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Abstract: The rheology, i.e., the flow and deformation properties, of hydrogels is generally a very
important consideration for their functionality. However, the accurate characterization of their
rheological material functions is handicapped by their ubiquitous viscoplasticity and associated wall
slip behavior. Here a parallel-disk viscometer was used to characterize the shear viscosity and wall
slip behavior of a crosslinked poly(acrylic acid) (PAA) carbomer hydrogel (specifically Carbopol® at
0.12% by weight in water). It was demonstrated that parallel-disk viscometry, i.e., the steady torsional
flow in between two parallel disks, can be used to unambiguously determine the yield stress and
other parameters of viscoplastic constitutive equations and wall slip behavior. It was specifically
shown that torque versus rotational speed information, obtained from parallel-disk viscometry, was
sufficient to determine the yield stress of a viscoplastic hydrogel. Additional gap-dependent data
from parallel-disk viscometry could then be used to characterize the other parameters of the shear
viscosity and wall slip behavior of the hydrogel. To investigate the accuracy of the parameters of shear
viscosity and apparent wall slip that were determined, the data were used to calculate the torque
values and the velocity distributions (using the lubrication assumption and parallel plate analogy)
under different flow conditions. The calculated torques and velocity distributions of the hydrogel
agreed very well with experimental data collected by Medina-Bañuelos et al., 2021, suggesting that
the methodologies demonstrated here provide the means necessary to understand in detail the steady
flow and deformation behavior of hydrogels. Such a detailed understanding of the viscoplastic nature
and wall slip behavior of hydrogels can then be used to design and develop novel hydrogels with
a wider range of applications in the medical and other industrial areas, and for finding optimum
conditions for their processing and manufacturing.

Keywords: hydrogel; gel; microgel; wall slip; viscoplastic; plug flow; continuous deformation;
parallel disk; viscometry

1. Introduction
1.1. Gels and Gelation

Both physical and chemical gelation processes are used to generate gels, which exhibit
flow and deformation behavior resembling solid elastic bodies and viscous fluids under
differing flow conditions. Chemical gelation typically involves a polymerization process
whereby the macromolecules are connected (crosslinked) via covalent bonds [1]. Up to
a certain degree of conversion the macromolecules are soluble (sol phase) whereas with
increasing conversion the macromolecules form a three-dimensional network that spans
the entire volume of the sample (gel phase) [1]. As the crosslink density increases during
chemical gelation, crosslinked polymer clusters are formed and the cluster size increases
with increasing degree of crosslinking. When only parts of the polymer molecules crosslink
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and span the volume, with sol phases in between the macromolecules, a “microgel” is
formed [2].

On the other hand, gelation also occurs via physical mechanisms whereby, for example,
clusters of particles consisting of crosslinked polymers, start to interact with each other via
dipole-dipole interactions, traces of crystallinity, van der Waals interactions [3–7], surface
chemistry [8–10], hydrogen bonding-based complexation [11], hydrophobic effects [12] and
depletion interactions [13–15]. Important attraction mechanisms that drive gelation are
generally short range, and include “van der Waals forces, surface chemistry, hydrophobic
effects, and some depletion interactions” [4]. During the gelation process when macro-
molecules go from the sol phase to the gel phase, with various states of microgel formation,
the linear viscoelastic properties are good reflections of the structural changes arising from
the sol to gel transition [11,16–19]. Fully formed gels can be highly elastic.

An interesting gelation agent that is widely used for various industrial applications
is carbomer (for example, Carbopol®, which is a tradename of the Lubrizol Corporation
of Wickliffe, Ohio USA, that is used in our study) which consists of poly(acrylic acid)
(PAA) molecules crosslinked into spherical clusters, i.e., soft particles (Figure 1). Typically,
Carbopol® particles are swollen in water, with a water-rich continuous phase in between
the swollen particles [20,21].
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Figure 1. A schematic representation of the structure of close-packed crosslinked and swollen
Carbopol® gel particles. (Adapted from Shafiei et al. [20] with permission from Elsevier).

Aqueous dispersions of such crosslinked polymer gels can be prepared over a range
of conditions, concentrations, and pH. Figure 2 shows the fluorescence micrographs of
Carbopol® hydrogels at various concentrations of Carbopol® [22]. At low concentrations
of Carbopol® there are no visible interactions and clustering of swollen particles. However,
when the concentration of the Carbopol® reaches 0.1% by weight agglomeration and
clustering of the soft particles can be observed [22]. In fact, at 0.1% by weight (Figure 2d),
the particle clusters span the length of the sample to generate a microgel. The onset of the
jamming of the swollen particles with increasing concentration gives rise to elasticity and
gel-like behavior. Such network formation is the basis for the development of a yield stress
for the hydrogel which demarcates the boundary between solid-like and fluid-like behavior.
Piau observed that the clustering of the crosslinked particles can span the entire volume
above a critical concentration at which a percolated network is developed [23].
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Figure 2. Fluorescence micrographs of Carbopol® hydrogels at various concentrations of Carbopol®

particles in water phase indicating particle cluster formation and networking with increasing con-
centration (a) 0.01%, (b) 0.05%, (c) 0.07% and (d) 0.1 wt% [22]. The scale bar corresponds to 10 µm.
Reproduced from Graziano et al. [22] with permission from Elsevier.

1.2. Viscoplasticity and Wall Slip of Hydrogels

Carbomer hydrogels (microgels and gels of swollen PAA particles in water) are used
in many applications including as thickeners in personal care products [24–26]. The
rheological behavior of Carbopol® hydrogels at concentrations around 0.1% and higher
have been investigated extensively due to their viscoplastic nature with their flow and
deformation behavior affected by the stress field that is acting on the hydrogel during
flow [23]. For example, in steady simple shear flow (only one component of the velocity
vector prevails and depends only on one other direction), when the absolute value of the
shear stress that is applied continuously during simple shear flow is smaller than the yield
stress of the hydrogel, the hydrogel does not deform continuously. Under such conditions,
plug flow, enabled by slip at the wall, is observed [27,28]. When the shear stress is greater
than the yield stress of the hydrogel there is continuous deformation of the gel (the hydrogel
deforms at a constant deformation rate as long as the shear stress is applied) accompanied
by slip at the wall [28,29].

Thus, the wall slip and deformation behaviors of viscoplastic fluids, including vis-
coplastic hydrogels, are coupled and need to be investigated concomitantly [27,29–40].
Generally, the wall slip of complex fluids, including suspensions with soft or hard particles
and gels, occurs via an apparent slip mechanism [27,30,41–43] which can also be affected
by the presence of a gas phase, for example, air entrainment [44–48]. Such apparent slip
layer formation can also be influenced by the migration of particles away from high shear
rate regions [49–54]. The use of roughened surfaces to eliminate wall slip can lead to the
fracture of the viscoplastic fluid [34,55].

There are significant ramifications of apparent wall slip and viscoplastic behavior in
complex flows and in the processing of various complex fluids [29,30,36–38,56–75]. The
wall slip of the polymer phase itself is typically observed above a critical shear stress. Such
slip at the wall of the polymeric binder gives rise to processing difficulties and challenges,
including development of flow instabilities that change the nature of the shape of the
extrudates emerging from pressure-driven flows, such as shark skin and gross melt fracture,
and time-dependence of the pressure applied to drive the flow [67,73,76–81].
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The flow and deformation behavior of Carbopol® hydrogels have been investigated in
detail previously via flow-through capillary and rectangular-slit dies [29,82], axial annular
flow (flow in between two stationary cylinders as a result of a pressure gradient) [83],
Couette flow (double coaxial cylinders, one of which is rotating and the other is station-
ary) [3,84–91], and vane-in-cup flow [92–97]. These viscometric flows have demonstrated
the viscoplastic nature of the Carbopol® hydrogels whereby the yield stress value of the
hydrogel could be determined unambiguously in conjunction with the wall slip behavior
of the hydrogel. In the following, an in-depth analysis of parallel-disk viscometry (steady
torsional flow) is carried out to demonstrate how the yield stress of the hydrogel can be
determined using parallel-disk viscometry, followed by characterization of the other param-
eters of shear viscosity and wall slip, prediction of the torque and velocity distributions in
between the two parallel disks, and comparison of the predictions of velocity distributions
and torques with the experimental values that were available from Medina-Bañuelos et al.,
2022 [98].

