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Abstract: Ischemic stroke is a major cause of death and disability worldwide. There is almost no
effective treatment for this disease. Therefore, developing effective treatment for ischemic stroke is
urgently needed. Efficient delivery of therapeutic drugs to ischemic sites remained a great challenge
for improved treatment of strokes. In recent years, hydrogel-based strategies have been widely
investigated for new and improved therapies. They have the advantage of delivering therapeutics in
a controlled manner to the poststroke sites, aiming to enhance the intrinsic repair and regeneration. In
this review, we discuss the pathophysiology of stroke and the development of injectable hydrogels in
the application of both stroke treatment and neural tissue engineering. We also discuss the prospect
and the challenges of hydrogels in the treatment of ischemic strokes.
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1. Introduction

Strokes are among the significant causes of death and disability, affecting nearly
800,000 individuals annually [1,2]. A stroke is defined as an acute local blood flow condition
in the central nervous system (CNS) caused by cerebral blood vessels. According to
the cause, strokes are clinically classified into the following types: ischemic strokes and
hemorrhagic strokes [3]. Approximately 85% of all acute strokes are ischemic strokes,
which result from blockage of the blood supply to the brain. The remaining 15% of
strokes involve hemorrhages [4]. This review mainly focuses on discussing ischemic
stroke. When ischemia occurs, a lack of blood flow in the brain initiates a cascade of
pathological processes, eventually leading to the death of brain cells and neurological
damage [5]. Current treatment strategies for ischemic stroke focus on restoring blood
flow and oxygenation in the damaged area through the administration of reperfusion
medications (tissue plasminogen activator) or by mechanical means (thrombectomy) to
reduce lasting damage and prevent the injury from further developing [6]. However, due
to the narrow therapeutic time windows of tissue plasminogen activator administration
(less than 4 h) and thrombectomy (less than 6 h), over 90% of patients cannot benefit from
these treatments [7]. The disease usually progresses into a chronic phase, with life-long
disability and failure of complete recovery. Due to their poor prognosis, strokes cause a
major negative impact on the quality of life of patients and their families [8]. Therefore, due
to the substantial burden on disabled stroke survivors and the complete lack of effective
treatments that improve recovery, there is an opportunity to develop new strategies that
enhance post-ischemic brain repair. Novel neuroprotectants have been designed and
developed to treat ischemic strokes, but none of them have been approved clinically [9,10].
As is well known, to achieve an effective stroke therapy, various therapeutics must be
efficiently delivered to the site of the ischemic brain. The significant hurdle that complicates
the effect of stroke treatments is the blood-brain barrier (BBB) [11,12]. As a biological barrier
that protects the brain from toxins and infections, the BBB also prevents most therapeutic
drugs from being effectively delivered into the brain. Another reason why therapy fails is
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that therapeutic drugs involve problems such as short circulation times, poor stability and
toxicity [13]. Therefore, to improve stroke treatments, novel methods must be developed
to raise drug dosages within the injured brain. During the past decade, biomaterials have
been widely applied to develop novel strategies for stroke treatments [14–16]. Among the
various types of biomaterials, hydrogels represent the most extensively studied because of
their unique chemical and mechanical properties. In recent years, hydrogels have emerged
as a promising platform to enhance drug delivery locally for disease therapy since they
are tunable to the tissue type for site-specific delivery [17,18]. As shown in Figure 1, in
ischemic stroke therapy, hydrogels can be used as a vehicle for small-molecular drugs,
large-molecular proteins, cells, and regenerating damaged brain tissue after a stroke [19,20].
Notably, hydrogels exhibit several advantages, including bypassing the blood-brain barrier
and releasing therapeutic payloads locally. This review mainly focuses on the pathology of
strokes and the development of hydrogel-based therapy for treating strokes.
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1.1. Pathophysiology of Ischemic Strokes

