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Abstract: Chitosan (CTS) aerogel is a new type of functional material that could be possibly applied
in the thermal insulation field, especially in energy-saving buildings. However, the inhibition method
for the very big shrinkage of CTS aerogels from the final gel to the aerogel is challenging, causing great
difficulty in achieving a near-net shape of CTS aerogels. Here, this study explored a facile strategy
for restraining CTS-based aerogels’ inherent shrinkage depending on the chemical crosslinking and
the interpenetrated supramolecular interaction by introducing nanofibrillar cellulose (NFC) and
polyvinyl alcohol (PVA) chains. The effects of different aspect ratios of NFC on the CTS-based
aerogels were systematically analyzed. The results showed that the optimal aspect ratio for NFC
introduction was 37.5 from the comprehensive property perspective. CTS/PVA/NFC hybrid aerogels
with the aspect ratio of 37.5 for NFC gained a superior thermal conductivity of 0.0224 W/m·K at
ambient atmosphere (the cold surface temperature was only 33.46 ◦C, despite contacting the hot
surface of 80.46 ◦C), a low density of 0.09 g/cm3, and a relatively high compressive stress of 0.51 MPa
at 10% strain.

Keywords: chitosan aerogels; shrinkage; nanofibrillar cellulose; mechanical property; thermal insulation

1. Introduction

Climate change due to global energy resource consumption has been widely recog-
nized as the most urgent issue for humanity in the twenty-first century. This situation is
especially of great concern when considering building consumption, accounting for more
than 40% of the total national energy consumption [1–4]. Developing new and efficient
thermal insulation materials effectively alleviates this energy crisis [5–7].

Due to their ultra-low thermal conductivity, vacuum insulation panels and aerogels
have been developed as building insulation materials [8–11]. However, vacuum insulation
panels risk failure when they are slightly broken, which is especially inconvenient in the ac-
tual operation of energy-saving buildings [12,13]. In contrast, aerogel materials are optimal
for thermal insulation due to their security, maneuverability, and remarkable thermal insu-
lating properties [14–16]. Nevertheless, the commonly used SiO2 aerogels have a negative
impact on the environment due to the dust produced by their inorganic components and
the consumption of non-renewable resources in their useful service. Therefore, developing
environmentally friendly and renewable aerogel materials is significant for alleviating the
energy crisis and global climate problems.

Preparing aerogel thermal insulation materials from natural biomass sources can effec-
tively reduce their environmental load [17–20]. Chitosan (CTS) is a derivative of chitin, the
second most abundant natural polymer on the earth, and it has an extremely rich source
of non-toxic and non-hazardous raw materials [21], the biocompatibility and biodegrad-
ability make it plays an important role in biomedicine [22–25]. Thus, thermal insulation
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materials made with CTS synthetic aerogels completely derived from natural materials
would be highly compatible with energy-saving buildings. Using ambient pressure drying,
Guerrero-Alburquerque et al. prepared CTS-urea aerogels with excellent performance in
terms of strong machinability and thermal insulation [26]. Another study reported CTS
aerogels with an ultra-high specific surface that showed significant application prospects
in thermal insulation [27].

Although marvelous progress has been made in preparing CTS aerogels with excellent
structure and properties, the massive shrinkage of these aerogels (up to ~80%) is still an
issue [28]. In a previous study, the authors applied a method to inhibit the shrinkage of
CTS aerogels. The study found that CTS-based aerogels shrinkage was reduced to ~20%
by the binding effect of linear polymer polyvinyl alcohol (PVA) chains and CTS molecular
chains [29]. Further reduction of shrinkage would be beneficial for the practical application
of aerogel materials. However, no related research has been performed so far.

In this study, supramolecular interaction was introduced to inhibit CTS-based aerogels’
shrinkage. A reliable synthetic strategy was proposed to substantially restrain the uniaxial
shrinkage of CTS aerogels using the physical/chemical entanglement of the nanofibrillar
cellulose (NFC) chains within/outside the CTS chains as well as the supramolecular reaction
of linear PVA. This strategy is based on the previous research of our team [30]. The
study compared CTS-based aerogels’ shrinkage with different aspect ratios of NFC versus
those without NFC. Introducing NFC enhances the skeleton structure, thereby inhibiting
shrinkage, and enriches CTS-based aerogels’ microscopic morphology, thus producing a
three-dimensional structure [31]. The resulting CTS/PVA/NFC hybrid aerogels (CPNAs)
were characterized to explore their thermal insulation applications. The results of this
work are expected to achieve further progress in overcoming the formidable challenges of
shrinking biomass aerogels, rendering them a promising potential candidate for powerful
insulation in the construction sector [26].