1.3. Parallel-Disk Viscometry (Steady Torsional Flow)

Parallel disk viscometry is one of the simplest geometries that can be used for the
rheological characterization of complex fluids (steady torsional flow in between two parallel
disks) (Figure 3) in which the sample is sandwiched in between two disks, one of which
is rotating at a rotational speed of Ω, and the other is stationary. The gap, H, in between
the two disks is typically significantly smaller than the radius of the disks, R, i.e., H << R.
The condition, H << R, results in the shear stress component associated with the velocity
gradient in the depth direction to be significantly greater than the shear stress component
that exists in the radial direction, so that the flow can be considered to be a simple shear
flow (one component of the velocity vector, Vθ , changing in only one other direction, z)
and a simple parallel plate analysis of the torsional flow can be carried out employing the
lubrication assumption [99]. It is also possible to use a cone-and-plate fixture whereby
the sample is sandwiched in between a cone with a cone angle of α and a disk. The cone-
and-plate geometry is very suitable for the characterization of the rheological behavior
of Newtonian and generalized Newtonian fluids that do not exhibit viscoplasticity nor
wall slip [100], since the shear rate and the shear stress are constant within the gap for
simple fluids [101,102]. However, for various complex fluids which exhibit wall slip, such
as viscoplastic hydrogels, the flow curves are dependent on the radial location and thus the
cone-and-plate geometry offers no advantages [103].
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In the following, first the torque versus the apparent shear rate behavior in steady
torsional flow of a Carbopol® hydrogel (at 0.12% by weight Carbopol® in water), that
was investigated earlier for its Couette [84], and vane-in-cup [92] flows, are analyzed to
generate the parameters of a viscoplastic constitutive equation starting with the yield stress
(Herschel–Bulkley) and the parameters describing the wall slip velocity versus shear stress
relationship. It is shown here that the torque versus apparent shear rate data collected
with the parallel-disk viscometry allow, in a relatively facile manner, the determination
of the yield stress of a viscoplastic hydrogel, consistent with similar findings from the
steady torsional flow of suspensions containing rigid particles [99]. It will be demonstrated
that the other parameters of the Herschel–Bulkley fluid constitutive equation can then be
determined from the flow curves employing wall slip analysis.

1.4. Yield Stress

As noted earlier, when subjected to simple shear flows, viscoplastic fluids exhibit
solid-like behavior (plug flow) when the shear stress that is applied is less than a critical
value, i.e., the yield stress τ0, and a constant deformation rate when the shear stress applied
is above the yield stress. The determination of the yield stress is a challenge and is one of
the most misunderstood concepts in the field of rheology [32]. The shear stress growth and
the shear stress relaxation upon cessation of steady shear are suggested to be used for the
determination of the yield stress values of viscoplastic materials [104]. For example, the
residual “limiting” shear stress exerted by the fluid upon the cessation of the steady shear
flow is suggested to represent the yield stress [105]. This assumes that the value of the
limiting stress would be insensitive to the constant deformation rate. However, as noted by
Magnin and Piau (1990) [106], in the presence of wall slip, the limiting stress becomes a
function of the imposed constant deformation rate which complicates the determination
of the yield stress value. Another method is to use the extrapolation of the shear stress
versus the apparent shear rate data to diminishing shear rates to identify the yield stress.
However, the yield stress values determined as such become dependent on the surface-to-
volume ratio of the rheometer geometry used [32]. Finally, roughened rheometer surfaces
are suggested to be used to obtain the flow curve directly (shear stress versus the shear
rate), with the stipulation that rough surfaces will eliminate wall slip so that the apparent
shear rate becomes equal to the true shear rate. The fitting of the flow curve thus obtained
would provide the yield stress. However, it has been shown that the roughening of the
rheometer surfaces can lead to the fracturing of the viscoplastic fluid, rendering the data
meaningless [34,55].

In the following, steady torsional flow (parallel-disk viscometry) is used to determine
the yield stress and other viscoplastic flow (Herschel–Bulkley) and wall slip parameters
of a Carbopol® hydrogel. The parameters of shear viscosity and wall slip of the hydrogel
were used and tested via predictions of the velocity distributions and torques that were
then compared with the recently published experimental velocity distributions and torque
results of Medina-Bañuelos et al. [98]. The methods presented here for the characterization
of the flow and deformation behavior of viscoplastic fluids have also been tested earlier
for a concentrated suspension of rigid particles which also exhibited viscoplasticity and
apparent wall slip [99]. Overall, the proposed procedure should significantly simplify the
characterization of the yield stress values of viscoplastic hydrogels. The analysis results
also provide a better understanding of the flow and deformation behavior of viscoplastic
hydrogels in general, and their steady torsional flow in particular, for example, by allowing
the determination of the shear stress distributions as a function of the radial distance, r, and
the resulting velocity distributions and torques under various flow conditions in steady
torsional flow.
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1.5. Background
1.5.1. Viscoplastic Constitutive Equation (Herschel–Bulkley)

Let us start via the formal definition of the flow and deformation behavior of viscoplas-
tic fluids. Viscoplasticity mandates that under steady-state conditions the flow behavior of
viscoplastic fluids is binary in nature, i.e., that the deformation rate as represented by the
rate of deformation tensor, ∆, is zero when the stress magnitude is less than the yield stress,
i.e., 1/2(τ : τ) < τ2

0 :
∆ = 0 for 1/2(τ : τ) ≤ τ2

0 (1)

and is finite when the stress magnitude is greater than the yield stress, i.e., for the condition
1/2(τ : τ) > τ2

0 :
τ = −η(I I∆)∆ for 1/2(τ : τ) > τ2

0 (2)

where the shear viscosity, η, is a function of the second invariant of the rate of deformation
tensor, I I∆, i.e., η(I I∆). Equation (2) is the generalized Newtonian fluid model, which
stipulates that the stress tensor is equal to the rate of deformation tensor times the shear
viscosity material function under steady flow conditions [101,102].

It was shown for various viscometric and processing flows that the Herschel–Bulkley
Equation accurately represents the behavior of various viscoplastic fluids for 1/2(τ : τ) >
τ2

0 [6,29,36,38,81,83,84,92,101,102], i.e.,

τ = −

 τ0∣∣∣√1/2(∆ : ∆)
∣∣∣ + m

∣∣∣√1/2(∆ : ∆)
∣∣∣n−1

∆ for 1/2(τ : τ) > τ2
0 (3)

The Herschel–Bulkley Equation involves three parameters at constant temperature,
i.e., the yield stress, τ0, the consistency index, m, and the shear rate sensitivity index, n
(also referred to as the power law index, indicating Newtonian behavior above the yield
stress, i.e., Bingham fluid, for n = 1, or shear thinning or shear thickening with n < 1 or
n > 1, respectively). For steady torsional flow the Herschel–Bulkley Equation becomes:

τzθ(r) = ±τ0 −m
∣∣∣∣dVθ

dz
(r)
∣∣∣∣n−1(dVθ

dz
(r)
)

for |τzθ(r)| > τ0 (4)

dVθ

dz
(r) = 0 for |τzθ(r)| ≤ τ0 (5)

where dVθ
dz (r) and τzθ(r) are the true shear rate and the shear stress for any radial position,

r, respectively [27,29]. In Equation (4) the − sign is used when the shear stress, τzθ(r) is
negative. Considering the case of the top disk rotating, so that τzθ(r) < 0, Equation (4)

becomes: τzθ(r) = −τ0 −m
∣∣∣ dVθ

dz (r)
∣∣∣n−1( dVθ

dz (r)
)
= −τ0 −m

(
dVθ
dz (r)

)n
.