Acute ischemic strokes occur due to a brain ischemia that results from thrombosis of a
cerebral blood vessel [7,21]. An AIS is a complex polygenic and multifactorial disease with a
close relationship to genetic factors and environmental factors [22,23]. Several studies have
indicated that brain damage affects cells and causes cell death and dysfunction in brain
tissue [23,24]. An AIS causes obvious oxygen and glucose deficiency and ionic gradient
disturbance in neurons and other kinds of brain cells [25]. Then, multiple biochemical,
physiological and molecular mechanisms are induced, which finally result in the alteration
of neuron functions and extensive cell death in the ischemic core [26]. Dying cells in
the brain can release dangerous signals that stimulate poststroke inflammation [26–28].
Damage-associated molecular patterns (DAMPs) promote the expression of chemokines
and proinflammatory cytokines by resident immune cells, which help peripheral immune
cells infiltrate the brain [29,30]. Moreover, these proinflammatory mediators cause the BBB
to leak. After that, inflammation intensifies, and multiple cytokines are discharged in the
damaged brain [31]. Cytokines represent key mediators during the immunoinflammatory
reaction and are involved in the progression of cerebral infarction [32–34]. Pathologically
related molecules could serve as potential targets that may help provide treatment methods
that are urgently needed.
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1.2. Limitations of Current Therapies

Appropriately treating acute ischemic stroke is necessary to reduce morbidity and
mortality [35]. A large number of reports involve neuroprotective agents that were designed
to block key steps during neuronal ischemia; however, almost no drug has been found
to improve clinical outcomes. Currently, stroke therapies are mainly aimed at providing
immediate reperfusion through thrombolytic mechanical recanalization of the obstructed
blood vessels. Recombinant tissue plasminogen activator (rt-PA) is currently the only FDA-
approved therapy [36]. In addition, the systemic delivery of candidate neural repair drugs
is limited by the BBB and off-target effects; thus, promising candidate therapies for neural
repair with potential clinical application value are limited [37]. For example, delivering
promising therapeutic growth factors to the brain is very difficult [38]. Conventional
methods of systemic delivery, such as intravenous administration, are relatively convenient
and minimally invasive, but most growth factors fail to penetrate the BBB efficiently
after tail vein injection. Therefore, high doses are necessary for the desired therapeutic
result, which could lead to systemic side effects [39]. Combination methods, such as
systemic administration, together with localized disruption of the BBB, are attractive
strategies; however, opening the BBB non-selectively could cause toxic substances to enter
the brain [40,41]. Local delivery approaches, such as intracerebroventricular infusion,
could successfully bypass the BBB; however, invasive surgeries that damage the host are
necessary [42].

2. Hydrogels for Regeneration and Recovery

Generally, the application of biomaterials in ischemic strokes is aimed at either de-
livering therapeutic drugs or functioning as a foreign extracellular matrix suitable for
brain tissue growth. To date, hydrogels, as an important kind of biomaterial, have been
commonly applied for cell delivery and drug delivery. Therefore, hydrogels may represent
a potential resource that could be utilized to study biological changes after strokes and ex-
plore novel methods of therapy. In situ injectable hydrogels have been widely reported as a
promising type of drug delivery system in various disease therapies, such as stroke therapy.
A great advantage of hydrogels is that drug release is sustained and even controlled after a
single injection.

