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Abstract: The gel electrolyte significantly influences gel valve-regulated lead acid battery perfor-
mance. To address this, the paper describes the preparation of novel polymer gel electrolytes using
poly (vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) for valve-regulated lead–acid batteries.
FTIR technique is used to confirm the chemical reaction between PVA and TEOS. Electrochemical
analyses such as cyclic voltammetry and electrochemical impedance spectroscopy were applied
to optimize the concentration of PVA-TEOS polymer gel electrolyte. The optimum concentration
of polymer gel electrolyte was determined as 20 wt% of TEOS in PVA (PE-1) with higher anodic
peak and lower Rs and Rct values. The Galvanostatic charge–discharge tests were performed on the
optimized gel system prototype battery. The highest capacity of 6.86 × 10−5 Ah at a current density
of 0.2 mA cm−2 was achieved with an excellent capacity retention ratio of 85.7% over 500 cycles.
The exceptional cycle performance and high capacity make PVA-TEOS gel electrolyte a promising
candidate for practical battery application.

Keywords: polymer gel electrolyte; VRLA battery; cyclic voltammetry; electrochemical impedance
spectroscopy; galvanostatic charge–discharge

1. Introduction

The need for energy in today’s knowledge-based societies is growing, and energy
storage technologies are becoming increasingly important [1]. Although traditional en-
ergy sources such as coal and petroleum generate the majority of the needed energy, their
negative impacts on the environment and ecosystem have become a significant issue for
the planet [2]. This issue can be resolved by electrochemical energy storage systems by
effectively storing the produced energy in the chemical form [3]. Currently, batteries are
being improved further to power a growing number of uses, including portable devices,
electric cars, and smart grids [4]. The essential energy storage technologies today are
valve-regulated lead–acid (VRLA) batteries, which were initially introduced in the early
1970s. Due to their benefits, including great energy efficiency, low cost, and extended cyclic
life, VRLA batteries have a wide range of industrial applications, including the automobile
industry, portable energy systems, and others [5]. Although interest in VRLA batteries
has grown over the past two decades, their performance still has to be significantly im-
proved [6,7]. Common lead–acid battery types include the following: batteries with excess
or flooded electrolyte, low maintenance lead–acid batteries with a significant amount of ex-
cess electrolyte, and absorptive glass–microfibre (AGM) valve-regulated lead–acid (VRLA)
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batteries with immobilized electrolyte [8,9]. Electrodes, membranes, and electrolytes are the
three primary components of VRLA battery systems. Each component has a big impact on
the system’s capability and cyclical life. In terms of the electrolyte component, researchers
have created two basic electrolyte technologies, including gel electrolyte and absorbed glass
mat (AGM) systems. In an AGM electrolyte system, sulfuric acid is adsorbed onto a certain
type of glass mat, and this system is known as an AGM VRLA battery. The gelled elec-
trolyte system, known as the GEL–VRLA battery, is created by combining the gelling agent
with the proper concentration of sulfuric acid. Particularly when used at low and high
temperatures, the gel electrolyte system performs better than the AGM electrolyte system.
AGM and flooded-type lead acid batteries are more impacted by operating temperature
than gel type lead–acid batteries [10].

In general, gels are described as polymers and their swollen materials with three-
dimensional network structures that are insoluble in any solvent and exist under peculiar
conditions not found in solids, liquids, and gases. Polymer gels are comprised of a poly-
mer network and solvents; the polymer network encloses the liquid and prevents it from
escaping, or, in other words, acts as a container to hold a lot of solvents, giving it prop-
erties of both liquids and solids [11]. Gels often have high mobility because the polymer
networks are solvated by a significant portion of the trapped solvent. The replacement
of the solvent by liquid electrolyte having high value of conductivity results in polymer
gel electrolytes [12]. The gelled electrolyte is one of the main elements influencing the
quality of function of gel–VRLA batteries. During the creation of the gel, several variables,
including the concentration of the sulphuric acid solution and the kind and concentration
of gelling agents, can affect the properties of the gelled electrolyte such as the gel strength
and rheology. In turn, the gelled electrolyte characteristics impact the electrolyte filling
procedure, which in turn impacts the performance of the gel–VRLA batteries [13].