1.5.2. Wall Slip Velocities in Steady Torsional Flow (Parallel-Disk Viscometry)

Figure 4a,b show the schematics of the velocity distributions for a viscoplastic fluid
during steady torsional flow as depicted via the parallel-plate flow assumption. Under
the conditions of the shear stress, |τzθ(r)| ≤ τ0, plug flow occurs (Figure 4a) and for
|τzθ(r)| > τ0, a constant deformation rate prevails for the viscoplastic fluid in between the
two walls as long as a constant shear stress is imposed (Figure 4b).
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Figure 4. Schematics of the steady torsional flow of a viscoplastic hydrogel (a) plug flow with
apparent slip (b) continuous deformation with apparent slip at the walls.

The apparent wall slip of viscoplastic fluids is also schematically shown in Figure 4,
where apparent slip layers are depicted in an exaggerated manner at both the top and bot-
tom surfaces [27]. The wall slip velocity Us is defined as the difference between the velocity
of the fluid at the wall, and the velocity of the wall. Thus, the wall slip velocity is negative
for the top disk which is moving, i.e., Us(r, H) < 0, and the wall slip velocity, Us(r, 0), is
positive for the bottom disk, which is stationary, i.e., Us(r, 0) > 0. The wall slip velocities
at the top and bottom disks are related to each other as Us(r, H) = −Us(r, 0) For similar
wall slip behavior at the top and bottom surfaces, the slip velocity for plug flow conditions
|τzθ(r)| ≤ τ0 is equal to the wall velocity, Vw = ΩR, over two, i.e., Us = ΩR/2 [27]. Thus,
for plug flow, the slip velocities at the bottom and top surfaces are only a function of the
plate velocity, Ωr [27],

Us(r, 0) =
Ωr
2

and Us(r, H) = −Ωr
2

(6)

For the rest of the manuscript, “wall slip velocity” will refer to the absolute values of
the wall slip velocities at the top and bottom surfaces to avoid confusion.
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1.5.3. Apparent Slip Flow Mechanism

The wall slip behavior of various viscoplastic fluids, including concentrated suspen-
sions and gels with rigid and soft particles, is subject to the apparent slip mechanism. Dur-
ing the flow of a suspension or gel of rigid or soft particles the particles cannot physically
occupy the space adjacent to a wall as efficiently as they can away from the wall [27,41–43].
This leads to the formation of a, generally relatively thin, but always present, layer of pure
fluid adjacent to the wall, i.e., the “apparent slip layer” or the “Vand layer” [107]. The
lower viscosity at the particle-free apparent slip layer gives rise to a higher shear rate at
the wall at a given shear stress and hence gives the appearance of wall slip, considering
that the slip layer thickness is much smaller than the channel dimension, i.e., apparent wall
slip [27,30,41,42].

For suspensions of rigid particles, the estimates of the slip layer thickness over the
particle diameter ratio are available [27,30,85,90,91,108]. Meeker et al. have shown that the
apparent slip mechanism is also applicable to microgel pastes and concentrated emulsions
and have provided methods for the estimation of the apparent slip layer thickness, δ,
based on elastohydrodynamic lubrication between squeezed soft particles and shearing
surfaces [90,91]. For viscoplastic microgels the apparent slip mechanism could be integrated
into the analysis of various flows including steady torsional, capillary, tangential annular
(Couette), axial annular and vane-in-cup flows [29,83,84,92].

The relationship between the slip velocity, Us(τzθ(r)), and the shear stress, τzθ(r), for
apparent wall slip occurring in steady torsional flow becomes the following (top surface
rotating) for Vand layers, the shear viscosity of which can be described by a power law
equation represented with a consistency index, mb, and a power law index of nb, i.e.,

τzθ(r) = −mb

∣∣∣ dVθ
dz (r)

∣∣∣nb−1( dVθ
dz (r)

)
= −mb

(
dVθ
dz (r)

)nb
, as [27]:

Us(r, 0) =
δ

mb
1/nb

(−τzθ(r))
1/nb and Us(r, H) = − δ

mb
1/nb

(−τzθ(r))
1/nb (7)

For suspensions of rigid, low-aspect-ratio and non-colloidal particles in the volume
fraction of solids, range of 0.17 to 0.94, compilation of apparent slip layer thickness data
over a wide range of concentrations has indicated that the apparent slip layer can be
related to the harmonic mean particle diameter and the ratio of the volume fraction
of solids over their maximum packing fraction, i.e., φ

φm
, and can be determined from:

δ
Dp

=
(

1− φ
φm

)
[27,109,110]. For pressure-driven flows the apparent wall slip behavior

under the plug flow conditions can be complicated and the apparent slip layer can be a
function of the flow rate [56]. Such dependence on the flow conditions can be a consequence
of the binder itself exhibiting wall slip, which typically occurs at shear stresses that are
above a critical wall shear stress [67,81,111–113]. However, such complications are not
observed for Newtonian binders [27,30,40,85]. It should be noted that, in the following,
additional light will be shed onto the nature of the apparent wall slip mechanism for
carbomer hydrogels.

2. Results and Discussion
2.1. Parallel-Disk Viscometry Yield Stress from Torque versus Apparent Shear Rate

The experimental torque, =, versus the apparent shear rate data (
.
γaR = ΩR/H) from

parallel-disk viscometry are shown in Figure 5 for three gaps of 0.5, 0.75 and 1 mm [98].
The data were best fitted to determine the variation of the slope, d ln=

d ln(ΩR/H)
, for the entire

apparent shear rate range of 0.5 to 100 s −1. There are two distinct slopes, the first is valid
for all gaps for torques less than 7 × 10−4 to 9 × 10−4 N-m and the second slope prevails
above this range. Thus, for all gaps the slope d ln=

d ln(ΩR/H)
changes at the critical torque,

=c (Figure 5). For = < =c, the slope d ln=
d ln(ΩR/H)

varies between 0.58 to 0.66 with a mean
value of 0.62 (Figure 5). On the other hand, for = ≥ =c, the slope of the torque versus the
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apparent shear rate at the edge, i.e., d ln=
d ln(ΩR/H)

is 0.34 for H = 1 mm, d ln=
d ln(ΩR/H)

is 0.38 for

H = 0.75 mm, and d ln=
d ln(ΩR/H)

is 0.44 for H = 0.5 mm. Thus, overall, there is a change in slope
of the torque data at the critical torque from 0.62 ± 0.04 to 0.39 ± 0.05. Let us now see what
this change in the slope of the torque versus the apparent shear rate represents.

Gels 2022, 8, x FOR PEER REVIEW 9 of 34 
 

 

prevails above this range. Thus, for all gaps the slope 
( )

ln
ln /

d
d R H

ℑ
Ω

 changes at the crit-

ical torque, cℑ  (Figure 5). For ℑ < cℑ , the slope 
( )

ln
ln /

d
d R H

ℑ
Ω

varies between 0.58 to 

0.66 with a mean value of 0.62 (Figure 5). On the other hand, for cℑ ≥ ℑ , the slope of the 

torque versus the apparent shear rate at the edge, i.e., 
( )

ln
ln /

d
d R H

ℑ
Ω

 is 0.34 for H = 1 mm, 

( )
ln

ln /
d

d R H
ℑ

Ω
 is 0.38 for H = 0.75 mm, and 

( )
ln

ln /
d

d R H
ℑ

Ω
 is 0.44 for H = 0.5 mm. Thus, 

overall, there is a change in slope of the torque data at the critical torque from 0.62 ± 0.04 
to 0.39 ± 0.05. Let us now see what this change in the slope of the torque versus the appar-
ent shear rate represents. 

