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Abstract: In the development of energy supply systems for smart wearable devices, supercapacitors
stand out owing to their ability of quick and efficient energy supply. However, their application
is limited due to their low energy density and poor mechanical energy. Herein, a strategy for the
preparation of flexible supercapacitors is reported, which is based on the fabrication of aerogel
films by simultaneously utilising cellulose nanofiber (CNFs) as an MXene intercalation material
and polyaniline (PANI) as a template material. CNFs, which can form hydrogen-bonded networks,
enhance the mechanical properties of MXene from 44.25 to 119.56 MPa, and the high electron
transport properties of PANI endow MXene with a capacitance of 327 F g~! and a resistance of
0.23 Q). Furthermore, the combination of CNFs and PANI enables a 71.6% capacitance retention
after 3000 charge/discharge and 500 folding cycles. This work provides a new platform for the
development of flexible supercapacitors.
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1. Introduction

As an alternative to fossil energy, electric power is a renewable and clean energy
that is easy to store and transport [1]. For daily life applications, structural electrode
materials with high flexibility and high electrochemical performance attracted have great
attraction [2—4], because they are essential for manufacturing lightweight and flexible
electronic products [5-7]. In particular, capacitors offer fast charging and discharging
speed and good recyclability for practical applications [8]. To fabricate flexible capacitors,
carbon-based materials, including carbon nanotubes and graphene, have been widely
used as electrode materials with stable performance and structure [9-11]. Unfortunately,
their electrochemical energy storage capacity is insufficient [12]. Although this problem
can be significantly circumvented by adding metal oxides and conductive polymers, the
reduction of the mechanical properties stemming from the lack of interaction between the
two materials cannot be ignored [13,14].

MXenes (Ti3AlCy) are a family of two—-dimensional (2D) transition metal carbides
or nitrides having the general formula M,;1 X, TX (n = 1-3), where M represents an early
transition metal such as Ti, Zr, V, Nb, Ta or Mo, X is the carbon or nitrogen element and
T represents a surface functional group, generally =O, -OH or —F [12,15]. MXenes are
prepared by selectively etching the A element layer from the corresponding MAX phase
precursor (My11AXp) [16]. Since Gogotsi et al. synthesised the first MXene in 2011 [17,18],
these materials have attracted a wide interest for application in supercapacitors. Their
unique 2D layered structure and rich surface functional groups provide them with excellent
conductivity and high surface hydrophilicity. However, their mechanical properties are
still not ideal [19,20].
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Cellulose nanofibrils (CNFs) have useful properties, such as strong mechanical strength,
distinctive biological flexibility, great stability and outstanding capacity of liquid absorp-
tion [21-23]. Moreover, as a nanolinear structured material, CNFs can not only enhance the
mechanical properties of MXene by dispersing between its interlayer gaps but also improve
the electrochemical performance by inhibiting the stacking of MXene and facilitating the
transport of electrolyte ions as an electrolyte reservoir [24-26]. However, the charge storage
capacity of MXene in supercapacitors stems mainly from =O functional groups, whereas —F
and —~OH functional groups, which are abundant in CNFs, are detrimental to the electrical
performance [12,27].

Polyaniline (PANI) is a typical conducting polymer that has been widely used to
prepare supercapacitor electrodes due to its fast redox rate, high pseudocapacitance, fully
reversible doping, low cost and easy synthesis [28-30]. However, the application of PANI
is limited by its tendency to undergo agglomeration, which leads to the blockage of the
conductive paths, increase in resistance and decrease in energy density decreases [31-33].
Interestingly, PANI can be uniformly dispersed using CNFs as templates and excess -OH
as linkages, thereby leading to the improvement of their electrochemical performance.

