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Abstract: Hydrolyzed hyaluronic acid high-resolution fine microneedles of 13 µm in diameter and
24 µm in height were fabricated from hydrolyzed hyaluronic acid gels made in mixtures of water
using vacuum environment imprint lithography processes with a water permeable mold. The gas
traps of water and volatile solvents in the imprint materials cause transfer failure in the conventional
water impermeable molds of quartz and metal. However, the water permeable mold allows the use
of 67 wt% dilution water with high solubility to increase the fluidity of the hydrolyzed hyaluronic
acid during the patterning of high-resolution fine microneedles for cosmetics and pharmaceuticals.
This demonstration sets a new paradigm of functional pure gels for high-resolution nano-patterning
applications with various cosmetic and pharmaceutical materials containing dilution water using a
water permeable mold.

Keywords: fine microneedles; hydrolyzed hyaluronic acid; functional gels; cosmetics; transdermal
drug delivery system; water permeable mold; imprint lithography

1. Introduction

Many beauty ingredients, such as hyaluronic acid and collagen gels, are expected to
bring significant demand to the global market for cosmetology products [1]. Hyaluronic
acid made in mixtures of solvents has excellent water retention properties and can con-
tain approximately 1000 times its weight in water [2,3]. However, the concentration of
hyaluronic acid, which occurs naturally in the skin, declines with age, affecting wrinkle
formation, skin elasticity, and dryness [4,5]. Therefore, hyaluronic acid can be used in
cosmetic products to provide anti-ageing and anti-wrinkle benefits [6,7].

The skin is composed of an epidermal layer, a dermal layer, and subcutaneous tissue,
with a stratum corneum on the surface of the epidermal layer. Since the stratum corneum
has a barrier function to prevent foreign substances from entering the body and moisture
evaporation from the body [8,9], high-molecular-weight cosmetic ingredients such as
hyaluronic acid cannot be delivered into the skin via transdermal administration [10,11].
Various methods have been used to determine how to penetrate the stratum corneum to
the epidermis, i.e., the deep layer within the skin [12]. For example, hypodermic needles
have been used, but they are painful and many patients have needle phobias; moreover,
these needles require knowledgeable medical personnel to administer them [13,14].

Currently, technologies such as nano-emulsions, liposomes, nanoparticles, and other
nanotechnologies have been developed to penetrate the stratum corneum with active
ingredients in cosmetics [15,16]. These methods have shown significant improvement in the
skin retention of active ingredients and are expected to enhance skin health. Microneedles
are one of these technologies that are expected to be able to deliver water-absorbing
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ingredients safely and efficiently [17–22]. Microneedles shaped by microfabrication come
in a variety of types, but soluble microneedles including hyaluronic acid and collagen
gels have been used in a wide range of cosmetic and transdermal drug delivery system
applications. The microneedles have the benefit of enhancing penetration, eliminating the
risk of needles remaining in the body or leaving sharp waste that could be a biohazard
after use [23,24].

Conventional microneedles for cosmetic applications are 100–800 µm in diameter and
200–800 µm in height. Conversely, the epidermal layer is approximately 200 µm thick.
Consequently, the microneedles reach the dermis layer, which exists below the epidermis
layer, leading to a painful injection because the dermal layer contains sensory receptors [25].

However, the microfabrication process involves problems such as gas generation
from water and solvents during heating, molding defects, and mold breakage [26–28].
Furthermore, the microfabrication of a hyaluronic acid gel solution containing high con-
centrations of water and volatile solvents was difficult because of its high viscosity in
solution even at low concentrations [29–32]. To improve the resolution of microneedles and
achieve miniaturization, we developed gas and water permeable molds that can vent the
gas generated during heat molding [33–35]. The high-resolution fine microneedle pattern
failure of hydrolyzed hyaluronic acid gels containing 67 wt% water as a dilution solvent
was demonstrated using the water permeable mold and the vacuum environment imprint
lithography processes for skin care cosmetic patches.