 
Figure 5. Steady torque, ℑ , versus the apparent shear rate at the edge for three gaps. The critical 
torque corresponds to the yield condition from which the yield stress can be determined. 

The torque, ℑ , that is necessary to rotate the upper disk at a given apparent shear 
rate at the edge, /aR R Hγ = Ω , is given by: 

( )( ) 2

0

2
R

z r r drθπ τℑ= −  (8)

Upon a change of variable of integration to: 

( )( )
3

2
3

02

aR
aR

z ar arr d
R

γ

θ
γ τ γ γ

π
ℑ = −

    (9)

and differentiation with respect to the apparent shear rate at the edge, /aR R Hγ = Ω , 
and utilizing the Leibniz rule of integration, one obtains the following relationship be-
tween the torque, versus the shear stress at the edge, R [101,102]: 

Figure 5. Steady torque, =, versus the apparent shear rate at the edge for three gaps. The critical
torque corresponds to the yield condition from which the yield stress can be determined.

The torque, =, that is necessary to rotate the upper disk at a given apparent shear rate
at the edge,

.
γaR = ΩR/H, is given by:

= = 2π

R∫
0

(−τzθ(r))r2dr (8)

Upon a change of variable of integration to:

.
γaR

3 =
2πR3 =

.
γaR∫
0

(−τzθ(r))
.
γar

2d
.
γar (9)

and differentiation with respect to the apparent shear rate at the edge,
.
γaR = ΩR/H, and

utilizing the Leibniz rule of integration, one obtains the following relationship between the
torque, versus the shear stress at the edge, R [101,102]:

− τzθ(R) =
=

2πR3

(
3 +

d ln=
d ln(ΩR/H)

)
(10)
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For the apparent slip mechanism and using a parallel-plate analogy, the shear stress
τzθ(r) at any radial position, r, in steady torsional flow can be determined (for the case of
the top surface moving) using [27]:[

−(τzθ(r) + τ0)

m

]1/n(
1− 2δ

H

)
+

2δ

H

(
−τzθ(r)

mb

)1/nb

=
Ωr
H

for− τzθ(r) > τ0 (11)

2δ

H

(
−τzθ(r)

mb

)1/nb

=
Ωr
H

for− τzθ(r) ≤ τ0 (12)

Equations (11) and (12) indicate that the relationship between the shear stress, |τzθ(r)|
and the apparent shear rate expected for the pure plug flow, i.e., for |τzθ(r)| ≤ τ0, would
be different than the one that prevails under shear stresses for which |τzθ(r)| > τ0. How
would this manifest itself for the torque, = versus the apparent shear rate at the edge,
ΩR/H, behavior and how different would the slope d ln=

d ln(ΩR/H)
be for the deformation

region, i.e., |τzθ(r)| > τ0 in comparison to the plug flow region, i.e., |τzθ(r)| ≤ τ0?
For the apparent wall slip mechanism the torque values for pure plug flow, i.e.,

|τzθ(R)| ≤ τ0, can be determined as a function of the apparent shear rate at the edge of the
disks,

.
γaR = ΩR/H, as the following for a binder with a power-law type shear viscosity

represented by the consistency index, mb and a power-law index, nb (for constant apparent
slip layer thickness, δ):

=(r0 > R) =
2π mbR3

(3 + nb)

(
ΩR
2δ

)nb

=
2π mbR3Hnb

(3 + nb) (2δ)nb

( .
γaR

)nb (13)

Thus, for a non-Newtonian binder that constitutes the apparent slip layer with constant
δ, and with shear viscosity represented by a power-law equation, the slope d ln=

d ln(ΩR/H)
would

be equal to the power law index of the binder, nb. On the other hand, for a Newtonian
binder with viscosity, µb:

=(r0 > R) =
π µbR4Ω

4δ
=

π µbR3H
4δ

.
γaR and

d ln=
d ln(ΩR/H)

= 1. (14)

It should be noted that the power law index of the binder, nb can also be determined
from the wall slip analysis, i.e., from the relationship between wall slip velocity and shear
stress (Section 2.4). In Section 2.4, it will be shown that the apparent slip layer formation
can also be affected by the penetration of the macromolecules that are dangling from the
surfaces of the crosslinked and swollen soft particles of PAA.

What happens if the shear stress, |τzθ(r)| exceeds the yield stress at a radial position
r0, where r0 is the radial location at which |τzθ(r0)| = τ0 during steady torsional flow? Part
of the viscoplastic fluid in between the two parallel disks would be undergoing plug flow
(solid body motion), i.e., for r ≤ r0, and part of the fluid would be undergoing deformation
for r > r0, with a transition at r = r0, i.e., |τzθ(r0)| = τ0. For cases where there is plug
flow and deformation at a constant rate occurring simultaneously, the torque, =, can be
determined as [99]:

= = 2π

R∫
0

(−τzθ(r))r2dr = 2π

 r0∫
0

(−τzθ(r))r2dr +
R∫

r0

(−τzθ(r))r2dr

 (15)
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The first term on the right is the contribution of the plug flow zone to the torque and
is equal to:

2π

r0∫
0

(−τzθ(r))r2dr =
2π mbr0

3+nb

(3 + nb)

(
Ω
2δ

)nb

(16)

The torque for the deformation region has the contributions of the apparent slip as
well as the bulk deformation of the hydrogel. However, as the shear stress increases and
becomes significantly greater than the yield stress the contribution of wall slip diminishes.
This will be shown in conjunction with the results and discussion available in Section 2.5.
When the effect of the apparent slip diminishes with increasing shear stress, the slope
becomes equal to the power law index, n, of the hydrogel, as shown below:

R∫
r0

(−τzθ(r))r2dr =
τ0

3

(
R3 − r0

3
)
+

m
(3 + n)

(
Ω
H

)n(
R3+n − r0

3+n
)

(17)

so that the torque, =, for the condition of negligible slip contribution in the deformation
region, i.e., for shear stress significantly greater than yield stress, can be obtained as [99]:

= = 2π

R∫
0

(−τzθ(r))r2dr = 2π

[
mbr0

3+nb

(3 + nb)

(
Ω
2δ

)nb

+
τ0

3

(
R3 − r0

3
)
+

m
(3 + n)

(
Ω
H

)n(
R3+n − r0

3+n
)]

(18)

The third term on the right side of Equation (18) dominates for R >> r0 so that
d ln=

d ln(ΩR/H)
≈ n (Equations (1)–(4)). As shown in Sections 2.4 and 2.6, the wall slip analysis

followed by the determination of the parameters of the Herschel–Bulkley Equation for the
hydrogel accurately provides the value of the shear rate sensitivity index of the hydrogel,
n, so that it can be compared with the approximate value of the n value determined from
the torque versus the rotational speed data discussed here.

Thus, in the steady torsional flow of the hydrogel subject to apparent wall slip, a slope
change in the torque versus the rotational speed from the power law index of the binder,
nb, to a value approaching the shear rate sensitivity index, n, of the Herschel–Bulkley fluid
is expected. Typically, n < nb, considering that when a binder is mixed with soft (as in the
hydrogel of this study) or rigid particles the resulting suspension is generally pseudoplastic
in nature, i.e., n < 1. There are exceptions to this for dilatant suspensions for which n > 1.
Such dilatant suspensions typically incorporate low-aspect particles with a narrow size
range [30,31]. Regardless of the nature of the rheological behavior of the viscoplastic fluid
versus the rheological behavior of the binder the change in slope reflects the transition from
pure plug flow to a flow with both plug flow for r ≤ r0 and deformation flow for r0 < r ≤ R.