Herein, MXene/CNF-PANI aerogel films with layered porous structures were pre-
pared via in situ polymerisation and using MXene/CNF aerogel films. The films were
obtained by self-assembling MXene and CNFs via vacuum suction filtration after preparing
single-layer MXene suspensions by LiF /HCl etching of Ti3AlC; (Scheme 1). CNFs served as
an intercalation material to link MXene with PANI, which greatly enhanced the mechanical
properties of the MXene films, and as a template material to enable PANI to disperse.
Moreover, PANI provided a communicating pathway between MXene layers and improved
the electrochemical properties of materials, demonstrating a new structural model for the
preparation of flexible supercapacitors for daily life applications.
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Scheme 1. Preparation of MXene/CNF aerogel films and MXene/CNF-PANI aerogel films.

2. Results and Discussion
2.1. Characterisation of M Xene/CNF Aerogel Films and MXene/CNF-PANI Aerogel Films
2.1.1. Scanning Electron Microscopy (SEM) Analysis

The micro-morphologies of the MXene/CNF and MXene/CNF-PANI aerogel films
are shown in Figure 1. Due to the insertion of CNFs between the MXene layers having a
rough surface (Figure 1a), the MXene/CNF aerogel films were endowed with a layered
and porous structure (Figure 1b), which is conducive to the infiltration of electrolytes.
Moreover, this uniform dispersion can be expected to enhance the mechanical properties
of MXenes. The polymerisation of PANI on the CNFs transformed the smooth surface
(Figure 1c) to an overall layered porous structure (Figure 1d), illustrating the main roles of
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PANI, which were to coat the CNFs and connect the MXenes that were disconnected after
the incorporation of the CNFs for an improved electrochemical performance.

Figure 1. SEM images of (a) the surface; (b) cross section of MXene/CNF aerogel films; (c) the surface;
(d) cross section of MXene/CNF-PANI aerogel films.

2.1.2. Fourier Transform Infrared (FTIR) Analysis

The FTIR spectra of CNFs, MXene, MXene/CNF aerogel films and MXene/CNF-PANI aero-
gel films are shown in Figure 2. In the spectrum of CNFs, the peaks at 3344, 2932-2868 and
1031 cm ™! can be assigned to the stretching vibration of ~OH, the stretching vibrations
of -CH and the C-O-C pyranose ring skeleton of CNFs, respectively. The spectrum of
MXene shows a characteristic peak at 1100 cm~! corresponding to the surface C-F end
groups. [34]. When CNFs were added into MXene, the absorption peaks of C-F were
masked and the intensity of the -OH peaks increased because a large amount of -OH
groups was introduced, whereas the spectrum of the MXene/CNF-PANI aerogel films only
exhibited stretching vibrations of N-H between 3350-3344 cm~! and double-bond vibra-
tions of benzene and quinone ring molecules of the PANI chains at 1486 and 1579 cm ™!,
respectively [35]. This result demonstrates that CNFs serve only as a structural framework
to construct the MXene/CNF-PANI aerogel films, in which PANI connects the MXenes
by reducing the -OH on the surface of the CNFs, thereby improving the electrochemical
performance of the MXene/CNF-PANI aerogel films.
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Figure 2. FTIR spectra of CNFs, MXene, MXene/CNF aerogel films and MXene/CNF-PANI
aerogel films.
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2.1.3. X-ray Diffraction (XRD) Analysis

Figure 3 shows the XRD patterns of CNFs, MXene, MXene/CNF aerogel films and
MXene/CNF-PANI aerogel films. A distinct (002) diffraction peak was observed for
MXene at 20 = 7.1° [36], but it decreased with the addition of CNFs, indicating that the
interlayer spacing of the MXene increased as a result of the successful penetration of
cellulose between those layers. After the polymerisation of PANI, the diffraction peaks of
the CNFs disappeared, which is in agreement with the SEM results, indicating that PANI
coated the surface of cellulose.

MXene

CNF

s MieneCRE

MXene/CNF-PANI

Intensity (a.u.)

10 20 30 40 50 6 70
20 (%)

Figure 3. XRD patterns of CNFs, MXene, MXene/CNF aerogel films and MXene/CNF-PANI
aerogel films.

