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Abstract: The aim of this work was to obtain chitosan nanoparticles (<1000 nm) with chincho (Tagetes
elliptica Sp.) essential oil (CEO-CSNPs) using the ionic gelation method. A Box–Behnken design (BBD)
was applied, using chitosan solution (CS) pH (4.0, 4.4, 4.8); the mass ratio of CS/CEO (1:0.7, 1:0.85,
1:1.0) and the mass ratio of CS/CS-tripolyphosphate (1:0.46, 1:0.58, 1:0.7) as independent variables.
The formulation-dependent variables, encapsulation efficiency (EE) and loading capacity (LC) of the
CEO-CSNPs were evaluated. BBD determined that optimal conditions for CEO-CSNPs were pH:
4.4, CS/CEO mass ratio 1:0.7 and CS/TPP mass ratio 1:0.46. Once the optimization was defined,
particle size (PS), zeta potential (ZP), polydispersity index (PDI), CEO-CSNPs morphological studies,
in vitro CEO release, and antibacterial activity were determined. The CEO-CSNPs showed an EE of
52.64% and a LC of 11.56%, with a diameter of 458.5 nm, with a ZP of 23.30mV, and a PDI of 0.418.
The SEM studies showed that the nanoparticles were rounded and had uniform shapes. In addition,
CEO-CSNPs showed a minimum inhibitory concentration against Staphylococcus aureus, Salmonella
infantis and Escherichia coli of 5.29, 10.57 and 10.57 µg/mL, respectively. These results could be very
useful for the stabilization of chincho essential oil for food industry purposes. However, several
studies about the release, as well as interaction with food matrices, will be necessary.

Keywords: essential oil; Tagetes elliptica Sm.; Box–Behnken design; chitosan nanoparticles;
antibacterial activity

1. Introduction

At present, consumers demand healthy foods in which artificial additives, preser-
vatives, and colorants, among other additives, tend to be reduced or eliminated. Thus,
the use of spices and derived products such as essential oils has been increased by the
industries [1,2]. The species Tagetes elliptica Sm. known as “chincho”, is one of the most
consumed herbs in Peru. This herb is used for its culinary quality (gourmet) and is incor-
porated in stews and dressings with meat, among other foods. Nevertheless, this spice is
locally consumed, and it is not well known to the research community and consumers [3–5].
Essential oils (EO) are hydrophobic, volatile liquids extracted from plants, with a high
content of bioactive compounds, including terpenes, terpenoids, phenol derivatives, and
aliphatic compounds [6,7]; they have been used in the food industry as preservatives due
to their antioxidant and antimicrobial activity [8–10], in addition to their antimicrobial
activity effect [7].
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There is evidence that other well-known plants of the genus Tagetes, including T. min-
uta, contain bioactive compounds with antioxidant properties [11,12]. T. multiflora has
several volatile substances, such as terpenes among the main ones, to β-ocimene, dihy-
drotagetenone, (Z) tagetone, and limolene [11,13,14] that contribute to its special flavor
and odour characteristicas. T. erecta has been used as a coloring agent and nutritional
supplement [15] and is also used as a natural antioxidant in foods [16]. Due to its essen-
tial oils, T. elliptica Sm. could be used as natural additive for the food industry [17–19].
Although not many studies on this spice (T. elliptica) are reported so far, it has been ev-
idenced that chincho essential oil (CEO) has antibacterial activity against Staphylococcus
aureus, Staphylococcus epidermidis [20,21], Bacillus subtilis, Escherichia coli, and Pseudomonas
aeruginosa [21]. The major compounds found in Tagetes elliptica essential oil are β-myrcene,
cis/trans—epoxymyrcene and trans-tagetenone [20,22,23]. All of these compounds give
a strong flavor and taste that make, for the Peruvians, a gourmet spice. CEO could be a
natural alternative to synthetic additives, however, its use is limited, as CEO is susceptible
to degradation due to its physical characteristics (color degradation, lipid oxidation, among
others), compound volatility, and chemical degradation [24].

Encapsulation technology has been investigated to improve the physical stability,
solubility, retention of bioactive properties, sensory properties, and shelf life of essential
oils [25,26]. An important aspect that must be considered is the selection of the polymeric
matrix. Thus, the matrix must be suitable to form the nanoparticles. In this sense, chitosan
(CS), as a food polysaccharide, is non-toxic, biocompatible, and biodegradable with good
barrier properties, and is the second most abundant biopolymer in nature [27]. It has been
used as an encapsulant with emulsion-forming properties that can generate core-wrap
constituents [28]. In addition, it is interesting for its antibacterial activity against several
bacterial strains, including Staphylococcus aureus and Escherichia coli [29]. Due to all these
characteristics, chitosan is a promising candidate to structure oleogels. Nevertheless, it
is important to highlight that chitosan showed a low oil solubility. This fact should be
compensated for to allow the formation of an adequate tridimensional network to retain
the oil, thus forming a gel as mentioned Brito et al. [30].