Therefore, the change in the slope, d ln=
d ln(ΩR/H)

, is expected to occur when the shear
stress at the edge becomes equal to the yield stress, i.e., |τzθ(R)| = τ0. Thus, this step
change in the slope d ln=

d ln(ΩR/H)
serves as the basis for the determination of the yield stress,

τ0, value of a viscoplastic fluid using steady torsional flow [99]. Overall, it is sufficient to
collect torque, =, versus rotational speed, Ω, data at a single gap, H, for the determination
of the yield stress.

For the Carbopol® hydrogel at 0.12% by weight, what is the critical shear stress range
at the edge that corresponds to the critical torque range of 0.0007 ≤ =c ≤ 0.0009 N-m?
Applying Equation (10) for the critical condition, i.e., |τzθ(R)|c = =c

2πR3

(
3 + d ln=

d ln(ΩR/H)

)
using the mean value of d ln=

d ln(ΩR/H)
= 0.62 for = < =c (Figure 5) the critical shear stress

range at the edge, |τzθ(R)|c is determined to be 24–30 Pa (Figure 6).
Thus, the yield stress, τ0, of the hydrogel is about 27 Pa, which is exactly what was

determined as the yield stress of this Carbopol® hydrogel from previous investigations
using Couette flow [84] and vane-in-cup flow [92]. The new methodology that is applied
here for the determination of the yield stress of a viscoplastic fluid using steady torsional
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flow was also tested earlier for a concentrated suspension of rigid particles mixed with a
poly(dimethyl siloxane) binder [98]. In that investigation, the determined yield stress value
using the torque versus apparent shear rate data from steady torsional flow was again
found to be similar to the yield stress values of the concentrated suspension obtained using
wall slip analysis, as well as using a straight-line marker method [40].
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Figure 6. Shear stress at the edge, |τzθ(R)|, versus the apparent shear rate at the edge,
.
γaR = ΩR/H,

for three gaps, H = 1, 0.75 and 0.5 mm the yield stress range is indicated and corresponds to the
critical torque range.

2.2. Apparent Slip Analysis

It was indicated earlier that for the conditions of the apparent slip layer thickness, δ, or
the shear viscosity behavior of the fluid comprising the apparent slip layer thickness (for a
power-law fluid consistency index, mb, and power-law index, nb) remaining the same over
the rotational speed, Ω, range imposed during plug flow of the hydrogel, Equation (13)
would be valid for the torque. This highlights that the torque would remain independent
of the gap, H, used in the steady torsional flow, regardless of whether the binder fluid is
Newtonian or non-Newtonian (note that H

.
γaR = ΩR).

However, as shown in Figure 7, there is dependence of the torque on the gap in the
plug flow region, indicating that, either the slip layer thickness is changing, or that the
rheological behavior of the fluid constituting the apparent slip layer is changing as the flow
conditions are altered. Let us analyze the slip behavior in plug flow further.
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In general, the wall slip velocity versus the shear stress behavior of complex fluids,
including viscoplastic fluids, can be analyzed via systematic changes in the surface to
volume ratio of the viscometer, i.e., by changing the gap, H [30,114,115] akin to the method
suggested by Mooney for flow-through circular tubes [100]:

Ωr
H

=
Us(r, 0)

H
− Us(r, H)

H
+

dVθ

dz
(r) (19)

ΩR
H = Us(R,0)

H − Us(R,H)
H + dVθ

dz (R) (20)

where Ωr
H is the apparent shear rate,

.
γar, at the radial position, r, and dVθ

dz (R) is the true
shear rate,

.
γ(R), imposed on the fluid at r = R, i.e., corresponding to the shear stress at the

edge, τzθ(R).
The slopes of the apparent shear rate with respect to 1/H at constant shear stresses

provide the absolute values of the wall slip velocity at the given shear stresses so that one
can obtain the slip velocity versus the shear stress behavior.

∂(ΩR/H)

∂(1/H)

∣∣∣∣
τzθ

= 2Us(τzθ(R)) (21)

Equation (21) suggests that if plots of apparent shear rate versus reciprocal gap are
drawn at constant shear stress at the edge, the slopes would be equal to 2Us(τzθ(R)),
and extrapolated intercepts would be equal to the true shear rate at the edge. Yilmazer
and Kalyon [30] have used more than two gaps and thus utilized Equation (20), whereas
Yoshimura and Prud’homme have used only two gaps in their analysis [115], so that:

Us(τzθ(R)) = ±R

[
Ω1(τzθ(R))

H1
− Ω2(τzθ(R))

H2

]
2
(

1
H1
− 1

H2

) (22)

where Ω1(τzθ(R)) and Ω2(τzθ(R)) are the rotational speeds for the two gaps, H1 and H2, at
the same shear stress, τzθ(R).
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2.3. Plug Flow

Starting with Figure 6, the application of the analysis contained in Equation (20), i.e.,
for each gap, H, the apparent shear rate versus 1/H data were used at various shear stress
values to determine the slopes which are equal to 2Us to determine the relationship between
slip velocity and shear stress at the edge. Figure 8 shows the slip velocity versus the shear
stress behavior of the hydrogel determined in the plug flow region, i.e., |τzθ(r)| ≤ τ0. The
y-intercept in Equation (20) represents the true shear rate of the hydrogel. For plug flow,
the y-intercept should be zero for data collected at all three gaps, indicating that plug flow
prevails and the true shear rate is equal to zero. This expected behavior is indeed observed.
As would be expected from the data shown in Figure 8, the slip velocity values obtained at
different gaps, although they are close to each other, suggest some degree of dependence of
the slip velocity values to the conditions generated at the different gaps that were used.
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Meeker et al. have analyzed the formation of the apparent slip layer for gels with soft
particles [29,90,91]. For plug flow formation in steady torsional flow, Meeker et al. have
determined, based on Reynolds lubrication equation, that the apparent slip layer, δ, can be
given as:

δ =

(
µwUsRp

Gp

)1/2
(23)

where the Carbopol® microgel with a Newtonian binder (water), with shear viscosity µw
consists of closely packed swollen soft particles with modulus of elasticity of Gp and radius,
Rp [90,91]. τzθ can be given as:

τzθ =
µwUs

δ
=

µwUs(
µwUsRp

Gp

)1/2 =

(
µwUsGp

Rp

)1/2
(24)

and hence:
δ

Rp
=

(
1

Gp

)
τzθ (25)
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Aktas et al. [29] have shown that for Carbopol® hydrogels the ratio of Rp over Gp is
a constant for the plug flow region, i.e., the apparent slip layer thickness varies linearly
with the shear stress. A corollary of this finding is that the apparent slip velocity Us would
vary with the square of the shear stress, i.e., Us = τzθ

2 in the plug flow region. As shown in
Figure 8 the exponent is in the range of 1.50 to 1.65, depending on the gap and the method
used, and is thus smaller than 2, indicating that there is another mechanism at play.

2.4. Different Mechanisms of Apparent Slip for Plug Flow versus Deformation Region

As indicated earlier in Equation (4) the relationship between the slip velocity, Us, and
the shear stress, τzθ(R), for steady torsional flow is equal to Us(R) = ±β(−τzθ(R))sb [27],
with ± necessary to accommodate the changing sign of the slip velocity at the stationary
and moving walls, β is the slip coefficient and the reciprocal power law index, sb = 1

nb
of

the fluid that constitutes the apparent slip layer. For the gap dependency to be present in
the above analysis, either the apparent slip layer thickness, δ, or the shear viscosity of the
fluid constituting the apparent slip layer should change under different flow conditions,
although all lead to plug flow of the hydrogel. The slope sb gives a hint as to what is
happening. Considering that the binder of the gel is Newtonian water, and therefore nb = 1
and, hence, 1/nb = sb = 1. However, as seen in Figure 9, the value of the slope, sb, for plug
flow is in the range of 1.5 to 1.65, and thus nb for the apparent slip layer in plug flow region
is 0.60 to 0.67. It should be noted that the range of values of the power law index of the
binder, nb = 0.6 to 0.67 agrees very well with the nb value obtained from the torque versus
the rotational speed analysis, which had generated a nb value of 0.62 (Section 2.4).
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Figure 9. Hypothetical explanation of the differences in the shear viscosity of the fluid at the apparent
slip layer, i.e., (a) penetration of the PAA chains into the slip layer for the plug flow region and
(b) apparent slip layer free of particles and PAA chains for the continuous deformation region.

