release similar amounts of drugs at
pH values of 6.8–7.2, which is the usual pH value in the tumor microenvironment.

5. Conclusions

This scoping review mapped the current methods and outcomes of using pH-responsive
nanoparticles to improve drug delivery and enhance antitumoral effects. Regardless of
their type and structure, pH-responsive nanoparticles can increase tumor regression rates
compared to the controls. Drug delivery, therefore, is dependent on the exposure of NPs to
acidic pH.
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