Since essential oils are lipophilic and are a great challenge for food industry applica-
tions, the colloidal dispersion elaboration could have interesting advantages for essential
oil availability in a food aqueous matrix, by avoiding their incompatibility in these food
systems. Organogels are semi-solid systems in which a tridimensional network is com-
posed of cross-linked gelators and fibres immobilized in an organic liquid (essential oil).
According to Carrancá Palomono et al. [31] and Esposito et al. [32], the dispersions of
organogel emulsions from hydrocolloids have promising stability properties, are easily
formulated, and can be produced with natural organogelators, as chitosan, and could give
them a great application for the food industry. Organogel and nanoparticle technology are
systems that look for the increase in bioavailability for lipophilic substances, such as essen-
tial oils, in aqueous systems [33,34]. Encapsulation by ionic gelation is a suitable method to
encapsulate essential oils with different types of active principles [35,36]. It has also proven
its efficiency to maintain the thermal stability of the phenolic content in peppermint and
green tea essential oils [29]. This technique increases the antioxidant and antimicrobial
activity, even with an encapsulation efficiency rate of 40.6% [37]. Due to their nanometric
size, these nanoparticles (NPs) in the use of ionic gelation microencapsulation can enhance
their bioefficiency (bioavailability and solubility in aqueous media). However, the influence
of the dependent and independent variables/factors involved in or during the process
could affect the physicochemical properties of nanoparticle formation [38]. To optimize
all factors and variables that can affect ionic gelation microencapsulation, the applied
experimental designs can be programmed utilizing the Response Surface Methodology
(RSM) and the Box–Behnken Design (BBD). RSM is an excellent tool that is very useful for
detecting the influence of different formulation factors on response variables [39,40], while
BBD is applied to establish the optimal experimental conditions, with optimal polynomial
equations for the evaluated response variables [41,42].
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The aim of this study was the development of a chincho essential oil nanoparticle
(CEO-CSNP) organogel system through the application of RSM and BBD strategies, and to
optimize the encapsulation efficiency (EE) and loading capacity (LC) of chincho essential oil
nanoparticles (CEO) using, as a matrix, chitosan and chitosan (CS) sodium tripolyphosphate
(CS-TPP). In addition, it was to study the influence of CS-pH and the mass ratio between
CS-CEO mass and CS-TPP, and to analyze the hydrodynamic particle size, zeta potential,
PDI, and particle morphology using Scanning Electron Microscopy (SEM). The efficiency
of these experiments was evaluated by in vitro release studies and antimicrobial activity.

2. Results and Discussion
2.1. Experimental Design Summary
2.1.1. Fitting Model

Box–Benhken design was applied to optimize CEO-CSNPs. A total of 17 runs with
5 center points were performed to assess the effect of 3 independent variables, which can be
observed (Table 1). As independent variables, we considered the pH of chitosan solutions
(X1); Chitosan mass ratio (w/v) between chitosan-CH and chincho essential oil-CEO (X2);
and mass ratio (w/w) between chitosan-CS and sodium Tripolyphosphate-TTP (X3), over
two dependent variables: encapsulation efficiency (EE) (%) obtained from equation 2 as Y1,
and loading capacity LC (%) calculated using Equation (3) as Y2 This experimental design
can be observed in Table 1. All parameters under study and their respective values of this
BBD can be observed in material and methods section.

Table 1. Box–Benhken matrix and responses for the different formulations under study.

Run
Independent Variables Dependent Response

X1 X2 X3 Y1 Y2

1 0 0 0 21.55 ± 1.31 5.81 ± 0.37
2 1 0 1 24.27 ± 0.60 5.87 ± 0.29
3 0 0 0 19.09 ± 0.85 5.14 ± 0.23
4 −1 0 1 23.50 ± 1.39 6.15 ± 0.20
5 1 −1 0 18.71 ± 0.53 4.15 ± 0.10
6 0 1 1 29.46 ± 0.63 10.24 ± 0.44
7 0 1 −1 39.12 ± 0.96 12.97 ± 1.19
8 1 1 0 12.15 ± 0.44 3.86 ± 0.13
9 −1 1 0 28.34 ± 3.10 9.05 ± 1.01

10 0 0 0 21.71 ± 0.44 5.77 ± 0.22
11 0 0 0 20.38 ± 0.69 5.50 ± 0.20
12 0 0 0 21.17 ± 1.02 5.68 ± 0.30
13 0 −1 1 24.19 ± 0.41 6.38 ± 0.73
14 −1 0 −1 49.48 ± 0.80 12.39 ± 1.69
15 −1 −1 0 25.31 ± 4.38 5.64 ± 0.69
16 1 0 −1 25.14 ± 1.49 6.85 ± 0.43
17 0 −1 −1 52.92 ± 0.65 11.74 ± 0.87

X1 = chitosan-CS solution pH, X2 = Chitosan-CS/chincho essential Oil-CEO (w/v), X3 = Chitosan/sodium
Tripolyphosphate-TPP (w/w), Y1 = Encapsulation Efficiency EE (%), Y2 = Loading Capacity LC (%).