2.1. Hyaluronan-Based Hydrogels

Hyaluronan (HA) can relieve the inflammatory response and further enhance cell sur-
vival via a CD44-mediated mechanism, which makes it a popular material for applications
in drug delivery systems. As a popular biomaterial, HA shows excellent biocompatibility
and biodegradability and is thus widely applied to treat ischemic strokes. HA is usually
used together with methylcellulose (MC), called HAMC, as a hydrogel vehicle to deliver
cortically specified neuroepithelial progenitor cells (cNEPs) into the stroke-injured brain.
It has been well demonstrated that HAMC can significantly increase cell survival and
distribution in several animal models of CNS disease [43–45]. Growth factor delivery is a
promising therapeutic strategy for treating ischemic stroke. BDNF promoted functional
recovery in several poststroke animal models [46]. However, the amount of BDNF that
penetrates the BBB to the brain is too small to effectively treat strokes. Therefore, systemic
injection of BDNF is not a recommended strategy. In addition, BDNF shows a short distri-
bution time in brain tissue and is prone to degradation. It has been reported previously
that delivering a single dose of BDNF to release sustainably from the stroke cavity could
promote behavioral recovery in a mouse model [47]. An alternative method is to carry
BDNF with a depot that was previously injected into the stroke cavity and release BDNF
into the adjacent surrounding area. The infarct cavity is positioned in the center of the
stroke and can be targeted for BDNF release [48]. In another study, the therapeutic effects
of different doses of BDNF were tested by delivering them with a commercial hydrogel.
Before implantation, the hydrogel was fully gelated to be delivered to the ischemic site.
Due to elasticity, the hydrogel could be well conformed to the cavity and prevent the
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collapse of surrounding tissue [49]. A brain-compatible hyaluronan (HA) hydrogel loaded
with BDNF was prepared and achieved sustained BDNF release over weeks. This system
improved motor recovery, promoted the migration of immature neurons to the peri-infarct
cortex and, finally, increased the survival rate of these cells. HA modification was also
reported to increase the functions of the vehicle. For example, after being modified with an
anti-Nogo-66 receptor antibody, HA hydrogel could promote regeneration more effectively
in stroke therapy. This synthesized HA gel could serve as a scaffold for neural regeneration
and support neural cell attachment, as well as deliver antibodies for sustained release [50].
Interestingly, the authors further developed a delivery system based on HA hydrogels
loaded with both BDNF and VEGF-loaded PLGA microspheres to achieve controlled release
of these two growth factors. In addition, hydrogel scaffolds could support the survival of
neural stem cells in brain tissue [51]. Furthermore, HA hydrogel functionalized with an
anti-Nogo receptor antibody and PLL was designed and prepared and loaded with PLGA
microspheres encapsulating VEGF and Ang1. By implanting this composite system into the
ischemic site, angiogenesis in situ was observed clearly when it was estimated in the MCAO
model after implantation therapy. The results implied that this novel HA–PLGA hydrogel
composite is a promising candidate for neural regeneration after a stroke [52]. Similarly,
EGF and EPO can penetrate through the ischemic cortex when delivered epicortically from
HAMCs [53]. Notably, protein release tends to occur rapidly from a hydrogel scaffold. For
brain repair, a sustained release of two weeks was necessary. Therefore, it is difficult to
achieve sustained release when loading protein into a hydrogel alone [54]. Considering
these problems, Molly S. Shoichet et al. developed a new method for the sustained and local
release of both EGF and EPO to the brain with temporal control properties. This delivery
vehicle comprised HAMC hydrogel and polymeric particles containing EGF-PEG and EPO.
Their study achieved a sequential release of EGF-PEG and EPO and triggered endogenous
NSPCs in a mouse model, and obvious recovery was observed after strokes [55]. Wang
et al. studied the sequential delivery of both the anti-inflammatory small-molecular drug
BIO and the proangiogenic agent VEGF, utilizing a modified HA hydrogel to achieve a
combination therapy effect for brain repair in ischemic strokes. As shown in Figure 2,
the authors developed an HA hydrogel local delivery system in which both PF127/BIO
NPs and PLGA/VEGF porous microspheres were loaded for sequential delivery. In this
novel sequential delivery HA hydrogel system, PF127/BIO nanoparticles were released
from the system more quickly due to their smaller particle size. The released PF127/BIO
nanoparticles effectively decreased the inflammatory response after an ischemic stroke.
Afterwards, the PLGA/VEGF porous microspheres with a larger diameter were released
more slowly and more sustainably, which then enhanced angiogenesis in the infarct area.
Overall, relieved inflammation and improved vascular regeneration promoted long-term
neurological repair after a stroke [56]. Dr. Darling et al. prepared HA microporous annealed
particles for brain repair processes after a stroke. For example, as shown in Figure 3, they
utilized HA with FXIIIa for scaffold fabrication to improve the repair results. In contrast
to the nonporous gels, HA microporous annealed particles could effectively enhance en-
dogenous neural progenitor cell recruitment and vascular regeneration in the peri-infarct
area [57]. In another work, they injected porous HA-Tet MAP scaffolds into the ischemic
stroke mouse brain, which was proven to be biocompatible with a reduced inflammatory
response and astrogliosis [58].
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Figure 2. Schematic illustration of the applications of injectable hydrogels in the treatment of ischemic
strokes in mice. (A,B) PT model in rats, in the PT model, blood flow disruption, microglia activation
and astrocytes activation all occurred. (C) Injection of a dual-functional hydrogel into the infarct area
(D) The preparation process of dual-functional hydrogel. Reproduced with permission from [56].
Copyright 2022, Elsevier.
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Figure 3. (A) Schematic illustration of a coronal mouse brain section, the magnified schematics show
the No Gel, nanoporous and MAP hydrogel injection conditions. (B,C) Fluorescent images of GFAP
and IBA-1 staining showing poststroke astrocytic and microglial response (scale bar: 100 µm), “*”
represents stroke cavity as illustrated in (A). Reproduced with permission from [57]. Copyright 2011,
Elsevier.