Admirable mechanical characteristics and high ionic conductivity are the requirements
that gel electrolytes must generally meet, and these requirements call for proper tuning
of the gel electrolyte components. A lot of work has been put into the electrochemical
production of polymer gel electrolytes during the past few decades. Due to their distinct
qualities such as facile moulding, good electrode–electrolyte interaction, and light weight,
polymer electrolytes have emerged as a material of major relevance for many electrochem-
ical devices [14]. In recent years, a number of polymer matrix materials, including poly
(vinyl alcohol) (PVA) [15], poly (ethylene oxide) (PEO) [16], poly (methyl methacrylate)
(PMMA) [17], poly (vinylidene fluoride) (PVDF) [18], and poly (acrylonitrile) (PAN) [19]
have been studied for the preparation of gel electrolytes. Awadhia et al. reported that
poly(vinyl alcohol) (PVA) can be used as a gel electrolyte because of its outstanding ion
transport capability, good mechanical property, excellent chemical stability, high water
solubility, remarkable swelling ability, high moisture retention, non-toxicity, and good
biocompatibility which makes it a great material for research [20,21].

Recent research has led to the development of polymer–silica hybrids with improved
thermal and mechanical capabilities (due to the silica), higher flexibility (due to the presence
of polymers), and numerous customized properties which have found use in a number
of areas, including catalysis [22], adsorption [23], photonics [24], white light-emitting
diodes [25], Quantum Dot Light Emitting Diodes [26] and pervaporation [27]. In reality, a
silica oligomer is created at the very beginning, which later aggregates into a nano-SiO2
particle [28]. The sol–gel method may synthesize silica from a variety of precursors, but
the most popular one is tetraethylorthosilicate (TEOS), which can be easily processed
and possesses a relatively slow and controllable reaction rate [29]. The hydrolysis and
condensation reactions of the tetraethylorthosilicate (TEOS) result in a silica network with
siloxane linkages (Si-O-Si) in the bulk and silanol groups at the surface (Si–OH). The
reactivity of silica is primarily caused by the latter [30]. In addition, SiO2 possesses a
hydrophilic characteristic that allows it to absorb water more forcefully. The ions in the
inorganic materials are firmly hydrogen bound to the water molecules [31]. Kim et al.
reported that at high temperatures, composite material demonstrated more water uptake
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and improved cell efficiency [32]. Studies using TEOS have demonstrated that the addition
of the TEOS additive causes the synthetic material water absorption capacity to rise even at
high temperatures and low relative humidity [33].

In this work, an attempt is made to increase the performance of VRLA battery by devel-
oping a novel PVA-TEOS polymer gel electrolyte. The chemical reaction of the polymer gel
electrolyte was studied by Fourier transform infrared spectroscopy (FTIR) and optimization
ratios of the TEOS was studied by cyclic voltammetry (CV) and electrochemical impedance
spectroscopic (EIS) methods for the first time. Galvanostatic charge–discharge (GCD) exper-
iments were then utilized to analyze the charge–discharge behavior of optimized polymer
gel electrolytes.

2. Results and Discussion
2.1. Physico-Chemical Characterization of Developed Polymer Gel Electrolytes
Fourier Transform Infrared Spectroscopy (FTIR)