2.1.2. Statistical Analysis

For all the dependent variables (encapsulation efficiency—Y1, and loading
capacity—Y2), the analysis of variance was carried out using the Box–Behnken design
(BBD), and certain parameters, including p-value, F-value, and model F-value, were ob-
tained using ANOVA applying the Design Expert software. The best model to fit for all
response variables was the quadratic one, if compared to all other models (first-order), and
was validated using the ANOVA (multifactor). The ANOVA summary for the quadratic
model is presented in Table 2. It was noticed that the p-value for all responses (Y1 and Y2)
was <0.0001, which is necessary for confirming that the independent variables showed
a significant effect on the investigated response variables. The F-value of the response
variables, it was shown that higher values are recommended to provide few errors in the
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model. The model F-values for Y1 and Y2 were 58.10 and 106.09, respectively, which shows
a significant model. Due to residual noise, there is only a 0.01 percent chance that this large
model F-value will occur. Concerning the lack of fit, it is mandatory to be non-significant
in order to fit the model and confirm its efficiency [43].

Table 2. Adequacy of the model and model summary statistics for encapsulation efficiency and
loading capacity.

Source
Y1 Y2

F-Value p-Value
Prob > F F-Value p-Value

Prob > F

Model 58.10 <0.0001 * 106.09 <0.0001 *
X1 76.84 <0.0001 * 140.78 <0.0001 *
X2 5.20 0.0566 60.73 0.0001 *
X3 152.17 <0.0001 * 211.18 <0.0001 *

X1X2 6.58 0.0373 * 24.67 0.0016 *
X1X3 45.09 0.0003 * 49.86 0.0002 *
X2X3 26.00 0.0014 * 12.46 0.0096 *
X1

2 9.03 0.0198 * 44.53 0.0003 *
X2

2 11.47 0.0116 * 51.78 0.0002 *
X3

2 189.87 <0.0001 * 360.44 <0.0001 *
Lack of Fit 5.72 0.0626 not significant 3.00 0.1583 not significant

R2 analysis

R2 0.9868 0.9927
Adjusted R2 0.9698 0.9834
Predicted R2 0.8247 0.9159

Adequate Precision 27.4914 30.1171

Model

Remark Quadratic Quadratic
X1 = chitosan-CS solution pH, X2 = Chitosan-CS/chincho essential Oil-CEO mass ratio CS/CEO (w/v),
X3 = chitosan-CS/sodium Tripolyphosphate—TTP ratio CS/TPP (w/w), Y1 = Encapsulation Efficiency EE (%),
Y2 = Loading Capacity LC (%). * There were significant differences.

2.2. Effect of Independent Variables on Encapsulation Efficiency (Y1)

The encapsulation efficiency is a very important parameter, since essential oils are
chemically and physically unstable during their shelf-life, which could limit their use for
new food formulations [24]. These technical problems could be solved using encapsulation
techniques. Thus, the essential oils can act as antimicrobials and antioxidants in food
processing, improving food safety and shelf-life [37,44].

The encapsulation efficiency (%) of various formulation chincho essential oil nanopar-
ticles organogel system was determined, and values obtained were summarized in Table 1.
The formulation EE% ranged between 12.15 ± 0.44 and 52.92 ± 0.65. It very important to
notice that a reverse relation was found between the encapsulation efficiency of chincho
essential oil nanoparticles organogel system formulations and the concentration of the
different independent variables used. A positive or negative value is related to a positive
or negative effect on the studied response (Y1), respectively.

Encapsulation Efficiency (Y1):

20.78 − 5.79 X1 − 1.51 X2 − 8.16 X3 − 2.40 X1X2 + 6.28 X1X3 + 4.77 X2X3 − 2.74 X1
2 + 3.09 X2

2 + 12.56 X3
2 (1)

Accordingly, to equation 1, with the lowest pH solution (pH = 4.0) of X1, X2, and
X3, a consistent increase in formulation encapsulation efficiency was observed, and this is
certainly due to the formulation parameters [42,45]. The equation effect was emphasized
and represented by a 3D-response surface and 2D contour graph plot as portrayed in
Figure 1. The lowest in chitosan-CS/sodium Tripolyphosphate—TTP ratio CS/TPP (w/w),
from (Figure 1a,c), increases in encapsulation efficiency. The combined effect of both pH
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(X1) and CS: TPP (X3) was positive for the response variable (Figure 1c,e), and the effect of
pH (X1) and CS: ECO (X2) was negative on the response variable (Figure 1a).

Gels 2022, 8, 815 5 of 19 
 

 

Table 1. The formulation EE% ranged between 12.15 ± 0.44 and 52.92 ± 0.65. It very im-
portant to notice that a reverse relation was found between the encapsulation efficiency 
of chincho essential oil nanoparticles organogel system formulations and the concentra-
tion of the different independent variables used. A positive or negative value is related to 
a positive or negative effect on the studied response (Y1), respectively. 

Encapsulation Efficiency (Y1): 

20.78 − 5.79 X1 − 1.51 X2 − 8.16 X3 − 2.40 X1X2 + 6.28 X1X3 + 4.77 X2X3 − 2.74 X12 + 3.09 X22 + 12.56 X32 (1)

Accordingly, to equation 1, with the lowest pH solution (pH = 4.0) of X1, X2, and X3, 
a consistent increase in formulation encapsulation efficiency was observed, and this is 
certainly due to the formulation parameters [42,45]. The equation effect was emphasized 
and represented by a 3D-response surface and 2D contour graph plot as portrayed in Fig-
ure 1. The lowest in chitosan-CS/sodium Tripolyphosphate—TTP ratio CS/TPP (w/w), 
from (Figure 1a,c), increases in encapsulation efficiency. The combined effect of both pH 
(X1) and CS: TPP (X3) was positive for the response variable (Figure 1c,e), and the effect of 
pH (X1) and CS: ECO (X2) was negative on the response variable (Figure 1a). 