2.1.4. Tensile Stress-Strain Analysis

Figure 4 shows the tensile stress—strain curves of CNFs, MXene, MXene/CNF aerogel
films and MXene/CNF-PANI aerogel films. After the introduction of CNFs, which resulted
in a uniform dispersion of stress in the MXene film, the stress strength of the MXene/CNF
aerogel films increased from 44.25 to 132.84 MPa and their strain increased from 3.26%
to 15.01% due to the hydrogen bonding interactions between the CNF networks. How-
ever, when PANI was introduced, it covered the surface of the CNFs and decreased the
number of hydrogen bonds, reducing the stress strength and the strain of the MXene /CNF-
PANI aerogel films, albeit only slightly, from 132.84 to 119.56 MPa and from 15.01% to
13.71%, respectively.
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Figure 4. Tensile stress—strain curves of MXene, MXene/CNF aerogel films and MXene/CNF-PANI
aerogel films.
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2.2. Electrochemical Performance of MXene/CNF Aerogel Films and MXene/CNF-PANI
Aerogel Films

As shown in Figure 5a, the cyclic voltammetry (CV) curve of the MXene films recorded
at a scan rate of 2 mV s~ ! exhibited a rectangular shape, which is indicative of their
ideal capacitive behaviour. Upon addition of CNFs and PANI, an obvious increase in
the peak current density in the CV curves at the same scan rate was observed. The
results of a galvanostat charge/discharge (GCD) test were consistent with those of the
CV measurements (Figure 5b). The GCD curves at the same discharge current density
(3 mA cm~2) further demonstrate the higher mass capacitance of the MXene/CNF aerogel
films; the insertion of CNFs endowed the MXene with a more free interlayer space for
charge storage while retaining the interlayer electron transport channels for high interlayer
conductivity. Two pairs of broad redox peaks were clearly observed in the potential window
of the MXene/CNF aerogel films after the addition of PANI, indicating that the capacitance
is mainly a pseudocapacitance because the reversible intercalation/deintercalation of
protons leads to a valence state change of the redox element Ti. The GCD curves exhibited
a distorted triangle due to the redox reaction of MXene, which was consistent with the
CV results. The mass capacitance results calculated from the GCD curves are shown in
Figure 5c. After the introduction of CNFs, the capacitance of the MXene/CNF aerogel
films reached 294 F g~!, whereas pure MXene produced only a capacitance of 271 F g~
at the same scan rate. When the scan rate was increased to 10 mV s~ !, the MXene/CNF
aerogel films still maintained a capacitance of 227 F g~! and a capacitance ratio of 77%,
which was much higher than that of the MXene films with a capacitance of 132 F g~! (48%).
The results showed that the improvement of the capacitive properties of the MXene/CNF
aerogel films was related to the electrode structure, and the CNF nanonetwork structure
not only prevented the stacking of MXene but also accelerated the intercalation/extraction
transport rate of ions and improved the capacitance of MXene [20]. After PANI loading,
the capacitance of the resulting aerogel films reached 327 F g~! with a ratio of 77% when
the scan rate was increased to 10 mV s~ 1. This large improvement was due to the fact that
the introduction of PANI in the MXene/CNF aerogel films resulted in the formation of the
loops inside, allowing a smooth electron transport.
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Figure 5. (a) CV curves, (b) GCD curves and (c) specific capacitance of MXene films, MXene/CNF
aerogel films and MXene/CNF-PANI aerogel films.

To understand the kinetic process of the charge/discharge profiles of the films, electro-
chemical impedance spectroscopy (EIS) measurements were conducted. Figure 6 shows the
Nyquist curves of CNFs, MXene, MXene/CNF aerogel films and MXene/CNF-PANI aero-
gel films, in which two regions can be observed, i.e., semicircular arcs at high frequencies
and a straight line at low frequencies [34,37-39]. For the MXene/CNF and MXene/CNEF-
PANI aerogel films, the straight-line regions are almost parallel to the Z' axis, indicating
that ions could diffuse rapidly from the electrolyte solution to the film interface. MXene
exhibited a relatively high resistance (2.5 Q2) due to the stacking of MXene nanosheets in
a bi-continuous structure. In contrast, the addition of CNFs improved the stacking in the
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MXene/CNF aerogel films, reducing the internal resistance to 2.15 Q). Then, the internal
pathway constructed through the action of PANI was beneficial for a smooth electron trans-
port, and the resistance value was reduced to 0.23 (), which proved that the introduction of
MXene/CNF with PANI was effective.
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Figure 6. Nyquist curves of MXene films, MXene/CNF aerogel films and MXene/CNF-PANI
aerogel films.