The fact that the power law index of the binder nb is around 0.6 suggests that the fluid
that constitutes the apparent slip layer for the plug flow region is non-Newtonian. What
could impart a non-Newtonian character to the apparent slip layer, if the major constituent
is water?

It is reasonable to assume that the soft, crosslinked, spherical PAA particles with
dangling chains attached to their surfaces cannot come and pack efficiently at the wall as
they can away from the wall. However, the free end of the PAA chains can penetrate into
the apparent slip layer under the mild shear stress and shear rate conditions of plug flow,
giving rise to a PAA solution at the apparent slip layer thickness. Thus, our hypothesis
is that the dangling, poly(acrylic acid) (PAA) macromolecules of the Carbopol® hydrogel,
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that are fixed to the crosslinked particles on one end, are able to rotate and orient freely
on the other end. The chains would have some motion and orientation capabilities to
penetrate into the apparent slip layer under plug flow conditions, as depicted schematically
in Figure 9a.

On the other hand, for the continuous deformation region the slope sb ≈ 1 and hence
the power law index of the fluid constituting the apparent slip layer, nb ≈ 1, characteristic
of a Newtonian fluid (as would be expected here for the liquid phase, which is water, free
of penetration of the dangling PAA chains into the apparent slip layer). This is shown in
Figure 10, where it is indicated that for the data used involving the gap H = 1 and 1.1 mm,
the relationship between the slip velocity and the shear stress is Us = 1.57 ∗ 10−4τzθ(R)0.98.

1 
 

 
Figure 10. Wall slip velocity, Us, versus shear stress at the edge, |τzθ(R)|, for two gaps from the data
collected via PIV experiments [98]. The slope is equal to 3.73 × 10−5 m/(Pa1.44 s) for plug flow region
and 1.573 × 10−4 m/(Pa0.98 s) for continuous deformation region.

It can be hypothesized that the higher shear stress and the shear rates found in the
continuous deformation region of the steady torsional flow orient the macromolecules that
are anchored to the soft particle surfaces, along the streamlines of the flow field (which are
parallel to the wall velocity). This generates an apparent slip layer that is free of particles,
as well as free from the presence of dangling PAA macromolecules (Figure 9b). Thus, only
water constitutes the apparent slip layer for the continuous deformation region. Following
up on this hypothesis, the apparent slip layer thickness, δ, for the continuous deformation
region, comprised of water, can be determined using: Us = β ∗ |τzθ(R)| = δ

µw
∗ |τzθ(R)|, i.e.,

δ = β ∗ µw = 0.16 µm. This thickness determined for the continuous deformation region
is a reasonable estimate of the apparent slip layer thickness, since the diameter of the soft
crosslinked swollen PAA particles are estimated to be in the 2 to 3 µm range.

It is interesting to compare the wall slip velocity values determined via the Mooney
method with the wall slip velocity data obtained by Medina-Bañuelos et al., 2021 [98]
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employing PIV analysis. The comparisons are shown in Figure 11. The β value varies
between 3.73 × 10−5 to 5.21 × 10−5 m/(PaSb s) and the exponent, sb, ranges from 1.34 to
1.44. The mean values of β and sb from these data are 4.50 × 10−5 and 1.39, respectively.
Thus, the parameters of the wall slip velocity versus the shear stress relationship stay
consistent for the different methods that are utilized.
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Figure 11. Slip velocity as a function of shear stress determined using Mooney procedures with best
fits for the plug flow and deformation region that were reported in Figure 10.

2.5. Yield Stress from Wall Slip Analysis

To validate the yield stress value obtained with the torque versus the apparent shear
rate data, one can also probe the relationship between the wall slip velocity and the velocity
of the disk driving the steady torsional flow. The ratio of the wall slip velocity over the
wall velocity at the edge, i.e., Us

ΩR versus the shear stress at the edge, |τzθ(R)|, is shown in
Figure 12. As indicated in Section 1.5.2, plug flow is indicated when the ratio Us

ΩR = 0.5 [27].
The flow field changes from plug flow (for which Us

ΩR = 0.5) to deformation flow (for which
Us
ΩR < 1) when the shear stress reaches the yield stress of the suspension [27]. As shown in
Figure 12, this transition from plug flow to deformation flow occurs at the shear stress of
27 Pa, indicating that the yield stress of the hydrogel is 27 Pa. Thus, the yield stress value
determined from wall slip analysis agrees with the yield stress determined from torque
versus the apparent shear rate data. A third method, involving the velocity distributions
obtained experimentally, as well as obtained upon computations with the parallel-plate
analogy, was also applied and again generated a yield stress value close to 27 Pa. This third
method will be discussed in Section 2.7. Overall, it should be noted that the use of the
torque versus the rotational speed data is the simplest means to determine the yield stress
value of a viscoplastic fluid.
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Figure 12. Wall slip velocity, Us, over the plate velocity, Vw = ΩR,versus shear stress at the edge,
|τzθ(R)|, from the data collected at three gaps. Us

ΩR = 0.5 corresponds to plug flow.

2.6. Other Parameters of the Shear Viscosity of the Hydrogel Using the Herschel–Bulkley Equation

The shear stress at the edge versus the true shear rate at the edge for the three gaps
are shown in Figure 13. Since the yield stress value of the hydrogel could be determined
from the torque versus the apparent shear rate data directly, the other two parameters of
the Herschel–Bulkley Equation could be readily obtained from the flow curves, i.e., the
shear stress at the edge versus the true (slip corrected) shear rate at the edge. The best fit
of the flow curve generated the other two parameters of the Herschel–Bulkley Equation
as: m = 3.14 Pa-sn and n = 0.54 (Figure 13). The shear viscosity of the hydrogel used here
was characterized earlier using Couette and vane-in-cup flow, and its Herschel–Bulkley
parameters were determined in these earlier investigations as τ0 = 27 Pa, m = 5.5 Pa-sn

and n = 0.43 [84,92]. The general agreement of the parameters obtained with different
viscometric flows is indicative of the robustness of the methodologies used in determining
the yield stress and the wall slip velocity versus shear stress behavior of the hydrogel from
parallel-disk viscometry. As indicated earlier in Section 2.1, the shear rate sensitivity index
of the hydrogel, n, was determined as 0.39± 0.05 from the torque versus the rotational speed
analysis (see the continuous deformation region of Figure 5). The value of n determined
from the analysis of the flow curve following the wall slip analysis (n = 0.54) should
be considered more accurate than the value of n approximated from the torque versus
rotational speed analysis (n = 0.39 ± 0.05). The n values determined with the two methods
should approach each other as the applied shear stress becomes significantly greater than
the yield stress of the hydrogel (as shown in Figure 12, the effect of wall slip diminishes as
the shear stress is increased).
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.
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Equation of the hydrogel are yield stress, τ0 = 27 Pa, m = 3.14 Pa-sn and n = 0.54.

Table 1 shows the parameters of the wall slip velocity versus the shear stress for the
plug flow and the continuous deformation regions, and the parameters of the shear vis-
cosity of the hydrogel, employing the viscoplastic Herschel–Bulkley constitutive equation.
These parameters were subjected to an additional test, involving the prediction of the
velocity distributions and torques and their comparison with the experimental values, as
discussed next.