Encapsulation Efficiency (%) 

 
 

(a) (b) 

Encapsulation Efficiency (%) 

 
 

(c) (d) 

Figure 1. Cont.



Gels 2022, 8, 815 6 of 19Gels 2022, 8, 815 6 of 19 
 

 

Encapsulation Efficiency (%) 

  
(e) (f) 

Figure 1. Model graphs: Encapsulation Efficiency. (a) Three-dimensional response surface plots 
showing the effect of variables (X1 = pH (4.4) and X2 = Chitosan: Chincho essential Oil (w/v) (1: 0.7)) 
on response (Encapsulation Efficiency), (b) 2D contour graph, (c) 3D response surface plots showing 
the effect of variables (X1 = pH (4.4) and X3 = Chitosan: TPP (w/w) (1:0.46)) on the response variable 
(Encapsulation Efficiency, (d) 2D contour graph, (e) 3D response surface plots showing the effect of 
variables (X2 = Chitosan: TPP (w/w) (1:0.7) and X3 = Chitosan: TPP (w/w) (1:0.46)) on the response 
variable (Encapsulation Efficiency) and (f) 2D contour graph. 

As shown in Figure 2, a linear correlation was found between the predicted vs. the 
actual responses, where the predicted R2 for response Y1 was (0.82), which was in accepta-
ble concordance with the adjusted R2 (0.9698), as can be observed in Table 2. R2 value 
(0.9868) also indicates that it may recommend the quadratic model, adding to that the 
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on response (Encapsulation Efficiency), (b) 2D contour graph, (c) 3D response surface plots showing
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As shown in Figure 2, a linear correlation was found between the predicted vs. the
actual responses, where the predicted R2 for response Y1 was (0.82), which was in acceptable
concordance with the adjusted R2 (0.9698), as can be observed in Table 2. R2 value (0.9868)
also indicates that it may recommend the quadratic model, adding to that the adequate
precision (27.49), which is a desirable value elucidating an adequate signal and which
shows the model’s robust credibility. In addition, Figure 2 shows the residual values that
were distributed between the two sides of the line, signifying that the actual data and the
predicted values were in a credible correlation with each other.
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2.3. Effect of Independent Variables on Loading Capacity (Y2)

The loading capacity corresponds to the final CEO concentration in 100% of the con-
stituent’s amount utilized to synthesize the nanoparticles. As shown in Table 1, the loading
capacity of the encapsulated chincho essential oil in the chitosan nanoparticles organogel
system was determined, and the values ranged from 3.86% to 12.97%. These results were
found to be in concordance with those reported by Keawchaoon and Yoksan [46], who
informed on the loading capacity of carvacrol encapsulation in the value ranges 3–21%
and 14–31%. Similarly, Shetta et al. [29] reported loading capacity values of encapsulated
oils (peppermint and green tea essential oils) ranged from 8.15 to 22.2% and 2.2 to 23.1%.
The features of the in loading capacity contents of CEO from the chitosan nanoparticles
organogel system formulations were evaluated, and the result is shown in Figure 2. In
encapsulated CEO, the results indicated that loading capacity increased as a function of the
initial EO content, reaching their maximum level at 1:1 w/w with the EOs. The achieved
values showed a good loading capacity, which shows that the CEO affinity with the wall
material (chitosan), and the methodology used, was efficient to obtain CEO-CSNPs [47].
Figure 2e shows a considerable increase in the in loading capacity of CEO from the chitosan
nanoparticles organogel system formulations, which was observed while increasing the
concentration of independent factors X2, and X3. The Equation (2) interprets the previ-
ously stated influence of the independent variables X1, X2, and X3 on the loading capacity
response Y2.

Loading Capacity (Y2):

5.58 − 1.56 X1 + 1.03 X2 − 1.91 X3 − 0.9250 X1X2 + 1.32 X1X3 + 0.6575X2X3 −1.21 X1
2 + 1.31 X2

2 + 3.45 X3
2 (2)

As shown in Figure 3, this effect of the Equation (2) was represented by 3D-response
surface and 2D contour graph plot. Figure 4, there was a linear relationship between
the predicted and the actual responses, since the predicted R2 (0.9159) was found to be
in a sensible harmony with the adjusted one (0.9834), because the data are similar, as
demonstrated in Table 2. In addition, the value of R2 (0.9927) indicates that the system
could support the model and the adequate precision value (30.12), which is a recommended
value for the design space.
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2.4. Optimization of the Encapsulation Process