To demonstrate the effectiveness of this structural design for aerogel films, CV curves
of the MXene/CNF-PANI aerogel films were recorded at varying scan rates from 1 to
20 mV s~ ! (Figure 7a). At low scan rates, redox peaks appeared in the CV curves, which
might be attributed to the special morphological features of the MXene/CNF-PANI aerogel
films facilitating the protonation of the oxygen functional groups at positive and negative
potential sites. As shown in Figure 7b, the charge/discharge profiles in a symmetric
state reflect the nearly 100% Coulombic efficiency of the MXene/CNF-PANI aerogel films,
indicating the occurrence of reversible redox reactions in the electrode. According to the
results calculated from the GCD curves (Figure 5c), the MXene/CNF-PANI aerogel films
showed high capacitive properties, i.e., 327 F g ! at 3mA cm~2 and 203 F g~ ! at 50 mA
cm2, indicating that the MXene/CNF-PANI aerogel films exhibited good ion transport
ability and that the three-dimensional structure design of MXene was useful and efficient.
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Figure 7. (a) CV curves and (b) GCD curves.

To evaluate the applicability of the MXene/CNF-PANI aerogel films, 3000 charge/discharge
cycles were performed at a current density of 50 mA cm~? (Figure 8). The combination
of CNFs and PANI prevented the stacking of MXene and increased the film toughness,
whereas the resistance was not increased, resulting in a capacitance retention of 84.1%
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after 3000 charge/discharge cycles. Furthermore, a capacitance retention of 71.6% was
obtained after subjecting the MXene/CNF-PANI aerogel films to 500 folding cycles at
the same charge/discharge current density, indicating that the electrode material had
excellent flexibility for practical applications [40]. The comprehensive performance of
MXene/CNF-PANI aerogel films could be shown through Table 1, and the applicability of
MXene/CNF-PANI aerogel films was shown through comparison.

100

95 4

90 4

851 —=—Before foldig

—4— After folding
80 +

Capacitance retention (%)

754

0 500 1000 1500 2000 2500 3000

Cycle number
Figure 8. Capacitance of MXene/CNF-PANI aerogel films before and after 500 folding cycles and
3000 charge/discharge cycles at a constant charge/discharge current density.

Table 1. MXene/CNF-PANI aerogel films comparison of the performance of capacitors with
other capacitors.

Composites Capacitance Pr(i\;::t}ilzgti\?lll’a) Resistance () Ref.

TEMPO-oxidized-nanocellulose carbon nanotubes 65 F g*1 0.065 26 [41]

N-doped porous carbon 193Fg! — 0.97 [42]

TizCp Ty /CNF 298Fg~! 0.004 0.003 [12]

MWNT/ cellulose nanofibers 145 F g*1 — 0.37 [43]

Brazilian-pine fruit coat 0.87 F cm 2 6.1 135 [39]
MXene/CNF-PANI 327Fg! 119.56 0.23 This study

3. Conclusions

In this study, porous layered MXene/CNF-PANI aerogel films with a novel structure
were prepared, which can be used as supercapacitors. Using PANI for cladding after
intercalation of CNFs into the MXene layers boosted the performance of MXene in terms
of the three following properties: (1) The MXene/CNF-PANI aerogel films possessed
a capacitance of 327 F ¢! and a resistance of 0.23 Q) because the introduction of CNFs
prevented the stacking of MXene, enabling more free interlayer space for charge storage.
Meanwhile, the introduction of PANI provided communicating pathways for a smooth
electron transport. (2) A high mechanical strength of 119.56 MPa originating from the
introduction of CNFs resulted in the formation of abundant hydrogen bonds to enhance the
overall MXene structure. (3) The MXene/CNF-PANI aerogel films showed a capacitance
retention of 71.6% after 500 folding and 3000 charge/discharge cycles. In summary, the
MXene/CNF-PANI aerogel films are promising as a supercapacitor material with enhanced
electrochemical, mechanical and cycling properties.