The incorporation of TEOS into PVA matrix was confirmed by FTIR studies. Figure 1
displays the FTIR spectra of plane PVA and those of various TEOS loadings. A characteristic
strong and broad band appeared at 3400 cm−1 in plane PVA spectra (PE) corresponding to
–OH stretching vibrations of the hydroxyl groups [34]. With increasing TEOS content, the
intensity of this broadband gradually dropped from PE-1 to PE-4, indicating that some of
the –OH groups of PVA were involved in a condensation reaction with the silanol groups of
TEOS, resulting in the formation of covalently bound crosslinks between polymer segments.
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Further multiple bands that appeared in the spectra (PE) at around 1000 and 1200 cm−1

were assigned to C-O stretching vibrations. The intensity of these bands increased marginally
from PE-1 to PE-4 due to an increase in Si–O groups in the gels with increasing TEOS content,
since the Si–O stretching band appears almost close to the frequency of C–O stretching
that suggests the formation of Si-O-C bonds between the PVA and TEOS [35,36]. However,
peaks at 1420 cm−1 and 890 cm−1 corresponds to S=O and S-OH stretching vibrations of
H2SO4 in polymer gel electrolyte [37].

2.2. Electrochemical Performance of Developed Polymer Gel Electrolytes
2.2.1. Cyclic Voltammetry (CV) Analysis

Using lead as the working electrode and a scan rate of 50 mV s−1, the cyclic voltammet-
ric behavior of produced polymer electrolytes was examined. The potential was scanned
from −1 V to +1 V. Figure 2 represents cyclic voltammograms of PE, PE-1, PE-2, PE-3,
PE-4, and E. The production of PbSO4 from a Pb electrode accounts for the oxidation
peak at around −0.5 V. Peak potential for the reverse reduction process is at −0.4 V. In
lead–acid batteries, the oxidation reaction represents the conversion of Pb to PbSO4 (dis-
charge reaction) and reduction reaction represents the conversion of PbSO4 to Pb (charge
reaction) (Equations (1) and (2)). For these reasons, CV analysis can be used to examine the
fundamental characteristics of a lead–acid battery [38].

Pb + HSO4
− ↔ Pb2+ + SO4

2− + H+ + 2e−, (1)

Pb2+ + SO4
2− ↔ PbSO4. (2)
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Figure 2. Cyclic voltammetry curves of plane PVA (PE), PVA-20 wt% TEOS (PE-1), PVA-40 wt%
TEOS (PE-2), PVA-60 wt% TEOS (PE-3), PVA-80 wt% TEOS (PE-4) and 36 wt% H2SO4 (E) at a scan
rate of 50 mV s−1.

The largest anodic peak current was identified in a PVA system with 20 wt% added
TEOS. Since the reaction between the electrode surface and electrolyte ions occurred easier
in this concentration than in others. The interactions of electrodes and mobile ions of
electrolyte had the highest level according to obtained anodic and cathodic peak values.
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The result showed that using TEOS can increase the capacity and performance of the
battery [39]. Further, the value of the anodic peak current was decreased from 40 wt% to
80 wt% of TEOS-containing gel electrolyte. Because of the deformation of the gel structure,
the interactions of electrodes and electrolyte decrease, which results in a decrease in the
anodic peak current value of the polymer gel electrolyte. Additionally, Figure 3 shows the
change of peak current with various electrolytes.
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Figure 3. Anodic peak current values of plane PVA (PE), PVA-20 wt% TEOS (PE-1), PVA-40 wt%
TEOS (PE-2), PVA-60 wt% TEOS (PE-3), PVA-80 wt% TEOS (PE-4) and 36 wt% H2SO4 (E) at a scan
rate of 50 mV s−1.

To determine the way in which the scan rate affected the values of the anodic peak
current, the CV behavior of the optimized polymer gel electrolyte PVA-20 wt% TEOS (PE-1)
was examined at numerous scan rates (5–200 mV s−1). From Figures 4 and 5, it is observed
that as the scan rate increased, the anodic peak current increased [40].