Optimized CEO-CSNPs were produced using the identical methodology followed for
all 17 trial formulations. The optimized formulation was prepared on the basis of values
given by the Design Expert (Design Expert® version 13 software, State Ease Incorporation,
Minneapolis, MN, USA) after the analysis of 17 trial formulations for independent variables.
The optimization process depends on pointing the responses (Y1, Y2) toward certain criteria
that are expected to alter the optimized formula. The selected criteria in our study were
to maximize the encapsulation efficiency and maximize loading capacity. The actual
values calculated after optimization for the pH (X1), Chitosan: Chincho essential Oil (w/v)
ratio (X2), and Chitosan: TPP (w/w)) ratio (X3) were 4.4, 1:0.7 (w/v), and 1:0.46 (w/w),
respectively. The predicted values of the responses for optimization based on higher
desirability were 50.85 ± 1.86 for Y1(%), and 11.87 ± 0.37 for Y2 (%). The experimental
results are presented in Table 3. When the optimized formulation of CEO-CSNPs was
prepared using actual values of independent variables, the responses’ actual values were
52.64 ± 2.44 for Y1 (%), and 11.56 ± 0.55 for Y2 (%). The responses’ actual values were close
to the predicted values and were conspicuously close to each other. The optimized CEO-
CSNPs were processed for characterization (zeta potential, PDI, hydrodynamic particle
size, particle morphology), and were also characterized Scanning Electron Microscopy
(SEM), in vitro release study, and antimicrobial activity.

Table 3. The response of predicted and experimental values of the optimizated conditions.

Response Predicted Values Experimental Values

Y1 (%) 50.85 ± 1.86 52.64 ± 2.44
Y2 (%) 11.87 ± 0.37 11.56 ± 0.55

Y1 = Encapsulation Efficiency EE (%), Y2 = Loading Capacity LC (%).

2.5. Characterization of Optimized Formulations
2.5.1. Particle Size, Zeta Potential, and Polydispersity Index PDI

The hydrodynamic nanoparticle size of CSNPs and CEO-CSNPs was examined, and
the obtained values were the average of three independent measurements. The mean hydro-
dynamic particle sizes, Zeta Potential, and PDI of CSNPs were 284.85 ± 1.04, 21.49 ± 1.64
and 0.359 ± 0.01 nm respectively (Table 4).

Table 4. Characterization of the optimized CEO-loaded CSNPs in terms of encapsulation efficiency,
loading capacity, mean hydrodynamic particle size, polydispersity index (PDI), and zeta potential.

Formulation %EE %LC Particle Size (nm) Zeta Potential (mV) PDI

CSNP – – 284.85 ± 1.04 21.49 ± 1.64 0.359 ± 0.01
CEO-CSNPs 52.64 ± 2.44 11.56 ± 0.55 458.50 ± 0.06 23.30 ± 2.15 0.418 ± 0.02

Data expressed as mean ± SD (n = 3); CSNP: chitosan nanoparticles organogel system; CEO-CSNPs: chincho
essential oil chitosan nanoparticles organogel system.

The hydrodynamic nanoparticle size of CSNPs and CEO-CSNPs was examined, and
the obtained values were the average of three independent measurements. The mean hydro-
dynamic particle sizes, Zeta Potential, and PDI of CSNPs were 284.85 ± 1.04, 21.49 ± 1.64
and 0.359 ± 0.01 nm, respectively (Table 4). The particle size and Zeta potential of the
optimized CEO-CSNPs were 458.5 ± 0.06 nm and 23.30 ± 2.15 mV, respectively (Figure 5).
The incorporation of CEO significantly influences the size of nanoparticles. On the other
side, the values obtained reveal no considerable variation in the zeta potentials of the for-
mulations, which could be linked with the uncharged chemical nature of chincho essential
oil [48]. The PDI values of CEO-CSNPs were 0.42 higher (0.2), which suggest a measure of
the non-uniformity that exists in the particle size distribution [28] (Table 4).
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2.5.2. Surface Morphology

A scanning electron microscope (SEM) was used for the morphological analysis of the
CS (Figure 6a,b) and CEO-CSNPs (Figure 6c,d) prepared by the ionic gelation method. For
the nanoencapsulation of CS particles, no agglomeration of the nanoparticles organogel
system was observed, as can be seen in Figure 6a,b. Surface morphology results were
similar to those reported by Pinho Neves et al. [45]. In addition, it can be seen from
the transmission electron micrograph results the nanoparticles CEO (Figure 6c,d) show
a rounded and uniform shape, similar to that reported by [49] for essential oil Origanum
vulgare and [50] for some natural extracts encapsulated in chitosan by the ionic gelation
method using tripolyphosphate. The results showed that the nanoparticles organogel
system prepared with this optimized formulation did not show aggregation between them,
which was related to the charge on the surface of the encapsulates and the determined Z
potential (23.30 ± 2.15 mV) (Table 4), which predicts good stability [29]. Morphological
analysis by SEM showed an average CEO-CSNPs diameter of about 458 nm (Table 4), which
validates the above results obtained with dynamic light scattering. A view at 10,000×
and 22,000× (Figure 6c,d) allowed the observation of a dispersion inside the nanoparticle,
which probably could mean the distribution of CEO formed in the matrix. The views
were similar to what was observed by [51] in lyophilized chitosan hydrogel. Scanning
electron microscopy is a good technique for determining the particles’ morphological
characteristics in these tridimensional structures [52], such as organogels and nanoparticles.
This study was similar than those carried out by Li et al. [53] and Glowka et al. [54] in
which micro-organogels and nanoparticles, respectively, were sphere-like.
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magnification.