2. Results and Discussion

Figure 1 shows the scanning electron microscope (SEM) images of the hydrolyzed
hyaluronic acid fine microneedles fabricated at (a) the 1st imprint by using a conventional
non-water permeable quartz mold with inverted microneedle patterns and (b) the 1st,
3rd, 10th, 13th, and 14th imprints by using the water permeable mold in the vacuum
environment imprint lithography processes. There is no significant difference in patterning
defects between the 1st and 14th imprints using the same water permeable mold. The
hydrolyzed hyaluronic acid solutions were filled into the tip of the needles in the water
permeable mold, and patterning defects were improved by using (b) the water permeable
mold compared with (a) the conventional non-water permeable quartz mold. This is
because the water vapor from the water evaporation generated during the processes
permeated through the water permeable mold, improving the filling rate of the highly
viscous hydrolyzed hyaluronic acid into the water permeable mold.

The high-resolution fine microneedles of approximately 13 µm in diameter and 24 µm
in height, with hydrolyzed hyaluronic acid and water as their two components, were
fabricated using the newly vacuum environment imprint lithography processes using a
water permeable mold for cosmetic and pharmaceutical applications. The prepared water
permeable surface material in the water permeable mold with titanium dioxide and silicon
dioxide were cross-linked by the conditions to generate the cross-link density needed
to obtain water permeability. The possibility of shortening the molding time by further
improving the filling speed is expected to be realized in the next study.

In addition, Figure 2 shows the measurement results of (a) the bottom diameter, (b) the
height and (c) the angle of the microneedle patterns by calculating the sharpness of the SEM
images on the fabricated hydrolyzed hyaluronic acid fine microneedles at the 1st, 3rd, 10th,
13th, and 14th imprints. Although the measured result of the bottom diameter (Standard
deviation; 0.11 µm), height (Standard deviation; 0.48 µm) and angle (Standard deviation;
0.37◦) of microneedle patterns was considered to be a data variability by calculating the
sharpness of the SEM images in five different areas, the size biases of the microneedles do
not affect the above application of cosmetic and pharmaceutical microneedles. These results
indicated that the water permeable mold improved the patterning defects of the hydrolyzed
hyaluronic acid gel solutions containing high concentrations of 67 wt% water and can be
expected to be useful for the mass production of high-resolution fine microneedles using
production-level automatic imprint lithography equipment.
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Figure 1. SEM images of hydrolyzed hyaluronic acid fine microneedles fabricated at (a) 1st imprint
by using conventional non-water permeable quartz mold with inverted microneedle patterns and
(b) 1st, 3rd, 10th, 13th, and 14th imprints by using water permeable mold in vacuum environment
imprint lithography processes.

Figure 3 is a comparison of the microneedle sizes and the dissolution behavior of (a,b)
commercial microneedles (TAPPULEENA, JINBEEKOA, Japan) of 364 µm in the length
on one side of the bottom of the rhombus and 346 µm in height and (d) the imprinted
hydrolyzed hyaluronic acid fine microneedles of approximately 13 µm in diameter and
24 µm in height. The tip of the above commercial microneedle was not pointed and
appeared to be flat compared with the tip of the newly developed hydrolyzed hyaluronic
acid fine microneedles. Both (e) the hydrolyzed hyaluronic acid fine microneedles without
additives and (c) the commercial microneedles with sodium hyaluronate, as well as various
additives such as glycerine and butylene glycol, which have the hygroscopic properties to
dissolve easily under high humidity conditions, had more than 60% of their volume dissolve
after 35 min. The hydrolyzed hyaluronic acid fine microneedles were advantageous in
that they acted in the skin within a shorter time, broadening the application areas of the
high-resolution microneedles to cosmetics and pharmaceuticals.
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Figure 2. Measurement results of (a) bottom diameter, (b) height, and (c) angle of microneedle
patterns obtained by calculating sharpness of SEM images on fabricated hydrolyzed hyaluronic acid
fine microneedles at 1st, 3rd, 10th, 13th, and 14th imprints.
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Figure 3. Comparison of microneedles size and dissolution behavior of commercial microneedles
and imprinted hydrolyzed hyaluronic acid fine microneedles.