4. Materials and Methods
4.1. Materials

All chemicals were used without further purification. Titanium aluminium carbide
(Ti3AlCy, ~400 mesh, 98%) was purchased from Yiyi Technology Co., Ltd., Jilin, China, CNF



Gels 2022, 8, 798

8 of 10

suspension (0.55 wt%) from Hongqi Technology Co., Ltd., Guilin, China and sulphuric acid
(H2504, 99.8%) from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). Lithium
fluoride (LiF, 99.7%), ammonium persulfate (NH4)>5,0g, 99.7%), aniline (C¢H7N, 97.7%)
and potassium hydroxide (KOH, 97.7%) were obtained from Sigma-Aldrich Co., Ltd.,
Shanghai China. Hydrochloric acid (HCl, 37%) and ethanol (CoHgO, 99%) were sourced
from a local supplier.

4.2. Characterisation

The morphology and structural characteristics of the samples were observed via SEM
using a TM3030 microscope (Hitachi, Tokyo, Japan). The crystal structures were analysed
using a D/max-2200VPC X-ray diffractometer (Rigaku, Tokyo, Japan). FTIR spectroscopy
(Perkin Elmer, Waltham, MA, USA) was used to characterise the functional groups in the
samples. A universal testing machine (CMT5504, MTS, Eden Prairie, MN, USA) was used
to study the mechanical properties. All electrochemical performance tests were conducted
on an electrochemical workstation (51-XMX1004, Oxford, UK).

4.3. Preparation of MXene, MXene/CNF Aerogel Films and MXene/CNF-PANI Aerogel Films

To an aqueous solution of LiF (6 g) and 9 M HCl, 5 g Ti3AIC, was slowly added under
continuous stirring at 45 °C for 24 h. After centrifugation of the solution, the resulting
precipitate was washed first with HCl (1 M) for 2-3 times and then with deionised water
until pH 7. After sonication for 60 min at 0 °C in water and centrifugation at 3500 rpm min~*
for 10 min, a dark green supernatant was obtained, which was collected and subjected to
freeze-drying to furnish layered MXene flakes.

CNF films and MXene films were obtained by suction filtration from CNF and MXene
solutions, respectively. The MXene/CNF aerogel films were prepared via insertion and
suction filtration by blending 3.6 mL CNF solution (0.55 wt%) with 6.6 mL MXene solution
(3 mg mL™1), followed by magnetic stirring at 500 rpm for 3 h, sonication for 30 min
and then vacuum suction. The MXene/CNF aerogel films were immersed in 20 mL
(NH4)25,04 solution (0.57 g mL~1) containing 1 M HCl solution for 3 h and then removed
and immersed in 20 mL aniline solution (0.19 g mL~1) with 1 M HCl solution for 3 h for in
situ polymerisation of aniline. MXene/CNF-PANI films were finally obtained by repeated
rinsing with deionised water and drying.

4.4. Electrochemical Performance of MXene, MXene/CNFs Aerogel Films and MXene/CNFs-PANI
Aerogel Films

The electrochemical performance of MXene, MXene/CNF aerogel films and
MXene/CNF-PANI aerogel films was investigated by means of CV, GCD and EIS mea-
surements using an electrochemical workstation. The composite films were cropped into
2 x 1.8 cm? electrode sheets and assembled into symmetric supercapacitors in the elec-
trochemical workstation using a three electrodes system with Ag/AgCl as the reference
electrode and 3 M H,SO; as the electrolyte.
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