2.5.3. Release of Chincho Essential Oil at In Vitro Conditions

The in vitro release study of CEO from CEO-CSNPs was carried out for 6 h in different
pH buffers (3 and 7). As shown in (Figure 7) the cumulative release rate of the CEO-
CSNPs in acetate buffer (pH 3) from 0 to 6 h was 22.54 ± 0.66%, while that in phosphate
buffer (pH 7) was only 18.80 ± 0.77%, demonstrating the slow-release characteristic of the
CEO-CSNPs. The release of the active ingredients from the CEO is is partly due to the
low mechanical strength of chitosan/TPP nanoparticles organogel system, and the release
can be minimized by increasing the mechanical strength of the particle [55]. Controlled
release is related to the increase in polymer concentration; the food might have better
protection leading to a delay in the bioactive compound release [56]. Gallo et al. [57]
elaborated oregano essential oil, loaded coated alginate beads nanoparticles in the oil
release kinetics in a liquid medium, simulating a meat marinating solution, stating that the
nanoparticles could be utilized as a natural antibacterial agent In addition, it is essential to
know the effect of these processes in the application of food, due to these factors affecting
its release profile and reducing or extending its effect. Organogels are semi-solids and have
various unique characteristics, such as surface lubricity and anti-drying capacity, arousing
particular interests in diverse practical applications. They are used as delivery systems,
but are relatively new in food science. They have high stability and high encapsulation
efficiency [58]. To obtain them, there are methods ranging from the basic composition
to gelation mechanism, and fabrication strategies, such as the ionic gelation method [59].
In addition, Corredor et al. [60] determined that sesame oil organogels have a controlled
release and greater stability of their active molecules.
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Figure 7. Chincho essential oil released (%) from chitosan nanoparticles organogel system obtained
from optimization process in acetate and phosphate buffers (pH 3 and pH 7).

2.5.4. Antimicrobial Activity

The minimum inhibitory concentration (MIC) values for chitosan encapsulated CEO,
measured against S. aureus, E. coli and S. infantis, are shown in Table 5. The antimicrobial
activity for CEO-CSNPs reported MIC values in the range of 5.29–10.57 µg/mL, and pre-
sented better activity against Gram-positive bacteria. The chitosan nanoparticles organogel
system, as well, showed better antibacterial action against Gram-positive bacteria than
Gram-negative bacteria, according to the findings in the range of 21.14–42.29 µg/mL. This
has been associated with its ability to bind non-covalently with teichoic acids incorpo-
rated in the peptidoglycan layer of the bacteria [61]. As far as our literature survey could
ascertain, T. elliptica Sm. essential oil MIC 5 µL/mL was reported against microorgan-
isms Staphylococcus aureus [18], with values similar to those reported in this study; the
antimicrobial activity of CEO-CSNPs can be associated with their particle size [62]. The
antimicrobial activity of chincho essential oil has been attributed mainly to the presence of
phenolic compounds (β-myrcene, cis-lanalool oxide and 2-tujene) [20]. The antimicrobial
activity obtained from CEO-CSNPs suggest that they act as a physical delivery system.
Antimicrobial compounds, among other compounds during the elaboration process, were
kept. These results agreed with those obtained by Chen et al. [58].



Gels 2022, 8, 815 13 of 19

Table 5. Antimicrobial activity of CSNPs and CEO-CSNPs, expressed as minimum inhibitory concen-
tration (MIC) against S. aureus, E. coli, and S. infantis.

Antimicrobial Activity MIC (µg/mL)

S. aureus
ATCC 25923

E. coli
ATCC 25922 S.infantis

CSNPs 21.14 42.29 42.29
CEO-CSNPs 5.29 10.57 10.57

CSNP: chitosan nanoparticles organogel system; CEO-CSNPs: chincho essential oil chitosan nanoparticles
organogel system.

3. Conclusions

The 3-factor, 3-level Box–Benhken design used provided fitting polynomial equations
for the evaluated responses (EE and LC), and was consequently used with success to
optimize the chincho essential oil nanoparticle formulation. The optimized NPs were
reproducible with a particle size of 458.5 ± 0.06 and with a ZP of 23.30 ± 2.15 mV and poly-
dispersity index of 0.418 ± 0.02. Morphological studies of optimized CEO-CSNPs revealed
the rounded and uniform shape of the particles. In vitro release studies of CEO-CSNPs
formulation were around 18.80 ± 0.77% and 22.54 ± 0.66% over 6 h. CEO-CSNPs act as
physical delivery system for CEO antimicrobials. The minimum inhibitory concentrations
(MIC) of CEO-CSNPs against three bacterial strains, Staphylococcus aureus (5.29 µg/mL),
Salmonella infantis (10.57 µg/mL), and Escherichia coli (10.57 µg/mL), were determined. The
size of the NPs in conjunction with the antibacterial properties of the chincho essential
oil suggest these particles might be promising as a food additive. However, the obtained
nanoparticles organogel system require subsequent shelf-life study and a food application
in a different matrix. Thus, it really could be evaluated for its potential use in the food
industries.

