
Citation: Noonim, P.; Rajasekaran, B.;

Venkatachalam, K. Structural

Characterization and Peroxidation

Stability of Palm Oil-Based Oleogel

Made with Different Concentrations

of Carnauba Wax and Processed with

Ultrasonication. Gels 2022, 8, 763.

https://doi.org/10.3390/gels8120763

Academic Editor: Zihao Wei

Received: 31 October 2022

Accepted: 22 November 2022

Published: 23 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Structural Characterization and Peroxidation Stability of Palm
Oil-Based Oleogel Made with Different Concentrations of
Carnauba Wax and Processed with Ultrasonication
Paramee Noonim 1 , Bharathipriya Rajasekaran 2 and Karthikeyan Venkatachalam 1,*

1 Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University,
Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand

2 International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry,
Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand

* Correspondence: karthikeyan.v@psu.ac.th or drkarthikeyan.v@outlook.com

Abstract: The effect of ultrasonication (25 kHz for 10 min) on physical, thermal, and structural
properties and storage stability of palm oil-based oleogels prepared using different concentrations
of carnauba wax (CW) (5% or 10%) were investigated and compared with oleogels prepared with
a homogenizer (2000 rpm for 10 min). Overall, this study found that applying an ultrasonication
process with higher CW concentration (10%) effectively improved the properties and stability of
palm oil-based oleogel (p < 0.05). Oleogels processed with ultrasonication had higher lightness (L*),
higher yellowness (b*), and lower redness (a*) than those processed with homogenizer (p < 0.05),
irrespective of CW concentrations. However, a higher CW concentration (10%) increased the textural
properties of oleogels such as hardness, stickiness, and tackiness as compared to oleogels with a lower
CW concentration (5%) (p < 0.05). Thermal properties including melting onset temperature, melting
peak temperature, and melting enthalpy were found to be significantly higher in ultrasonication-
processed oleogels with high CW concentration (p < 0.05). Furthermore, the microscopic examination
of the oleogels exhibited a strong gel network when prepared using a high concentration of CW
and processed with ultrasonication. Fourier Transform Infrared (FTIR) spectra of oleogels revealed
that strong intra- and intermolecular interactions were formed by hydrogen bonding between CW
and palm oil. X-ray diffraction (XRD) showed a smooth and fine structural network of oleogels and
proved that ultrasonication increased the structural properties of oleogel. Moreover, oil loss and
peroxide value of oleogels were increased during 90 days of storage (p < 0.05). However, oleogels
processed with the ultrasonication had reduced oil loss and increased peroxidation stability during
storage (p < 0.05). Overall, this study showed that application of ultrasonication with a higher CW
concentration could improve properties and storage stability of palm oil-based oleogel.

Keywords: palm oil; carnauba wax; ultrasonication; homogenization; structural characteristics;
thermal properties; peroxidation; storage