2.2.2. Electrochemical Impedance Spectroscopy (EIS) Analysis

Ion transport in the electrodes and the characteristics of the interface are both revealed
by measurements from electrochemical impedance spectroscopy. The kinetic characteristics
and the electrode reaction both affect the ability of an ion to move. The material morphology
has a significant impact on these elements. Ion and electron transport processes are included
in the order of transport, as well as the charge transfer process [41]. The Nyquist plot of the
equivalent circuit fitted by the ZsimpWin software is shown in Figure 6. To simulate the
impedance behavior of the polymer gel electrolyte and match the experimentally acquired
impedance data, the equivalent circuit of model R(C(R(Q(RW)))) was utilized. The first
one is the polymer and electrolyte bulk solution resistance (Rs), second one combines the
double-layer capacitance (Cdl) with the electrolyte resistance (R1) in parallel. A series
connection to electrolyte resistance (R1) is made up of using constant phase element (Q) in
parallel with charge transfer resistance (Rct) and Warburg impedance (W) of the polymer
gel electrolyte [42,43]. For 36% H2SO4 equivalent, circuit R(Q(R(QR)(Q(RW)))) was used.
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Rs and Rct parameters were studied in EIS spectra [10]. Figure 7 shows the Rs
solution resistance and Rct charge transfer resistance values of electrolytes. The fitted
impedance values of developed polymer gel electrolytes and 36 wt% H2SO4 are shown in
Tables 1 and 2.
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Figure 7. Equivalent circuits of (a) developed polymer gel electrolyte (b) 36 wt% H2SO4 and Solution
resistance (Rs) and charge transfer resistance (Rct) of plane PVA (PE), PVA-20 wt% TEOS (PE-1),
PVA-40 wt% TEOS (PE-2), PVA-60 wt% TEOS (PE-3), PVA-80 wt% TEOS (PE-4) and 36 wt% H2SO4 (E).
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Tables 1 and 2 show that the Rs and Rct values are low for PVA-20 wt% TEOS (PE-1).
Due to higher free ions in the polymer gel electrolyte, the mobility and conductivity of
the polymer gel electrolyte were increased for PVA-20 wt% TEOS (PE-1), and electrode
and electrolyte interaction must be there at the greatest level. Further, with the addition
of TEOS beyond 20 wt%, higher Rs and Rct values were observed when compared to
PVA-20 wt% TEOS (PE-1). This is due to the fact that restriction of the free ions leads
to lower mobility of ions in the deformed three-dimensional structure of the developed
polymer gel electrolyte [38].

2.2.3. Galvanostatic Charge–Discharge (GCD) Analysis

Galvanostatic charge–discharge profiles of optimized PVA-20 wt% TEOS (PE-1) proto-
type battery test at variable current densities are shown in Figure 8, where the achieved
capacity and the current densities are calculated.
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Table 1. Fitted impedance values of plane PVA (PE), PVA-20 wt% TEOS (PE-1), PVA-40 wt% TEOS
(PE-2), PVA-60 wt% TEOS (PE-3), PVA-80 wt% TEOS (PE-4).

Polymer Gel
Electrolytes Rs (Ohm) Cdl (F) R1 (Ohm) Q (S-secˆn) n Rct (Ohm) W (S-secˆ5)

PE 0.5341 0.0002509 1.97 0.005817 0.5971 82.59 0.1447
PE-1 0.5182 0.0002258 1.859 0.007118 0.5288 72.33 0.22
PE-2 0.5639 0.00004742 8.848 0.000348 0.6661 2035 0.01576
PE-3 0.6014 0.00003007 13.27 0.000189 0.6616 1585 0.008965
PE-4 0.6191 0.0001082 1.831 0.001566 0.7558 1561 0.007856
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Table 2. Fitted impedance values of 36 wt% H2SO4 (E).

Rs
(Ohm)

Q
(S-secˆn) n R1

Q
(S-secˆn) n R2

Q
(S-secˆn) n Rct W

(S-secˆ5)

0.6988 0.00006129 0.8374 0.02246 2.502×10−18 0.7992 350.5 0.0001736 0.6981 9763 0.009552

Investigation of Figure 8 shows that the battery has a capacity of 6.86 × 10−5 Ah
at 0.2 mA cm−2, with a quite low current density. When the charge–discharge current
increases from 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, and 1 mA cm−2, the discharge capacity
decreases from 6.86 × 10−5, 5.936 × 10−5, 5.229 × 10−5, 4.620 × 10−5, 4.135 × 10−5,
3.680 × 10−5, 3.405 × 10−5 and 9.5 × 10−6 Ah, respectively. The outcome shows that even
at extremely high current densities, the PVA-20 wt% TEOS (PE-1) has great rate capability
and structural integrity. This shows that a prototype battery with PVA-20 wt% TEOS (PE-1)
can quickly charge and discharge and can adapt to the grid’s rapid changes in power
supply and demand [4,44,45].