2. Results and Discussion
2.1. Proposed Reaction Process and Evidence Confirmation

The sol-gel process is critical for forming a porous network of CPNAs. Maillard
reaction is the main crosslinking mechanism of this process: activity amino (–NH2) groups
from CTS and aldehyde (–CHO) groups from the crosslinker OPA react to produce a Schiff
base (–NH=CH2) and then form the crosslinking bonds of N–C–N [32,33]. XPS and FTIR
analysis were used to verify the chemical crosslinking reaction of the CTS aerogels. In the
XPS spectrum (Figure 1), the peaks detected at binding energies of 284.5 (C 1s), 286.1 (C 1s),
399.7 (N 1s), and 532.2 (O 1s) represented CPNAs generated by C–N, C=N, N–C–N, and
C–O–C, respectively [34]. XPS found no significant difference between the binding energy
of the elements in the CPAs, CPNAs-37.5, and CPNAs-50.0, which indicated that the main
chemical reaction in the CPNAs was the Maillard reaction, whether NFC was added or
not. In brief, the network structure of principal chemical covalent bonds consisted of the
above crosslinking bands in CPNAs formed by the Maillard reaction. Thus, NFC might not
have participated in the chemical reaction, even while generating physical entanglement to
enhance the skeleton structure.

The chemical structure of CPAs, NFC, CPNAs-37.5, CPNAs-50.0, and CTS, were also
detected using FTIR. As shown in Figure 2, the O–H stretching bands are strong in detecting
characteristic chemical groups as presented in FTIR data. Hence, the N–H bands (peaks
at the range from 3356 cm−1 to 3423 cm−1) are not easily identified owing to the repeated
range between O–H stretching and N–H bands in a great measure. Actually, the formed
N–H bands have existed in CTS-based aerogels because of the evidence of C=N, suggesting
the formation of N–H band indeed. The bands of the scissoring vibration of the –NH2
group appeared at 1633 cm−1, while the O–H and N–H stretching vibrations were detected
at peaks for 3356 cm−1 and 3423 cm−1, respectively. Thus, a crucial phenomenon was found
in which the absorbance strength in the CPNAs was apparently enhanced at 1656 cm−1

compared with that of CTS, corresponding to the stretching vibrations of C=N in nature.
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This result illustrated the network formation occurred due to the chemically crosslinking
interaction depending upon Maillard reaction [35]. XPS and FTIR did not find a free –CHO
band on OPA in the observable phase in CPNAs, implying that the absolute transformation
to C–N and N–C–N bands responded accordingly.
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The secondary crosslinking interaction included chemical crosslinking of the aldol
condensation reaction in the sol-gel process, which was randomly intertwined with multiple
angles of NFC [28]. In this interdigitated interaction process, the hydrogen bonding between
–OH/–NH2 and –OH groups from CTS, PVA, or NFC provided a good network base frame,
and introducing NFC with a nanoscale diameter, which intertwined randomly, formed
a multiplicity network nanostructure. The peaks at 2835 cm−1 and 2933 cm−1 could be
explained by the intermolecular and intramolecular hydrogen bonds of the CTS chain
and PVA/NFC chain [36]. Finally, the possible self-crosslinking of PVA was likely due to
hydroxy (namely, –OH) groups’ reaction with each other and their subsequent hydrogen-
bonding integration. The crosslinking reaction decreased the two-type bands’ relatively
broad adsorption between 3000 cm−1 and 3600 cm−1, which elaborated to –OH stretching.
Although very subtle hydrogen bonding was detected by FTIR, concluding that this was
due to the hydrogen bonding of NFC was difficult. Therefore, the probability of forming
chemical bonds with the addition of NFC was weak.