1. Introduction

The physical state of edible fats and oils determines their physical forms, which
range from a viscous liquid to a solid, hard fat. Food production generally relies on the
physical state of these fats. As a result, fats and oils are typically integral to obtaining
a variety of desired functionalities such as flavor, nutritional properties, food stability,
tenderness, palatability, texture, color, food appeal, solubility, etc. [1]. Fats such as saturated
fats and trans fats are responsible for most food functionalities. By stacking crystalline
lamellae, a solid fat network is formed, resulting in crystalline nanoplatelets and entrapping
liquid fat within the solid fat network [2]. Fats can function in this way because of the
triacylglycerols in their structure. Despite providing numerous significant functions, it may
cause consumers to experience several adverse health effects, particularly chronic diseases,
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and cardiovascular diseases are the most prevalent of these disorders [3]. The amount of
natural solid fats, on the other hand, is relatively low. Margarine has been available in
commercial markets for many decades, yet it can also cause adverse health effects, and
consumers are aware of the chemical processes involved in its production [4]. Recently,
several countries have implemented strict rules against using margarine or processed
trans fatty acids to protect public health. Regarding trans fats, the United States Food and
Drug Administration (FDA) concluded in 2015 that partially hydrogenated oils are not
generally recognized as safe (GRAS) [5,6]. Interesterification is one of the alternatives to
the synthesized solid fats production processes; however, all alternatives require chemical
processing, chilling, and other polymorphic crystallization processes [7]. Edible oleogels
have gained popularity in recent years due to their ease of preparation and superior health
benefits over synthetic and natural saturated trans fats. Unlike solid fats, edible oleogels
have elastic properties and are primarily composed of unsaturated fats, which are healthier
and lower in less-healthy saturated fats. The majority of oleogels can be transformed
from solution to gel numerous times regardless of the chemical nature of the oil, and the
process can be achieved by simply reheating and recooling [8]. An oleogel forms fibrillar or
platelet crystals by self-assembling in polar solvents through noncovalent interactions. It is
also important to note that Van der Waals and electrostatic interactions contribute to the
gelation of edible oils in addition to hydrogen bonds and stacking interactions. Oleogels
are generally prepared by adding gelators to edible oil and then treating them with thermal
processing [9]. However, recent research has found that ultrasonication can improve the
gelling property of oleogels. Additionally, the application of ultrasonication could also help
improve the microparticles’ dispersion and nanowire properties in oleogel [10]. Plant wax
esters are among the most-used gelators in producing oleogels. These include beeswax,
carnauba wax, candelilla wax, sunflower wax, and rice bran wax [11]. Even though oleogels
are receiving considerable attention from researchers and producers, they have not made
significant progress due to the limited availability of edible gelators and the high costs
associated with large-scale production [12]. Carnauba wax, one of the edible wax gelators,
is abundantly available and inexpensive, making it an attractive choice for producing
oleogels. A major characteristic of carnauba wax is its ability to stabilize and crystallize.
There has been extensive research on the efficacy and efficiency of carnauba wax as a gelator
on various edible plant oils [13]. The extensive use of palm oil is noted as an inexpensive
frying medium for a variety of foods around the world, and especially, their usage is
more abundantly found in Asia, particularly in Southeast Asia, which is among the largest
producers of palm oil. Although palm oil is abundant, very little information is available
regarding the production and characterization of oleogel using palm oil. Our previous
study examined the ability and stability of palm oil-based oleogel as a frying medium for
instant noodles [10]. The results were very encouraging and indicated that the oleogel
was safe for food use. Furthermore, unlike regular palm oil as a frying medium with a
shorter shelf life, palm oil oleogel can be reused numerous times without increasing the
high peroxidation rate and thermal degradations. However, structural characterization and
thermal stability of palm oil-based oleogels prepared with carnauba wax are still lacking.
In this study, solid-like oleogels were prepared using palm oil structured by carnauba
wax at different concentrations (5% or 10%) and processed with ultrasonication. The
effects of the ultrasonication on physical, thermal, and structural properties of palm oil-
based oleogels were investigated and compared with those processed with a homogenizer.
Moreover, the stability of oleogels was also evaluated during storage of 90 days at ambient
temperature. This study provides a new idea for the preparation of palm oil-based oleogels
with improved properties using ultrasonication.