Figure 9 designates the charge and discharge curves of the prototype battery with
PVA-20 wt% TEOS (PE-1) and 36 wt% H2SO4 (E) at 0.5 mA cm−2 current density. The
prototype battery with PVA-20 wt% TEOS (PE-1) showed a capacity of 3.405 × 10−5 Ah,
whereas 36 wt% H2SO4 (E) showed 1.036 × 10−5 Ah. The capacity of the battery with
PVA-20 wt% TEOS (PE-1) is higher than that of 36 wt% H2SO4 (E). Figure 10 shows the
cycle performance of the prototype battery with PVA-20 wt% TEOS (PE-1) at a current
density of 0.5 mA cm−2. After 500 cycles, there was only a 14.3% retention of capacitance
and coulombic efficiency of almost 100%, demonstrating remarkable cycle stability.
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3. Conclusions

This study involved the preparation and characterization of a unique PVA-TEOS, a
polymer gel electrolyte for gel–VRLA battery application. In FTIR, the increase in the inten-
sity observed in the multiple peaks that appeared in the range between 1000 and 1100 cm−1

confirms the cross-linking reaction between PVA and TEOS. Further, the electrochemical
performance of the polymer gel electrolyte was analyzed. Using the cyclic voltammetry
technique, 20 wt% of TEOS in PVA (PE-1) is considered an optimized polymer gel elec-
trolyte since it shows the highest anodic peak current at 50 mV s−1. From electrochemical
impedance spectroscopy analysis, low Rs and Rct values were observed in 20 wt% of
TEOS in PVA (PE-1). The battery performance of the optimized polymer gel electrolyte was
analyzed using galvanostatic charge–discharge tests. In total, 20 wt% of TEOS in PVA (PE-1)
exhibits exceptional cycle performance with a large capacity and better rate capability. The
improved polymer gel electrolyte obtained a great capacity retention ratio of 85.7% over
500 cycles and delivered a capacity of 6.86 × 10−5 Ah at a current density of 0.2 mA cm−2.
The prototype battery with PVA-20 wt% TEOS demonstrated a capacity of 3.405 × 10−5 Ah
at 0.5 mA cm−2 current density compared to 36 wt% H2SO4 with 1.036 × 10−5 Ah. As a
result, PVA-20 wt% TEOS produces superior battery performance compared to 36 wt%
H2SO4. As a result, polymer gel electrolyte PVA-TEOS overcomes the ideal properties
of electrolytes used in conventional lead acid batteries. Therefore, PVA-TEOS hybrid gel
electrolyte can be used as an electrolyte in a lead storage battery for industrial applications.

4. Materials and Methods
4.1. Materials

Poly(vinyl alcohol) (Mw ~ 124,000) was procured from s.d. fine Chemicals Ltd.,
Mumbai, India. Tetraethylorthosilicate (Mw ~ 208.33) was purchased from Sigma-Aldrich
Chemicals, Saint Louis, MO, USA. From Spectrum Reagent and Chemicals Pvt. Ltd. in
Cochin, India, sulfuric acid was provided. Distilled water was used during the whole
research work.
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4.2. Development of Polymer Gel Electrolytes

First, 4 g of PVA and 100 mL of 36 wt% H2SO4 were combined, then stirred at 60 ◦C for
3 h. Filtered, the solution was given the PE designation. Then, to prepare a solution of PVA
for the sol–gel reaction, the necessary amount of TEOS was added, and the outcome reaction
solution was agitated for 3 h at 60 ◦C. Polymer gel electrolytes were formed by varying
the amount of TEOS concerning PVA by 20, 40, 60, and 80 wt%. These electrolytes were
labelled PE-1, PE-2, PE-3, and PE-4, respectively. For comparison, 36 wt% H2SO4 solution
was prepared and represented as E. Figures 11 and 12 show the PVA-TEOS polymer gel
electrolyte preparation method and possible scheme of interaction between PVA and TEOS.