4. Materials and Methods
4.1. Materials

Chincho essential oil (CEO), the essential oil of chincho (CEO), was extracted from
leaves by hydro-distillation using a Clevenger-type apparatus for 3 h. The leaves were
collected in Junin Region, Peru (3263 m.a.s.l.). Chitosan (CS) (high molecular weight,
deacetylated chitin, PolyCD-glucosamine), Tween 80, Sodium Hydroxide and TPP were
purchased from Sigma-Aldrich (Burlington, MA, USA). Sodium Acetate Anhydrous ACS
(Fermont, Canada), Potassium Phosphate Monobasic (Panreac, Barcelona, Spain), and
di-Sodium Hydrogen Phosphate anhydrous purest anhydrous (Panreac, Barcelona, Spain)
were also used. The bacterial strains Staphylococcus aureus ATCC 25923TM, Escherichia coli
ATCC 25922TM, and Salmonella infantis were obtained from Calidad Total and the Food
Microbiology Laboratory (Universidad Nacional Agraria La Molina, Lima, Peru). Methanol
and acetic acid (glacial) were acquired from Merck (Darmstadt, Germany).

4.2. Experimental Design Using Box–Benhken (BBD)

In order to obtain chincho essential oil nanoparticles, a matrix of 17 formulations was
constructed and fabricated by RSM. Design Expert (Design Expert® version 13 software,
State Ease Incorporation, Minneapolis, MN, USA) was used for the optimization of the
formulation using a Box–Behnken design (BBD) via constructing three factors and three
levels as shown in Table 6. Thus, BBD was applied using chitosan solution (CS) pH (4.0,
4.4, 4.8); the mass ratio of CS/CEO (1:0.7, 1:0.85, 1:1.0); and the mass ratio of CS/CS-
TPP (1:0.46, 1:0.58, 1:0.7) as independent variables. The formulation-dependent variables,
encapsulation efficiency (EE) and loading capacity (LC) of the CEO-CSNPs, were evaluated.
In this study, the factors representing the independent variables selected were X1, X2,
and X3, related to pH of the CS solution, the CS/CEO mass ratio and, the CS/TPP mass
ratio, respectively. The influence of the above factors was assessed on the responses Y1
(encapsulation efficiency) and Y2 (loading capacity) of the elaboration chincho essential
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oil nanoparticles. Statistical analysis of the values obtained could be determined via the
analysis of variance (ANOVA) test. The interaction of independent variables and responses
was determined using the following quadratic mathematical model, where Y represents
the detected response (Equation (3)):

Y = b0 + b1X1 + b2X2 + b3X3 + b1,2X1X2 + b1,3X1X3 + b2,3X2X3+ b1,1X1
2 + b2,2X2

2 + b3,3X3
2 (3)

The optimized formulation of chincho essential oil nanoparticles were selected on the
basis of factor desirability over responses.

Table 6. Independent and dependent variables of the 3-level, 3-factor Box–Behnken design.

Independent Variable
Coded Levels

Low Level Medium
Level High Level

−1 0 1

X1: pH 4.0 4.4 4.8
X2: Chitosan: Chincho essential Oil-CS:CEO (w/v) 1:0.7 1:0.85 1:1

X3: Chitosan: TPP—CS:TPP (w/w) 1:0.46 1:0.58 1:0.7

Dependent Variables Criteria

Y1: Encapsulation Efficiency EE (%) Maximum
Y2: Loading Capacity (%) Maximum

4.3. Preparation of CEO-CSNPs by Ionic Gelation

Ionic gelation methodology, based in the recommendations reported by Zhang et al. [37],
was used to elaborate the chitosan nanoparticles loaded with chincho essential oil (CEO-
CNPs). A two-step process was applied. The first phase was oil-in-water (o/w) emul-
sification and the second one was ionic gelation. Chitosan (CS) solution (3.2 mg/mL)
was prepared by dissolving in acetic acid solution (1% (v/v)) using a magnetic stirrer at
60 ◦C for 60 min. Then, the CS solution was filtered through a 1-µm pore size filter to
remove any undissolved CS. Once dissolved, all chitosan solutions were divided into three
equal volumes and the pH of the solutions was adjusted to pH: 4.0; 4.4, and 4.8. Tween-80
(1.6 mg/mL) was used as a surfactant agent, and the solutions was stirred for 30 min at
18 ºC until a homogeneous mixture was obtained. Three different volumes of chincho
essential oil (126.65; 153.8; 180.95 µL) were dissolved in ethanol (4 mL) to obtain CS to CEO
weight ratios of 1:0.7; 1:0.85 and 1:1 (mg/mL), respectively, forming the oily phase of the
emulsion. After cooling, the oil phase was progressively dropped into the aqueous phase
under vigorous stirring, and agitation was continued for 20 min. After that, three different
volumes of 30 mL of the TPP solution were used to obtain CS to TPP weight ratio of 1:0.46;
1:0.58 and 1:1 (mg/mL) and were added to the solution, which was mixed for 25 min using
a magnetic stirrer. To guarantee the complete gelation, mixing was continued for 45 min
after the complete addition of the tripolyphosphate. The cross-linked NPs were collected
by centrifugation for 30 min at 6000 rpm at 20 ◦C and stored at 4 ◦C until use.