2.2. Nanostructure Textural Evaluation

The microstructural characterizations of the control and the CPNAs in Figure 3 were
conducted by field emission scanning electron microscopy, which comprehensively exhibits
a representative 3D interconnected network with a gradually enlarging view. Figure 3
shows FESEM images of the CPAs, CPNAs-37.5, and CPNAs-50.0. In contrast to the
CPAs, the microstructure of CPNAs-37.5 and CPNAs-50.0 prepared with NFC exhibited a
representative three-dimensional interconnected network like a spider web. Overall, the
morphological structures of CPAs, CPNAs-37.5 and CPNAs-50.0, were composed of fibrous
skeletons, which formed an interpenetrating network and were randomly intertwined to
form a porous structure. However, the sufficiently tight NFC adhesion between the skeleton
structure constructed a thick and stout skeleton with resistance to the influence of surface
tension during the supercritical drying process, thereby producing ultra-low shrinkage
CPNAs. In contrast, the microscopic appearance of the CPAs tended to be fixed, implying
relatively easy shrinkage. As seen in Figure 3d–i, we have clearly found the typical pore
size in FESEM images, mostly concentrating on the range within 10–60 nm and some partly
focusing on 60–150 nm in pore size distribution depending on FESEM data of CPNAs-37.5,
thus the impact of NFC with different aspect ratios on the morphological structures of the
CPNAs was slight. Overall, introducing NFC effectively regulated and improved a sense of
micro or nanoscale network structure layers through interlacement. However, the porous
structure did not appear to be evenly distributed compared to the CPAs.

The results of the N2 adsorption-desorption test are shown in Figures 4 and 5. The
pore size largely existed within the mesoporous range, suggesting the formation of the
nanoporous networking structure of CTS-based aerogels as-prepared. The pore size distri-
butions of the CPAs, CPNAs-37.5 and CPNAs-50.0, were similar in a way. Although there
is indeed hydrogen bonding interaction in forming the networking structure of CTS-based
aerogels from FTIR data, considering the weak influence of hydrogen bonding, the hydro-
gen bonding here includes the interactions among the chains concerning CTS, PVA, and
NFC. Therefore, we believe that the introduction of NFC has the more important effect on
enhancing the skeletal structure by hydrogen bonding interaction, including the physical
entanglement interaction, ultimately achieving the inhibition for the shrinkage of CTS
aerogels in the drying process.
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Furthermore, although the inhibited shrinkage may have been affected by NFC, the
effect of hydrogen bonding on shrinkage was minimal, as shown by FTIR [37]. The
texture of the CPNAs was made up of a truss-like network, and a significant proportion of
crosslinking, slice-fixed networks were present, likely due to the linear PVA chains with
OPA-crosslinked CTS, as well as the bundling properties of NFC. The addition of NFC,
which resulted in this truss-like texture, may have substantially controlled the resultant
shrinkage due to the structural optimization [38,39].

2.3. Physical Feature Assessment

The axial and radial shrinkage from the final wet gels to the aerogels is shown in
Figure 6. The shrinkage of the CPAs along the radial and axial directions was 21.5% and
22.7%, respectively. The relatively low shrinkage of the CPAs can be attributed to the
crosslinker (OPA) and linear PVA polymer, which bonded to the rigid benzene ring and
provided the supramolecular interaction. Moreover, the inter/intramolecular physical
entanglement of NFC may have further controlled the shrinkage; the radial and axial
shrinkage of the CPNAs-37.5 was only 14.74% and 15.79%, respectively, which was lower
than previously reported for CTS based aerogels [28] and traditional CTS aerogel, which
can be as high as 50% [35]. Fortunately, the shrinkage of the CPNAs was sharply restricted
within ~15% along the radial and axial directions, which was due to the trussed effect by
NFC chains and linear PVA chains. In the supercritical drying process, chitosan hybrid
gels with the enhanced skeletons could resist the shrinking force, namely, remaining the
nanoporous networking structure of aerogels derived from the corresponding gels above,
which possess accordingly the relatively large pores from FESEM and shrinkage data.
Contrarily, the networking skeleton of gels becomes weaker, then the shrinkage in the
supercritical drying process would be larger in the pore structure aspect.
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Outstanding thermal insulation is an inherent and crucial performance of aerogel
materials [40]. Figure 7 describes the density and thermal conductivity of the CPAs,
CPNAs-37.5, and CPNAs-50.0. The CPNAs-37.5 were ultra-lightweight (0.09 g/cm3),
with a low thermal conductivity of 0.0224 W/(m·K) under atmospheric pressure. The
thermal conductivity of the CPNAs was close to that of silica aerogels and well below
conventional insulation materials (e.g., polystyrene foam, polyurethane foam (PU), etc.)
under identical conditions [41–45]. Thus, they have relevant application potential in energy-
saving buildings.
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ambient environment.

To further explore the effect of thermal insulation, a thermal imaging experimental
device was designed to test the insulating performance. We conducted our self-made
simple insulation experiments. The samples of CPAs, CPNAs-37.5, CPNAs-50.0, and PU
with a thickness of 0.7 cm were placed in the port surface of a test tube. The temperature
rise curves on the cold surface of the samples are shown in Figure 8. The temperature
of the water in the test tube was set at 90 ◦C, and the true temperature can be found in
Figure 9a,d,g,j.
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Figure 9. The temperature changes of the cold surface recorded by infrared thermography (left line:
the original temperature of the hot surface; middle line: the starting temperature of the cold surface;
right line: the highest temperature of the cold surface) of CPAs (a–c), CPNAs-37.5 (d–f), CPNAs-50
(g–i), and PU (j–l).