Table 1. The parameters of wall slip and shear viscosity.

Slip velocity versus shear stress Us(R) = ±β(−τzθ(R))sb

Plug flow region Deformation flow region

β = 2.56 × 10−5 m/(PaSb s), sb = 1.56 β = 1.57 × 10−4 m/(PaSb s), sb = 0.98

Herschel-Bulkley Equation (Equation (4))

τ0 = 27 Pa, m = 3.14 Pa-sn and n = 0.54

2.7. Predictions of the Velocity Distributions and Comparisons with Experimental Distributions

The velocity distributions that Pérez-González and co-workers, 2021, collected using
the PIV method are shown in Figures 14 and 15 and in Figures A2 and A3 in Appendix B.
The velocity distributions were obtained for H = 1.0 mm for each = value. The experimental
velocity distributions were compared with the predictions of the velocity distributions,
relying on parallel-plate analysis (Equations (11) and (12)). Figure 14 shows the experi-
mental and predicted velocity distributions for the torque, =, values of 0.2 and 0.64 mN-m,
whereby the corresponding shear stress values are 7.3 and 23.8 Pa. As expected, considering
that the shear stress values are less than the yield stress of the hydrogel the tangential veloc-
ity values are constant in between the two plates, i.e., the flow of the hydrogel is plug flow
(Figure 14 and Appendix B Figure A2). This is consistent with how viscoplastic fluids flow
when the imposed shear stress is less than the yield stress of the fluid. The absolute values
of the wall slip velocities, experimentally determined at the top and bottom walls, were sim-
ilar to each other. As an example, the measured values of the slip velocities for the torque, =,
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value of 0.2 mN-m were Us(Rm, 0) = 6.28× 10−4m/s and Us(Rm, H) = −6.22× 10−4m/s
at the bottom and top walls, respectively. These slip velocities at the two walls indeed
generate the following as required for plug flow:

Us(Rm, 0) = −Us(Rm, H) = ΩRm/2 (26)
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Figure 14. Velocity distributions in steady torsional flow using parallel disks for the torque,
= values of 0.20 mN-m (a) and 0.64 mN-m (b) for the gap, H = 1.0 mm. The PIV data are from
Medina-Bañuelos et al., 2021. The shear stress values are 7.3 and 23.8 Pa.

On the other hand, the calculations and the experimental data for the velocity distribu-
tions corresponding to torques of 0.93 and 1.45 mN-m (shear stress values of 31 and 48.2 Pa)
are shown in Figure 15. As expected, when the shear stress exceeds the yield stress there
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is constant steady deformation flow (Figure 15a,b). It is observed that for |τzθ(r)| > τ0,
the tangential velocity, Vθ (r) increases linearly with axial distance, z and the constant
deformation rate, dVθ

dz (r) increases with increasing rotational speed, Ω. Similar to the plug
flow case, apparent wall slip plays a key role, and the absolute values of the wall slip
velocities at the top and bottom walls are equal to each other.
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Figure 15. Velocity distributions in steady torsional flow using parallel disks for various
= values of (a) 0.93 and (b) 1.45 mN-m for the gap, H = 1.0 mm. The PIV data are from
Medina-Bañuelos et al., 2021 [98].

Additional experimental data and predictions are presented in Appendix B (Figure A3).
The excellent agreement between the experimental distributions and the numerical simula-
tion results suggest that the parallel-plate analysis is satisfactory to represent the flow and
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deformation occurring in steady torsional flow and that the parameters of shear viscosity
and wall slip are accurate.

Can the velocity distributions (Figures 14 and 15) be used to bracket the yield stress
value? The plug flow observed in Figure 14b occurs at a shear stress of 24 Pa, whereas the
continuous deformation profile shown in Figure 15a occurs at a shear stress of 30 Pa. There-
fore, the experimental velocity distributions suggest that the yield stress of the hydrogel
is between 24 and 30 Pa, consistent with the yield stress obtained using the torque versus
apparent shear rate data (Figures 5 and 6) which had identified the same shear stress range
for the yield stress.

2.8. Predictions of the Torques at Various Rotational Speeds and Comparisons with Experimental
Torque Values

To test further the accuracy of the parameters of wall slip velocity versus the shear
stress relationship and the shear viscosity material function of the hydrogel, the torques
under different conditions were also solved by numerical integration. For this the parallel-
plate approximation was again used, i.e., Equations (11) and (12), which were solved
incrementally in the radial direction for each set of disk rotational speed, Ω, and gap,
H, via numerical integration using the MATLAB code. This additional step of the pre-
diction of the torques and their comparisons with the experimental torque values of
Medina-Bañuelos et al., 2021, provides an additional assessment of the accuracy of the
parameters of shear viscosity and wall slip. The first step in this procedure is the determi-
nation of the shear stress distribution as a function of the radial position, r.

The shear stress distributions, τzθ(r), for various apparent shear rates as a function of
the radial position, r, (at gap, H = 1 mm), are shown in Figure 16 for various apparent shear
rates. The shear stress increases monotonically with increasing r, reaching a maximum
at the edge of the disk. There is a significant difference in the shear stress distribution
obtained under the plug flow conditions (apparent shear rates in the 1.3 to 7.1 s−1) and the
deformation flow conditions (apparent shear rates in the 11.4 to 97.5 s−1). The yield stress
range of 24–30 Pa clearly delineates the shear stress distributions into the expected two
zones related to plug flow and the deformation flow conditions.
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Upon calculation of the shear stress distribution, τzθ(r), the torque, =, at each apparent

shear rate =(H, Ω) = 2π
R∫
0
(−τzθ(r))r2dr was obtained via numerical integration, via

=(r) = 2π(−τzθ(r))r2∆r. The typical ∆r values were around 0.0005 m for R = 0.025 m, i.e.,
∆r/R was 0.02. The effect of the choice of ∆r was probed by systematically changing ∆r
in the 0.0005 to 0.00005 m range. As shown in Appendix C (Figure A4), the torque results
converge and ∆r is no longer a factor when ∆r is smaller than 0.0005 m.

The comparisons of the converged torques obtained via numerical integration, em-
ploying the characterized parameters of wall slip and shear viscosity (Table 1) with the
experimental torque values, are shown in Figure 17. There is excellent agreement between
the experimental torque values and those that were numerically determined (Figure 17).
The excellent agreement is an additional testament that the parallel-plate approximation
made under the condition of H << R (lubrication assumption) is acceptable and that the
parameters of the shear viscosity and the slip velocity behavior are accurate.
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3. Conclusions

The flow and deformation behavior of hydrogels is central to many of the applications
that they are used for in myriad areas, as diverse as biomedical devices, hydraulic fracturing,
foodstuffs, and personal care products. It is very important to be able to characterize,
reproducibly and accurately, the rheological behavior of hydrogels using steady simple
shear flows so that the flow and deformation behavior of the hydrogel can be readily
understood and, if necessary, further tailored to the requirements of the application at
hand. It is the viscoplasticity and the slip at the wall behavior of the hydrogels that
render such characterization and tailoring difficult. Here, one of the simplest rheological
characterization methods, parallel-disk viscometry, i.e., the steady torsional flow using
parallel disks, is analyzed in detail. The analysis was carried out on a Carbopol® hydrogel
(0.12% by weight poly(acrylic acid)). A new method, involving the analysis of the torque
versus the apparent shear rate data obtained from parallel-disk viscometry, is introduced.
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The analysis reveals that the hydrogel is viscoplastic with a yield stress in the range of
24–30 Pa (mean 27 Pa). This yield stress value is consistent with earlier investigations that
relied on other types of viscometric flows including Couette flow in between two concentric
cylinders and vane-in-cup flow. It is demonstrated that the method for the determination
of the yield stress value of viscoplastic fluids in general, and the hydrogel in particular, via
parallel-disk viscometry, is very simple to implement, and relies only on the collection of
the torque versus the rotational speed data. It is shown that once the yield stress value
is determined, the other parameters of viscoplastic constitutive equations, including the
Herschel–Bulkley fluid, can be determined following analysis of the wall slip behavior of
the hydrogel.