Figure 4 shows the Fourier transform infrared spectrometer (FT-IR) spectra of the
hydrolyzed hyaluronic acid before and after thermal deposition for evaluating the thermal
decomposition in fine microneedle fabrication. The 3400 cm−1 (OH bond), 2880 cm−1

(CH bond), 1740 cm−1 (ester), 1649 cm−1 (amide type I), 1554 cm−1 (amide type II), and
1045 cm−1 (CO bond) peaks were observed before thermal deposition, and 3375 cm−1 (OH
bond), 2885 cm−1 (CH bond), 1735 cm−1 (ester), 1640 cm−1 (amide type I), 1551 cm−1

(amide type II), and 1033 cm−1 (CO bond) peaks after thermal deposition also indicated
the absorption of hydrolyzed hyaluronic acid and water, and these peaks were somewhat
coincident before and after thermal deposition at 80 ◦C for 90 min.
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Figure 4. FT-IR spectra of hydrolyzed hyaluronic acid before and after thermal deposition for
evaluating thermal decomposition in fine microneedle fabrication.

Figure 5 shows the thermos-gravimetric differential thermal analysis instrument
(Tg-DTA) curve of the hydrolyzed hyaluronic acid. During heating up to approximately
100 ◦C, a continuous weight loss occurs nearly imperceptibly owing to the removal of
the water in the hydrolyzed hyaluronic acid. No shoulder and no sharp signal can be
observed up to approximately 170 ◦C in the hydrolyzed hyaluronic acid. The hydrolyzed
hyaluronic acid in the microneedles was suggested to be stable up to 170 ◦C. Therefore,
the above adjusted conditions at 40 ◦C for 15 min in the vacuum environment imprint
lithography processes were also acceptable for the fabrication of hydrolyzed hyaluronic
acid fine microneedles with high-resolution.
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A more accurate evaluation of the biocompatibility such as vivo penetration experi-
ments on mice and skin penetration is the subject of a future study. The result that one can
nanoimprint functional gel solutions containing high volatile dilution solvents of over 60%
is expected to be a breakthrough for various biomedical applications.
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3. Conclusions

The high-resolution fine microneedle pattern failure of hydrolyzed hyaluronic acid
gels containing 67 wt% water as a dilution solvent was solved using the water permeable
mold in the vacuum environment imprint lithography processes. This demonstration of
the high-resolution fine microneedles of 13 µm in diameter and 24 µm in height sets a
new paradigm of functional pure gels for high-resolution fine patterning applications with
various cosmetic and pharmaceutical materials containing dilution water using a water
permeable mold for a skin care cosmetic patch and transdermal drug delivery system.

4. Materials and Methods

Figure 6 shows (a) the chemical structures of the water permeable surface material and
(b) hydrolyzed hyaluronic acid as a raw material of fine microneedles. The water permeable
surface materials with four components, 40 wt% 3-(acryloyloxy)propyltrimethoxysilane,
35 wt% methyltrimethoxysilane, 15 wt% tetraethyl titanate, and 10 wt% tetraethoxysi-
lane, were prepared using the sol–gel polymerization [36–38]. The polymerized wa-
ter permeable surface materials with an average molecular weight of 5500 relative to a
polystyrene standard were measured using gel permeation chromatography (GPC, EcoSEC
Elite HLC-8420GPC, Tosoh, Japan). GPC was performed using connected separation
columns: SuperAW-H columns (TSK-GEL, Tosoh, Japan); N, N-dimethylformamide was
used as the mobile phase. The solvent flow rate was fixed to 0.6 mL/min and the column
temperature was maintained at a constant 40 ◦C. The 90 wt% water permeable surface
material and 10 wt% cross-linkers were blended and stirred for 3 min. Then, the water
permeable surface material was fabricated, after defoaming for 2 h in a vacuum dryer
(AVO-250SB, AS ONE, Japan).
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Figure 6. Chemical structures of (a) water permeable surface material and (b) hydrolyzed hyaluronic
acid as a raw material of fine microneedles.