The CPNAs exhibited superior thermal insulation performance over PU (The den-
sity of PU is 0.0285 g/cm3), and the CPNAs-37.5 had a colder surface temperature at the
comparative hot surface temperature. A temperature imager was used to record the temper-
ature variation on the cold surface during the test. As shown in Figure 9, the cold surface
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temperature of CPAs (Figure 9b), CPNAs-37.5 (Figure 9e), CPNAs-50.0 (Figure 9h), and PU
(Figure 9k) in the initial stage was 30.71 ◦C, 30.39 ◦C, 30.53 ◦C, and 31.91 ◦C, respectively.

The highest temperature of the cold surface of the CPNAs-37.5 was 33.46 ◦C after
heating to the balanced state. This was only an increase of 3.07 ◦C (Figure 9e,f). The cold
surface temperature of PU reached 42.75 ◦C, an increase of 10.84 ◦C (Figure 9k,l). This
indicated that the CPNAs-37.5 possessed superior thermal insulation performance.

The mechanical properties of the compressive stress-strain curves of the CPAs, CPNAs-
37.5 and CPNAs-50.0, are illustrated in Figure S1. All the samples could be compressed
up to 75% strain without any fractures or cracks. The elastic deformation in the early
strain phase was due to the linear elasticity feature at a low strain of 10% (Figure S1b–d).
Compared with the CPAs, the CPNAs-37.5 and CPNAs-50.0 exhibited relatively lower
compressive stress. This may have been because the addition of NFC led to higher elasticity
mechanical properties in the prepared aerogel [46].

The TG and DSC curves of the CPAs (a), CPNAs-37.5 (b), and CPNAs-50.0 (c) from
room temperature to 500 ◦C with a heating rate of 5 ◦C/min are shown in Figure S2.
All aerogels exhibited a similar thermogravimetric process, which was roughly divided
into three stages. The weight loss for the first stage was related to the evaporation of the
physically absorbed water. The second stage was stabilized in the temperature range from
53 ◦C to 225 ◦C, as shown in the TG curves. Based on the acceptable thermal stability
over a relatively large temperature range (53–225 ◦C), the CPNAs had a promising thermal
insulation application for a wide temperature range. The third stage was presented by
significant weight loss in the CPNAs as the temperature rose, indicating that the CPNAs
had begun to decompose chemically and physically.

3. Conclusions

In summary, this study presented a facile strategy to regulate CTS-based aerogels’
shrinkage through the chemical crosslinking reactions, combining with the supramolecular
interaction and physical entanglement with NFC at a nanoscale. The prepared CPNAs
exhibited a fine nanoporous structure, low density, and ultra-low thermal conductivity
(0.0224 W/m·K) greatly owing to their low shrinkage (14.74%) derived from the enhanced
skeleton structures. Furthermore, the CPNAs-37.5 possessed a better thermal insulation
performance than those of PU under the comparative hot surface temperature. The mechan-
ical properties and thermal stability of CPNAs were also studied, and they presented linear
elasticity behavior within the low strain range and excellent thermal stability up to 225 ◦C.
This approach for preparing low shrinkage chitosan aerogels is expected to accelerate
the production of biomass aerogels for thermal insulation in energy-saving buildings in
the future.

4. Experimental Section
4.1. Materials

Low-viscosity CTS (the molecular weight: 1.8 × 105–2 × 105 Da; deacetylation rate:
82%), (China), acetic acid (AR), ethanol (AR), (China), o-phthalaldehyde (OPA, AR) were
purchased by Aladdin Reagent Co., Ltd. (Shanghai, China), NFC (diameter: 10–300 nm)
was obtained from Zhongshan NFC Bio-materials Co., Ltd. (GuangDong, China), PVA
(the molecular weight: 4.4 × 105 Da; alcoholysis degree: 87–89 mol%) were obtained
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Deionized water was
utilized throughout the experiment. All reagents in this study were used without any
further purification.