Determination of Encapsulation Efficiency (EE%) and Loading Capacity (LC%)

To determine the encapsulation efficiency (EE%), encapsulated CEO was determined
by UV–Vis spectrophotometry. Predetermined amounts of CEO-CSNPs were dispersed
into 3 mL methanol and centrifuged at 6000 rpm for 15 min at 18 ◦C from the aqueous
medium containing non-associated oil as reported Natrajan et al. [24]. The CEO present in
the supernatant was determined using spectrophotometer UV7 (Mettler Toledo, Barcelona,
Spain) at a wavelength of 230 nm. The CEO concentration was determined by a proper
calibration curve of pure CEO and CEO in methanol with R2 of 0.9909 for the EO. Chitosan
nanoparticles were treated in the same way, and they were used as a blank. Triplicate
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samples for each batch were recorded. Encapsulation efficiency (EE%) and loading capacity
(LC%) were estimated from Equations (4) and (5) respectively.

Encapsulation Efficiency (EE%) =
Total amount of loaded CEO

Initial amount of CEO
× 100 (4)

Loading Capacity (LC%) =
Total amount of loaded CEO

Weight of nanoparticles constituents
× 100 (5)

4.4. Characterization of Chincho (Tagetes ellitptica Sm.) Essential Oil-Loaded CS-NPs
Polydispersity, Particle Size, and Zeta Potential

Dynamic light scattering (DLS) on the 90 Plus/BI-MAS (Brookhaven Instruments Cor-
poration, Holtsville, NY, USA) was utilized to determine the mean particle size (Z-average),
polydispersity index, and zeta potential of CEO-CSNPs in the hydrated state. To produce
an average, light scattering was measured in triplicate at a 90 degree angle and at 25 ◦C.
On the 90 Plus/BI-MAS, the zeta potential was assessed by means of an electrophoretic
light scattering approach. The CEO-CSNPs samples were diluted with 1 mM potassium
chloride before being located in the electrophoretic cell. The mean electrophoretic mobility
data were used to determine the zeta potential values [40], with slight modifications. All
measurements were performed in triplicate, and results were expressed as mean ±standard
deviation (SD).

4.5. Particles Morphology

The optimized CEO-CSNPs morphology was determined using a scanning electron
microscope (Hitachi High-Tech, SU8230, Hitachi High-Technologies Corporation, Tokyo,
Japan). Before the scanning electron microscope analysis, the optimized CEO-CSNPs
were lyophilized using a freeze-dryer Lyovapor L-200 (Buchi iberica, Barcelona, Spain).
Lyophilized nanoparticles were assembled on aluminum stubs held by coal adhesive tape.
The scanning electron microscope was used to visualize the morphology of the CEO-CSNPs
under high vacuum at 10 kV accelerated voltage [63].

4.6. In Vitro Release Study

The release properties of CEO from chitosan nanoparticles were determined using two
buffer solutions at pH3 (acetate buffer) and pH 7 (phosphate buffer). Sample dispersions
(500 µL) were centrifuged at 2350× g for 8 min at 18 ◦C. Water was removed and the buffer
solution (3 mL) was added into a centrifuge tube containing nanoparticles. The mixture
was agitated (1 min in a vortex) and incubated at 22 ◦C during six hours. At different
incubation time intervals (1 h), samples were centrifuged at 2350× g for 8 min at 18 ◦C, and
a specific volume of supernatant was then taken for analysis and replaced with an equal
volume of fresh buffer. The amount of CEO released in the supernatant was analyzed by
a spectrophotometer over wavelengths from 230 nm, following the recommendations of
Keawchaoon and Yoksan [46].

4.7. Antibacterial Study

The broth microdilution method was used to determine the minimum inhibitory
concentration (MIC) following the methodology described by Alves-Silva et al. [64]. Three
bacteria strains, Staphylococcus aureus ATCC 25923TM, Escherichia coli ATCC 25922TM, and
Salmonella infantis, were utilized as test microorganisms. All bacteria strains were cultured
for 24 h at 37 ◦C in Mueller Hinton broth (MHB). The concentration of culture suspensions
was adjusted to 106 CFU/mL by comparison with McFarland turbidity. Serial twofold
dilutions were made, and bacterial suspensions (100 µL) were then inoculated in the sample
series. After incubation at 37 ◦ C for 24 h, MIC was determined as the concentration of
the sample in the tube without turbidity and containing the lowest sample concentration.
Chitosan nanoparticles were used as a positive control, whilst the blank control only had
MH broth and bacterial inoculum. Tests were performed in triplicate for each sample.
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4.8. Statistical Analysis

Statistical analysis was performed, and the data are expressed as mean ± SD from
three separate observations. The data from the Box–Behnken experimental design were
analyzed by least square multiple regression methodology to fit the polynomial models
in CEO-CSNPs optimization. Data analysis and response surfaces were conducted using
the software Design Expert (Design Expert® version 13 software, State Ease Incorporation,
Minneapolis, MN, USA).
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