2.2. Other Naturally Derived Hydrogels

Although HA shows advantageous extracellular matrix properties for tissue repair
applications, HA lacks the functional elements that are essential for increasing the retention
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of trophic factors. Some other ECM glycosaminoglycans contain functional elements that
allow for endogenously regulated trophic signaling, thus enhancing regeneration after a
stroke. For example, chondroitin sulfate (CS), a common component in cell surfaces and
the extracellular matrix, usually functions as a multifunctional sulfated glycosaminoglycan
that is involved in regeneration in the ischemic brain. The CS disaccharide chains contain
sulfated elements that are attached to native brain CS proteoglycans and play a role in
growth factor retention [59–61]. CS-A is involved in endogenous neural stem cell differenti-
ation and migration. Previous studies also found that CS-A could support in vitro NSCs
and in vivo transplanted cells after brain injury [62–64]. CS-A hydrogels were therefore
chosen to serve as effective vehicles for NSC-mediated repair in ischemic strokes. As
shown in Figure 4, CS-A loaded with NPCs improved angiogenesis in the brain. In the
treatment of ischemic strokes, the encapsulation of neural stem cells within a CS-A hydrogel
could enhance transplantation for stroke and the brain recovery capabilities of NPCs [65].
Chitosan’s application potential in stroke treatment was also reported previously. For
example, an MSC-loaded chitosan–collagen hydrogel was used for stroke treatment [66].
The ability of chitosan-based hydrogels to improve neural neurodegenerative therapy was
proven by encapsulating progenitor cells within the hydrogels [67,68]. In another work, an
MSC-loaded chitosan-based thermosensitive composite hydrogel was found to reduce cell
death, induce neurotrophic factor secretion and improve the survival of endogenous neural
cells in the injured brain [69]. A hyaluronan/collagen/heparin hydrogel matrix that could
be injected was used to create a favorable environment for stem/progenitor transplanta-
tion into the infarct cavity in strokes. This hydrogel contains the following components:
hyaluronan (which is well known as a major component of the brain extracellular matrix),
collagen (promotes cell attachment) and heparin (binds and stabilizes growth factors and
functions as an important constituent in neuronal differentiation for NPCs) [70]. ECM
hydrogel implantation offers a new therapeutic platform for stroke treatment by inducing
brain tissue regeneration within the injured cavity. The therapeutic effectiveness of ECM
hydrogels should be evaluated in the evolving postinjury environment. Corina Damian
et al. studied how the time points at which ECM hydrogels were implanted poststroke
influenced their delivery, degradation, host response and regeneration. They found that
the therapeutic window is dependent on a tissue cavity that allowed the bio-scaffold to
be delivered. An optimal therapeutic time window for bio-scaffold-triggered regeneration
of brain tissue and recovery occurred between 14 days and 28 days poststroke [71]. Silk
has been used in humans for a long time [72]. It has been approved for clinical application
as a suture and surgical mesh [73]. The excellent mechanical properties, biodegradabil-
ity and biocompatibility of silk make it an ideal candidate for wider applications than
those clinically approved at this time [74]. Notably, silk fibers could be prepared into an
aqueous silk solution, which could be further processed into cross-linked hydrogels [75].
Silk can also be triggered to self-assemble and form a hydrogel. Silk hydrogels have been
widely researched in preclinical studies as carriers of drugs and cells, especially in chronic
stroke therapy [76,77]. Silk fibroin hydrogels exhibit several advantages, including low cell-
binding properties, tunable physiological brain requirements and non-swelling behavior,
supporting the growth and differentiation of stem cell-based payloads, such as pluripotent
and MSC types [78,79]. The biocompatibility of silk fibroin hydrogels was confirmed in
the absence of any payload in both normal and MCAO mice. Almost no adverse reactions
occurred in these studies [80,81]. Self-assembled silk hydrogels were studied as an MSC
support matrix to explore cell therapy in minimally invasive brain applications. To produce
a delivery system with appropriate physical and chemical properties, such as controllable
solution–gel kinetics, a self-assembled silk hydrogel was fabricated as a platform with
optimum MSC hydrogel matrix conditions for brain repair [82]. Sericin protein is naturally
derived with cell-adhesive, neurotrophic and neuroprotective properties and can be cross-
linked to prepare an injectable hydrogel, which is usable as a carrier to deliver neurons
for tissue repair applications [83]. In addition, a novel cross-linked sericin hydrogel was
prepared as an in vivo effective cell delivery system for brain repair. When transplanted
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in vivo, the cross-linked sericin hydrogel showed good biosafety and effectively promoted
cell proliferation [84].
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p < 0.05, p < 0.0005, respectively (1-way ANOVA, Tukey’s post-hoc). Reproduced with permission
from [65]. Copyright 2020, Wiley-VCH.