Gels 2022, 8, x FOR PEER REVIEW 11 of 16 
 

 

3. Conclusions 
This study involved the preparation and characterization of a unique PVA-TEOS, a 

polymer gel electrolyte for gel–VRLA battery application. In FTIR, the increase in the in-
tensity observed in the multiple peaks that appeared in the range between 1000 and 1100 
cm−1 confirms the cross-linking reaction between PVA and TEOS. Further, the electro-
chemical performance of the polymer gel electrolyte was analyzed. Using the cyclic volt-
ammetry technique, 20 wt% of TEOS in PVA (PE-1) is considered an optimized polymer 
gel electrolyte since it shows the highest anodic peak current at 50 mV s−1. From electro-
chemical impedance spectroscopy analysis, low Rs and Rct values were observed in 20 
wt% of TEOS in PVA (PE-1). The battery performance of the optimized polymer gel elec-
trolyte was analyzed using galvanostatic charge–discharge tests. In total, 20 wt% of TEOS 
in PVA (PE-1) exhibits exceptional cycle performance with a large capacity and better rate 
capability. The improved polymer gel electrolyte obtained a great capacity retention ratio 
of 85.7% over 500 cycles and delivered a capacity of 6.86 × 10−5 Ah at a current density of 
0.2 mA cm−2. The prototype battery with PVA-20 wt% TEOS demonstrated a capacity of 
3.405 × 10−5 Ah at 0.5 mA cm−2 current density compared to 36 wt% H2SO4 with 1.036 × 10−5 
Ah. As a result, PVA-20 wt% TEOS produces superior battery performance compared to 
36 wt% H2SO4. As a result, polymer gel electrolyte PVA-TEOS overcomes the ideal prop-
erties of electrolytes used in conventional lead acid batteries. Therefore, PVA-TEOS hy-
brid gel electrolyte can be used as an electrolyte in a lead storage battery for industrial 
applications. 

4. Materials and Methods 
4.1. Materials 

Poly(vinyl alcohol) (Mw ~ 124,000) was procured from s.d. fine Chemicals Ltd., Mumbai, 
India. Tetraethylorthosilicate (Mw ~ 208.33) was purchased from Sigma-Aldrich Chemicals, 
Saint Louis, MO, USA. From Spectrum Reagent and Chemicals Pvt. Ltd. in Cochin, India, sul-
furic acid was provided. Distilled water was used during the whole research work. 

4.2. Development of Polymer Gel Electrolytes 
First, 4 g of PVA and 100 mL of 36 wt% H2SO4 were combined, then stirred at 60 °C 

for 3 h. Filtered, the solution was given the PE designation. Then, to prepare a solution of 
PVA for the sol–gel reaction, the necessary amount of TEOS was added, and the outcome 
reaction solution was agitated for 3 h at 60 °C. Polymer gel electrolytes were formed by vary-
ing the amount of TEOS concerning PVA by 20, 40, 60, and 80 wt%. These electrolytes were 
labelled PE-1, PE-2, PE-3, and PE-4, respectively. For comparison, 36 wt% H2SO4 solution was 
prepared and represented as E. Figures 11 and 12 show the PVA-TEOS polymer gel electrolyte 
preparation method and possible scheme of interaction between PVA and TEOS. 

 
Figure 11. Diagram showing the process for making PVA-TEOS polymer gel electrolyte. 

Figure 11. Diagram showing the process for making PVA-TEOS polymer gel electrolyte.

Gels 2022, 8, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 12. Possible scheme of interaction between PVA and TEOS. 