The water permeable porous substrates under the water permeable surface material
were fabricated by using a hybrid metal 3D printer (LUMEX Avance-25, Matsuura, Japan)
and the standard maraging steel powders with an average particle size of 20–30 µm. The
powders were baked and hardened by irradiating them with a 400 W Yb fiber laser using
the 3D printer [39,40]. This series of operations was repeated 10 times, and the shape was
cut using a cutting process. The above water permeable surface material was dispensed on
the surface of the water permeable porous substrates and polymerized at 180 ◦C for 20 min.
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The hydrolyzed hyaluronic acid (Hyalo-Oligo, Kewpie, Japan) shown in Figure 6b
was used as the only solid content of the fine microneedles with hydrolyzed hyaluronic
acid and water as their two components. The concentration of the hydrolyzed hyaluronic
acid gel solutions had a trade-off relationship between the fluidity of the high-resolution
nanoimprint transfer material and the process time of the vacuum environment imprinting
using a water permeable mold. The 33 wt% hydrolyzed hyaluronic acid as the adjusted
hydrolyzed hyaluronic acid gel solutions was mixed with 67 wt% pure water at 35 ◦C for
4 min using an ultrasonic cavitation machine (MH-010S, Mxmoonant), and then the gel
solutions stood at 35 ◦C for 1 min.

Figure 7a shows the first step of the imprint lithography processes from a quartz master
mold (10 mm × 10 mm) with high-resolution microneedle pattern structures of 12 µm in
diameter and 25 µm in height at a 78◦ angle to the water permeable mold. The process
conditions were as follows. The quartz master mold used as the template was treated with
a mold release agent (DURASURF DS-831TH, Harves, Japan) to release the quartz master
mold from the water permeable surface material. (1) The water permeable surface material
was placed on the water permeable porous substrates, which were ultrasonically cleaned
with acetone for 10 min and then dried in the above vacuum dryer for 20 min. (2) The
quartz master mold was placed in contact with the water permeable surface material, and
imprinting was performed using a hand hot press digital (HHP-2D, AS ONE, Japan) under
pressure at 180 ◦C for 20 min. (3) Once the heat was removed, the quartz master mold was
released, and a water permeable mold with inverted needle patterns was obtained.
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Figure 7b shows the second step of the vacuum environment imprint lithography
processes, from the water permeable mold with inverted microneedle patterns to the
hydrolyzed hyaluronic acid gel solutions. The process conditions were as follows. The
glass substrates (S3233, MATSUNAMI, Japan) were hydrophilically treated for 5 min
using UV ozone treatment equipment (LT0Z-180, Litho Tech Japan, Japan), to improve the
adhesion between the hydrolyzed hyaluronic acid and the glass substrates. (1) Hydrolyzed
hyaluronic acid gel solutions were placed on the hydrophilically treated glass substrate.
(2) The water permeable mold was placed over the solutions, and pressure was applied
with a metal weight (1.116 kg). Thereafter, it was dried in the vacuum dryer at 40 ◦C for
15 min to remove the water in the solutions through the water permeable mold. (3) The
water permeable mold was then released to obtain the hydrolyzed hyaluronic acid fine
microneedles. The hydrolyzed hyaluronic acid gel solutions were applied to 14 glass
substrates under the condition of using one developed water permeable hybrid mold with
inverted needle patterns. The pattern structures of the hydrolyzed hyaluronic acid fine
microneedles and the referenced commercial microneedles were observed using a cold
field emission SEM (Regulus8100, Hitachi High-Tech, Japan).

In addition, to confirm the dissolution behavior and basic properties of the hydrolyzed
hyaluronic acid before and after the vacuum environment imprint lithography processes,
three types of analysis of the hydrolyzed hyaluronic acid fine microneedles were carried
out as follows.

1. Measurement of the dissolution behavior using environmental test equipment
The evaluation of the dissolution behavior was performed for 35 min at 31 ◦C and
90–95% humidity using an incubator (PIC-101, AZ-ONE, Japan).

2. Measurement using a FT-IR
The measurements were performed using an FT-IR (Spectrum Two; P erkin Elmer,
USA). The measurement range was 450–4000 cm−1, the number of integrations was 4,
and the resolution was 4 cm−1. The measurement was performed on films prepared
by dropping hydrolyzed hyaluronic acid onto a glass slide and placing the slide at
room temperature for 24 h. FT-IR measurements were carried out for component
comparison before and after baking the films of hydrolyzed hyaluronic acid using a
hot plate at 80 ◦C for 90 min.

3. Measurement using a Tg-DTA
The measurement in nitrogen was performed using a Tg-DTA (EXSTAR TG/DTA7300,
SII NanoTechnology, Japan) in the temperature range of 30 to 250 ◦C (temperature
gradient: 10 ◦C /min). The weight of the analyzed sample was 5 mg.
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