2.3. Peptide-Based Hydrogels

Many synthetic and naturally derived hydrogels have been applied in ischemic stroke
therapy and brain tissue recovery. However, these biomaterials have some undesired
properties that limit their applications. For example, as widely applied hydrogels, HAMC
and alginate hydrogels are nearly non-adhesive to various cells, while for another kind
of commonly used biomaterial, PLA/PLGA, their degraded products change the pH in
the microenvironment of host tissues. Therefore, in addition to intrinsic neurotrophic
activity, biomaterials are desired to be adhesive to cells, and their degraded substances
should be neuronally biocompatible without inducing side effects on tissues. In recent
years, self-assembling peptide sequences have been designed to form hydrogels [85]. This
type of self-assembling peptide hydrogel exhibits a great advantage because they are
ECM-like biomimetic three-dimensional structures, and their degraded products are amino
acids with good biocompatibility [86,87]. Furthermore, the sol–gel transition occurs under
physiological conditions so that the hydrogel could be well suited to lesion cavities after
in situ injection [88,89]. Parish, C.L. et al. developed a novel spontaneous self-assembling
peptide hydrogel and proved that this hydrogel was able to support neural progenitor
grafts in the injured brain after a stroke. [90]. However, the low mechanical problem of
self-assembled peptides (SAPs) limits their application, which is mainly caused by weak
noncovalent bond interactions. A method that could avoid chemical cross-linking and UV
irradiation was proposed to enhance the mechanical properties of the peptide hydrogels,
and hydrogels were formed from a SAP solution in situ by a self-assembly process under
physiological conditions [91].
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The earliest designed and most widely used SAPs usually comprise repeated amino
acid residues that are alternatively hydrophilic and hydrophobic. EAK16, as one of these
kinds of SAPs, was first reported by Zhang et al. in 1993 [92]. EAK16 contains the amino
acid sequence Ac-(AEAEAKAK)2-CONH2, which can self-assemble into β-sheets. The
EAK16 sequence could be further modified by changing some amino acids to form the
well-known RADA16 (Ac-(RARADADA)2-CONH2) [93]. RADA-like hydrogels were first
explored for application in brain injury repair by Ellis-Behnke et al. in 2006. The authors
injected RADA16 into an injured site in the midbrain of hamsters. The results showed that
RADA16 facilitated axonal growth within the tissue gap [94]. RADA16 was commercialized
with the commercial name PuraMatrix in 2002.