4.3. Physico-Chemical Characterization 
The interactions between PVA and TEOS in the polymer gel electrolyte were investi-

gated using Spectrum Two FTIR containing Diamond ATR (PerkinElmer Singapore Pvt. 
Ltd., 28, Ayer Rajah Crescent, no. 08-01, Singapore 139959). FTIR measurements were 
made between 500 and 4000 cm−1. 

4.4. Electrochemical Performance 
Electrochemical characterization such as Cyclic voltammetry (CV), Electrochemical 

impedance spectroscopy (EIS), and Galvanostatic charge–discharge (GCD) of the devel-
oped polymer gel electrolytes was characterized using an electrochemical work station 
CHI660E, CH Instruments, Austin, TX, USA. During analysis, three-electrode systems 
were used for CV and EIS, with the lead being the working electrode (8 cm length, 6 mm 
diameter), Ag/AgCl, KCl (saturated) as a reference electrode, and platinum wire as the 
auxiliary electrode. Before every measurement, the working electrodes were polished. Cy-
clic voltammetry (CV) tests were conducted over the potential range from −1.0 to 1.0 V at 
a varying scan rate (5–200 mV s−1). The performance of samples was indicated by correspond-
ing redox peak currents in the curves. Electrochemical impedance spectroscopy (EIS) experi-
ments were carried out at a range of 100 kHz to 0.01 Hz frequency with 5 mV amplitude. The 
curves obtained enabled us to analyze the Solution resistance (Rs) and Charge transfer re-
sistance (Rct). Galvanostatic charge–discharge (GCD) was performed using a two-electrode 
system in a cell with two negative electrodes, two positive electrodes, and 4.5 mL of synthe-
sized gel electrolyte. The dimension of each electrode was 2 × 2 cm2. With various current 
densities, batteries were charged and discharged. All charge–discharge analyses were carried 
out between −1 and 1 V. All experiments were conducted at a temperature of 25 °C. Figure 13 
shows photo images of developed polymer gel electrolytes, electrochemical workstation, 
sealed prototype battery, and cross-section view of the battery showing electrodes. 

Figure 12. Possible scheme of interaction between PVA and TEOS.

4.3. Physico-Chemical Characterization

The interactions between PVA and TEOS in the polymer gel electrolyte were investi-
gated using Spectrum Two FTIR containing Diamond ATR (PerkinElmer Singapore Pvt.
Ltd., 28, Ayer Rajah Crescent, no. 08-01, Singapore 139959). FTIR measurements were made
between 500 and 4000 cm−1.

4.4. Electrochemical Performance

Electrochemical characterization such as Cyclic voltammetry (CV), Electrochemical
impedance spectroscopy (EIS), and Galvanostatic charge–discharge (GCD) of the devel-
oped polymer gel electrolytes was characterized using an electrochemical work station
CHI660E, CH Instruments, Austin, TX, USA. During analysis, three-electrode systems
were used for CV and EIS, with the lead being the working electrode (8 cm length, 6 mm
diameter), Ag/AgCl, KCl (saturated) as a reference electrode, and platinum wire as the
auxiliary electrode. Before every measurement, the working electrodes were polished.
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Cyclic voltammetry (CV) tests were conducted over the potential range from −1.0 to 1.0 V
at a varying scan rate (5–200 mV s−1). The performance of samples was indicated by
corresponding redox peak currents in the curves. Electrochemical impedance spectroscopy
(EIS) experiments were carried out at a range of 100 kHz to 0.01 Hz frequency with 5 mV
amplitude. The curves obtained enabled us to analyze the Solution resistance (Rs) and
Charge transfer resistance (Rct). Galvanostatic charge–discharge (GCD) was performed
using a two-electrode system in a cell with two negative electrodes, two positive elec-
trodes, and 4.5 mL of synthesized gel electrolyte. The dimension of each electrode was
2 × 2 cm2. With various current densities, batteries were charged and discharged. All
charge–discharge analyses were carried out between −1 and 1 V. All experiments were
conducted at a temperature of 25 ◦C. Figure 13 shows photo images of developed polymer
gel electrolytes, electrochemical workstation, sealed prototype battery, and cross-section
view of the battery showing electrodes.
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