The analysis of the wall slip velocity versus the shear stress behavior of the hydrogel
was carried out in conjunction with the apparent slip mechanism, i.e., the formation of
a particle free binder-rich zone at the two walls of the viscometer. Such an apparent slip
mechanism is widely encountered for concentrated suspensions and gels. It is determined
that the mechanisms for the formation of the apparent slip layer thickness are different
when the hydrogel is undergoing plug flow (|τzθ(R)| ≤ τ0) or continuous deformation flow,
i.e., |τzθ(r)| > τ0. The results indicate that the apparent slip layer consists of only water for
the continuous deformation flow region. However, a complex behavior is observed for the
plug flow region. PAA chains are attached firmly to the particles at one end and are free,
“dangling” to rotate and orient at their free end. It is hypothesized that the dangling PAA
chains could penetrate the apparent slip layer under the relatively low shear stresses of the
plug flow region to render the fluid found at the apparent slip layer non-Newtonian. It is
hypothesized that at the higher shear stresses of the continuous deformation region, the
dangling chains would orient along the streamlines, and clear away from the apparent slip
layer, thus leaving only water to constitute the slip layer.

Following determination of the yield stress of the hydrogel from the torque versus the
apparent shear rate data, the application of systematic changes in the surface-to-volume
ratio of the parallel-disk viscometer allows the determination of the wall slip velocity versus
the shear stress relationship, followed by the determination of the consistency index, m, and
shear rate sensitivity exponent (power law index), n, of the Herschel–Bulkley fluid. The
parameters of the shear viscosity and the apparent wall slip thus obtained were tested by
being used for the prediction of the velocity distributions and the torques obtained under
different flow conditions (employing a simple parallel-plate approximation in conjunction
with the lubrication assumption). The predicted velocity distributions and the torque
values were compared with the experimental data of Pérez-González and co-workers [99].
The excellent agreement between the predicted and experimentally determined torque
values and the velocity distributions are testaments to the reliability of the determined
parameters and the suitability of parallel-plate flow approximation-based methods for the
analysis of parallel disk viscometry flow.
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Appendix A. Materials and Methods

Appendix A.1. Materials

Carbopol® hydrogels (referred to as “microgels” in some of our earlier publications)
were prepared by dissolving different concentrations of Carbopol® 940 in water. A concen-
tration of 0.12% by weight of freshly procured Carbopol® 940 in water was used. Compar-
isons of consecutive investigations revealed that freshness is essential for reproducibility
of the rheology data. Carbopol® was dissolved in tri-distilled water under continuous
stirring [84]. Hollow glass particles (Potters Industries) of 10 µm in size and having a
specific gravity of 1.1 ± 0.05 were added into the dispersion at a concentration of 0.03 wt.%
to serve as flow tracers. The hydrogel samples prepared this way at Stevens were subjected
to the characterization of their dynamic properties (as reported below), and those prepared
at Instituto Politéchnico Nacional of Mexico were used by Medina-Bañuelos et al., 2021
to generate the experimentally obtained torques and velocity distributions. For the soft
particles of the Carbopol® hydrogel with particle radii a (see Figures 1 and 2 for Carbopol®

particles), density, ρ, with binder viscosity, µb, subject to shear rate
.
γ, with thermal energy,

kT, the typical particle Reynolds number, Re, and the Peclet number, Pe, were determined

to be Re(
.
γ) = ρa2 .

γ
µb

<< 1, Pe(
.
γ) = 6πµba3 .

γ
kT >> 1, suggesting that the steady torsional flow

of the Carbopol® hydrogel does take place under the creeping flow regime and that the
viscous forces dominate over the colloidal forces over the entire apparent shear rate,

.
γ,

range of the experiments.

Appendix A.2. Linear Viscoelastic Material Functions of the Carbopol® Hydrogel (0.12%)

The storage, G′, and the loss modulus, G”, values of the Carbopol® hydrogel were
characterized at 25 ◦C (0.1–100 rad/s) employing an ARES rheometer from TA Instruments.
The results are shown in Figure A1. The storage and loss moduli were found to be in the
ranges of 120–170 and 14–52 Pa, respectively, as shown in Figure A1.
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Thus, the storage moduli were about one order of magnitude greater than the loss
modulus values, i.e., G′ >> G′′. It was also determined that, consistent with earlier reports
of the dynamic properties of the Carbopol® hydrogel [84], the dynamic properties of
the storage, G′, and the loss modulus, G′′, values were only very weak functions of the
frequency of the oscillatory deformation, ω. These two fingerprints of the linear viscoelastic
properties, such as G′ >> G′′ (tanδ = G′′/G′ between 0.05 and 0.1) and G′ and G′′ 6=
f (ω), reflect the typical behavior of gels and gel-like materials [16,17,45,108,116]. Such
plateau behavior of G′ 6= f (ω) and G′′ 6= f (ω), which spans a broad range of frequencies,
suggests the formation of a reversible network structure typically characterized by a yield
stress [16,17,45]. It should be noted that the interactions between the soft particles of
crosslinked poly(acrylic acid) and the entanglements of the chains of poly(acrylic acid) that
are dangling from the surfaces of the crosslinked particles generate the gel-like behavior
and hence the yield stress of the hydrogel.

Appendix A.3. Experimental Equipment and Procedures Used by Medina-Bañuelos and Co-Workers

The experiments of Medina-Bañuelos et al. were carried out using rheo-PIV measure-
ments [98], the rotational rheometer was used in the parallel-disk mode with the sample
sandwiched in between two parallel disks. All steady torsional flow measurements were
performed at four different gap values, i.e., H = 0.5 and 0.75, 1.0, and 1.1 mm. The flow
curves were obtained by controlling the torque (N-m), in a step-like ramp, and waiting for
the attainment of a steady state at each step to record the angular velocity of the upper plate
that would correspond to the imposed torque [98]. The PIV data for the steady torsional
flow were collected in the θz plane, as close to the edge of the plates as possible, i.e., at
Rm = 2.35 mm, where Rm is the measuring position of the velocity distributions, defined as
the distance from the edge of the disks. Additional information can be obtained from [98].

Appendix B. Predictions of the Velocity Distributions and Comparisons with
Experimental Distributions
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mm for the shear stress at the edge values of (a) 10.1 Pa, (b) 12.8 Pa, (c) 15.5 Pa, (d) 18.3 Pa. The PIV 
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Figure A2. Plug flow with wall slip in steady torsional flow using parallel disks for the gap,
H = 1.0 mm for the shear stress at the edge values of (a) 10.1 Pa, (b) 12.8 Pa, (c) 15.5 Pa, (d) 18.3 Pa.
The PIV data are from Medina-Bañuelos et al., 2021. Filled symbols are from PIV data and unfilled
are from calculations.
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Figure A3. Velocity distributions with wall slip in steady torsional flow using parallel disks for the
gap, H = 1.0 mm for the shear stress at the edge values of (a) 35.9 Pa, (b) 38.2 Pa, (c) 40.6 Pa, (d) 45.6 Pa.
The PIV data are from Medina-Bañuelos et al., 2021. Filled symbols are from PIV data and unfilled
are from calculations.

Appendix C. The Effect of the Choice of ∆r

Figure A4 shows the torque values, determined numerically using the parameters
of wall slip velocity and the shear viscosity of the hydrogel (Table 1), in conjunction with
the parallel plate approximation, as a function of ∆r. The predicted torque values become
independent of ∆r when it is small enough. Torque values were obtained at a gap of 1 mm
and rotational speed of 2 rad/s using our MATLAB code.
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