Later, researchers successfully used RADA16 for stem cell encapsulation by functional-
izing this peptide with cell-adhesive ligands. These functional domains extend away from
RADA16 and do not disrupt its self-assembly property. The attachment of bone marrow
homing peptides to RADA16 improved the survival of encapsulated NSCs without the
addition of any other therapeutic growth factors or neurotrophic factors [95]. Similarly,
RADA16-IKVAV SAP hydrogels were also proven to increase the survival of loaded NSCs
and decrease glial astrocyte formation [96]. Furthermore, after modification, RADA16
hydrogels could become angiogenic. For example, RADA16 modified with SAP PRG and
KLT improved endothelial cell sprouting and vessel formation [97]. Therefore, angiogenic
hydrogels may show great potential to promote the endogenous repair of injured penumbra
in strokes. In another work, a self-assembling hydrogel based on the peptide IKVAV was
shown to support poststroke survival and maturation of cortical neurons implanted into
the ischemic area [98]. These studies demonstrated that there is a relationship between cells
and ECM molecules within hydrogels that has an important effect on cell fate. The existence
of ECM molecules facilitating cell adhesion and growth should be well considered when
designing hydrogels for delivering cells to brain tissue. In addition, the peptide sequences
that are capable of self-assembling and forming scaffolds to facilitate NSC attachment
should be well investigated.

Due to their tunable stiffness and the ability to protect containers from degradation,
SAP hydrogels could also be used to control the local release of payloads in the stroke
infarct [99]. For example, an injectable hydrogel named RADA16 was created from SAP
sequences, and the obtained hydrogel showed an ability to maintain a high level of water
content to release different protein products. RADA16 was thus applied to deliver both
VEGF and Ang1 to encourage vascular regeneration and neuronal plasticity in brain tissue.
The author demonstrated that the intralesional injection of this in situ-forming hydrogel
composite can promote long-term brain regeneration and enhance the recovery of brain
function after a stroke in the chronic phase [100]. In another study, the author tuned the
peptide sequence to retain the assembly property, and the functional epitope was observed
at a high density on the surface of nanofibrils with the resultant Fmoc–DDIKVAV. The
epitope peptide sequence encoded the binding domain of laminin, and two aspartate
residues were added to the sequence to enable the self-assembling property of this scaffold.
The release profile of BDNF from the tissue-specific peptide hydrogel was then studied. An
investigation in a rat model showed that BDNF-loaded scaffolds could promote the survival
of neural progenitors. Therefore, delivering therapeutic proteins with injectable hydrogel
systems could significantly enhance neuroprotection [101]. MAX8 has been widely studied
as a carrier of a variety of neurotrophic factors, such as BDNF. For instance, it was found
that NGF and BDNF could be released sustainably when encapsulated within MAX8 for
half a month. Interestingly, the release rate of these factors could be altered by adjusting
the hydrogel concentration. The higher concentrations led to slower release because of the
decreased porosity [102]. By coincubation of MAX8 hydrogel systems with PC12 cells, the
authors proved that NGF and BDNF released from the hydrogel retained their activity well
and prolonged their half-life. In addition, the physiochemical properties of the hydrogel
remained unchanged. Apart from growth factor delivery, small-molecular drugs, such as
curcumin, have also been reported to be loaded within MAX8 hydrogels, and the hydrogel
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system is shown in Figure 5 [103]. These findings suggest that the MAX8 system is a
potential platform in ischemic stroke therapy by delivering various therapeutic drugs into
the stroke cavity for sustained release.