4.2. Fabrication of CPNAs

The typical preparation process of the CPNAs was as follows. First, 20 g of NFC
(2.5 wt.%) were dropped in 90 g (4 wt.%) of PVA and stirred for 30 min to form a homoge-
nous solid and liquid mixture. Mixtures were poured slowly into a 150 g CTS solution
of 10 g/L (CTS solution of 10 g/L was prepared in the mixed solvents containing 2 wt.%



Gels 2022, 8, 131 10 of 13

acetic acid aqueous solution (40 vol.%) and ethanol (60 vol.%)) [47], and continually stirred
for 30 min at the conditions of 2–10 ◦C to obtain a CTS/PVA/NFC solution. Second, the
crosslinker of 60 g OPA (8 wt.%) was slowly added into the CTS/PVA/NFC solution at
10 ◦C to form the CPNAs solution. This solution was immediately poured into special
molds and placed at 20 ◦C overnight to eliminate the bubbles caused by stirring. Then, the
temperature was raised gradually during the gelation process. After gelation, the tempera-
ture rises by 10 ◦C for each aging treatment, aging treatment was conducted from 25 ◦C to
75 ◦C, increasing by 10 ◦C every 24 h. The solvent exchange was conducted several times
at the same time; the fresh ethanol was added to replace the gel solvent and ultimately gain
the ethanogel, which was then the supercritical CO2 drying at 60 ◦C, 18 MPa for 12 h. The
obtained CPNAs are shown in Figure 10. The CPNAs with different aspect ratios of NFC
were marked as CPNAs-37.5 (aspect ratio is 37.5; diameter: 10–30 nm) and CPNAs-50.0
(aspect ratio is 50.0; diameter: 300 nm). For comparison, samples without NFC were also
prepared and labeled as CPAs.
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4.3. Characterization Measurements
4.3.1. Chemical Characteristic Evaluation

The chemical structure and composition of the CPNAs were detected through Mg
Kα radiation using a photoelectron X-ray spectrometer (XPS; Thermo Scientific K-Alpha,
Waltham, MA, USA), as well as Fourier transform infrared (FTIR) spectra (Thermo Scientific
Nicolet iS5) employing KBr pellets with a sample to KBr weight ratio of 1:99 and the
scanning range was 400–4000 cm−1.

4.3.2. Surface Morphology

The morphology and microstructure of the CPNAs were analyzed by a field emission
scanning electron microscope (FESEM, SU8010) with a gold coating at 10 kV.

4.3.3. Nitrogen Adsorption-Desorption Test

Nitrogen adsorption-desorption isotherms were measured at 77 K using a surface area
and porosimetry analyzer (Quantachrome auto-sort IQ) after the CPNAs were degassed
under vacuum at 90 ◦C for 12 h. The Brunauer–Emmett–Teller (BET) theory calculated
the specific surface area, and pore size distribution was characterized from the desorption
branch using the Barret-Joyner-Halenda (BJH) model. The shrinkage and density of the
CPNAs were calculated by averaging multiple measurements.

4.3.4. Bulk Shrinkage and Density

The shrinkage of the sample included axial and radial shrinkage. Axial shrinkage is
defined as the thickness of the sample after drying divided by the thickness before drying.
In contrast, radial shrinkage is the average of the shrinkage of the length and width of the
sample before and after drying. Density was obtained by dividing the weight of the sample
by volume.

4.3.5. Compression Measurement

Compressive stress-strain curves were recorded by a universal mechanical tester
equipped with a 20-kN load cell at a 0.5 mm/min compression rate. The mechanical prop-
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erties were tested under the conditions of 25 ◦C and humidity of 50%, and the dimensions
of CPNAs-50, CPNAs-37.5 and CPAs were adopted with the size of 2 cm × 2 cm × 1 cm.

4.3.6. Thermal Conductivity Measurement

The thermal properties of the CPNAs (3–7 mg) were measured using thermogravime-
try (TG, Q500, TA) and differential scanning calorimetry (DSC, Q200, TA) from 25–500 ◦C
with a 5 ◦C min−1 heating rate in an air atmosphere. The thermal conductivity of the
samples was measured using a thermal conductivity analyzer (FOX 200, TA) with dimen-
sions of Φ20 cm at room temperature. A Fluke TiS60+ thermal imager was used to test
the thermal insulation performance of the CPNAs under a heat source temperature set at
90 ◦C, and the true temperature could be found in Figure 9a,d,g,j. Thermal imager photos
of samples were taken at a rate of every 10 s for 200 s.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/gels8020131/s1, Figure S1: Compressive stress-strain curves of CPNAs up to 75% strain (a);
compressive stress-strain curves at low strain for CPAs (b), CPNAs-37.5 (c), and CPNAs-50.0 (d),
Figure S2: TG and DSC curves of CPAs (a), CPNAs-37.5 (b), and CPNAs-50.0 (c).
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