Moreover, synthetic hydrogels, not so widely, are also applied in ischemic stroke
therapy. As mentioned before, an HA–PLGA hydrogel was prepared and applied for
neural regeneration after strokes [52]. A hydrogel based on pluronic–chitosan and aniline–
pentamer was prepared and loaded with VEGF to improve the recovery of ischemia
imperfection in the hippocampus [104]. During the preparation of the hydrogel, pluronic
gives the injectability property to the hydrogel, while CS has ECM-like properties. Poly
(trimeth ylene carbonate)15-F127-poly (trimethylene carbonate)15 (PTMC15-F127-PTMC15,
PFP) is another synthesized thermo-sensitive hydrogel with good biocompatibility. Neural
stem cells (NSCs) and neurotrophic factors, including brain-derived neurotrophic factor,
neurotrophin-3 and nerve growth factor, were collectively loaded into a PFP polymer
hydrogel for controlled release. Afterwards, the NSC polymer scaffold was implanted in
rat brains of MCAO mice. The results verified that the PFP scaffold could release BDNF,
NGF and NT-3 sustainably to support the differentiation of seeded NSCs [105].
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3. Conclusions

As an acute disease, strokes have become the most common cause of disability world-
wide, and both early diagnosis and timely therapies are necessary to treat stroke. However,
despite widespread clinical practice and reperfusion therapies, most survivors experience
a high recurrence rate and neurological impairment, which has a severe influence on their
quality of life and becomes a heavy burden on society. Novel treatment methods to reduce
cellular death and enhance endogenous brain tissue repair may improve stroke outcomes.
However, despite promising results in experimental stroke models, most of the therapies
failed during their translation to clinical trials. The reason for failure may be the short
half-life or severe side effects of therapeutic drugs and the low survival rate of transplanted
cells for cell-based therapy. Therefore, the lack of a successful clinical therapy that could
effectively enhance long-term brain tissue recovery has become a heavy clinical and social
burden, and new therapy strategies urgently need to be developed. The targeted delivery
of drugs to the injured brain is necessary for the effective treatment of ischemic strokes.
Although various therapeutic formulations have been developed, the basic problem of how
they reach ischemic stroke lesions specifically remains unaddressed. The BBB is an im-
portant hurdle for systemically administered therapeutics, which is why systemic therapy
methods try to target the leaky vasculature of the brain and ultimately cause brain failure.
Therefore, a local delivery strategy represents a promising method that can completely
bypass the BBB. This strategy is advantageous because it never causes off-target events and
reduces the drug dose needed to reach therapeutic effects in stroke infarctions. In addition,
systemic exposure and side effects are eliminated, and the possibility of degradation is
decreased.
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During the past decades, the application of biomaterials for the local release of ther-
apeutics has been widely reported. Recent improvements in tissue engineering have led
to the development of injectable hydrogels that could serve as carriers for various agents.
Utilizing hydrogels is advantageous because they promote repair processes due to their
ability to deliver payloads sustainably and controllably, offering mechanical support and
physical filling to the host tissue. In addition, hydrogel-based delivery systems could
achieve combination therapies by co-incorporating therapeutics. Since strokes involve
multiple mechanisms and a complicated pathophysiology, combination therapies are more
likely to achieve a significant result. For example, combined drug and cell delivery repre-
sents a promising strategy that efficiently enhances tissue recovery and regeneration. Other
combination therapies, such as the sequential release of different drugs with environmental
triggers, are expected to significantly enhance neural recovery and regeneration.

In summary, this review introduced the pathological characteristics of strokes, the
current therapy methods and recent advances in the development of hydrogels to treat
strokes. We have discussed various hydrogel-based platforms that have been employed in
ischemic stroke therapy. It is necessary to further understand the pathogenesis of ischemic
strokes and the interaction of the hydrogel system with brain tissues. The hydrogels
discussed in this review show great potential for brain tissue regeneration and offer a unique
platform to develop novel ways to improve the therapeutic effects for ischemic strokes.
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rt-PA Recombinant tissue plasminogen activator
FDA Food and Drug Administration
HA Hyaluronan
MC Methylcellulose
MSC Mesenchymal stem cell
cNEPs Cortically specified neuroepithelial progenitor cells
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NSC Neural stem cell
VEGF Vascular endothelial growth factor
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MCAO Middle cerebral artery occlusion
EGF Epidermal Growth Factor
EPO Erythropoietin
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ECM Extracellular matrix
CS chondroitin sulfate
SAPs self-assembled peptides
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