2. Results and Discussion
2.1. Color and Textural Profiles

The color characteristics of the palm oil-based oleogel samples prepared with different
concentrations of carnauba wax and the ultrasonication process are shown in Figure 1.
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Overall, the results exhibited significant differences in the tested color characteristics on
the oleogels, regardless of the different concentrations of CW and ultrasonication process
used (p < 0.05). The lightness of the oleogels significantly differed among each other, and,
especially when the CW concentration increased to a high level, the lightness of the oleogels
tended to be vastly increased (p < 0.05); in addition, the ultrasonication process also helped
the oleogels in improving the overall lightness (p < 0.05). Similarly, the yellowness of the
oleogels also tends to increase upon the increased concentration of CW (p < 0.05), and the
ultrasonication process had further improved the yellowness in the oleogels, regardless
of the wax concentrations used (p < 0.05). On the other hand, the redness values in the
oleogels were in the opposite trend (p < 0.05). Generally, the color values in the oleogels
mainly depend on the raw materials used, as it directly influences the oleogels’ color
values. In our study, the palm oil was originally a light brownish yellow; however, when
CW was used as a gelator in the oleogels emulsion, the color of the oleogel was turned
into a brighter yellowish, and the addition of ultrasonication could have increased the
microbubbles in the oleogel emulsion and helped to reflect more light as compared with the
oleogels that are prepared traditionally without sonication. Chen et al. [14] reported that
the ultrasonication process induces a strong scattering efficiency, reflecting more light, that
is achieved by influencing the droplet size in the oleogels. Ögütcü et al. [15] reported that
the total color values of the oleogels increased when the gelator concentration increased,
and their study found that increased opaqueness of the oleogels played a crucial role in
the increased total color values. This is in accordance with the present study, in which
the increased concentration of CW could have increased the opaqueness values of the
oleogel. Applying the ultrasonication process also increased the total color values of the
oleogels. Pucas et al. [16] found that color values of the oleogels were not significantly
improved when using candelilla wax as a gelator, and their study recommended using
colorants for better attraction. It is indicated that not all the gelators could improve the
color of the oleogels; however, in this study, the use of CW significantly improved the
color profile of the oleogels, which is solely recommended for yellow color-based food
applications. The textural properties of palm oil-based oleogel samples prepared with
different concentrations of carnauba wax and the ultrasonication process are shown in
Figure 2. Normally, the hardness of a wax oleogel is one of the main factors in determin-
ing the potential applicability of the wax oleogels. The hardness of the oleogel samples
tended to increase when the oleogel emulsions were prepared with the ultrasonication
process and higher CW concentrations as compared to the other tested samples in this
study (p < 0.05). It indicates that the application of sonication and higher concentration
of CW had significantly (p < 0.05) increased the oleogel strength and maintained a better
oleogel network structure. Stickiness values in the oleogels represent the internal bonding
strength and are also used to identify the resistance against external damage. This study
showed that increased CW concentration significantly increased the oleogels’ stickiness
values (p < 0.05). Additionally, similar effects were also found in the ultrasonicated oleogel
samples (p < 0.05). Furthermore, the oleogels were also tested for tackiness properties. It
was found that increased wax concentration and application of sonication had slightly
improved tackiness values (p < 0.05). Manzoor et al. [17] reported that increased gelator
concentration significantly improved the textural properties of the oleogels. A similar
finding was also reported by Meng et al. [18]. Park et al. [19] found that oleogel’s textu-
ral properties significantly improved when the gelator concentration was more than 5%.
Sharifi et al. [20] reported that applying ultrasonication to the olive oil-based oleogel prepa-
ration significantly increased the hardness of the oleogel. Application of ultrasonication on
the oleogel emulsion could alter the functional properties of the fats by modifying the oil’s
crystallization behavior by decreasing crystal size and producing an oleogel network that
is stronger and more elastic and, consequently, obtaining the improved material textural
behaviors [21].
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Figure 1. Lightness (A), yellowness (B), redness (C), and total color (∆E) (D) of palm oil-based
oleogels prepared with different concentrations of carnauba wax and the ultrasonication process.

2.2. Thermal Properties

The oleogel samples that were prepared using palm oil and different concentrations of
CW and followed by an ultrasonication process were tested for various thermal properties
using the DSC, and the results are shown in Figure 3. Generally, the thermal proper-
ties of oleogels are considered to be an essential tool to identify the use of plant-based
fats for various applications, and they are not key parameters for the characterization of
oleogels [22]. The melting onset and peak temperature of oleogels significantly differed
from each other; the inclusion of CW at different concentrations significantly improved the
melting temperatures of oleogels (OG1-OG2) (p < 0.05). Additionally, the application of ul-
trasonication in the oleogel (OGU1-OGU2) process and increased concentration of CW had
further increased the melting temperature in the oleogels (p < 0.05). The OG1 onset melting
temperature was recorded at 45.12 ◦C, and the melting peak temperature was recorded at
51.23 ◦C; for OG2, it was 49.21 ◦C for the onset temperature and 53.14 ◦C for the melting
peak temperature. On the other hand, the ultrasonicated oleogels had slightly higher onset
and peak temperatures, particularly for OGU1; the onset melting temperature was 51.23 ◦C.
The peak temperature was recorded at 57.17 ◦C; for OGU2, the onset temperature was
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recorded at 54.87 ◦C, and the peak melting temperature was recorded at 59.12 ◦C. Over-
all, the results indicated that increased CW and the ultrasonication process significantly
(p < 0.05) increased the melting temperature in the oleogels, creating versatility of these
palm oil-based oleogels for various applications. Noonim et al. [10] found that applying
palm oil-based oleogels as an alternative to a conventional frying medium in cooking
instant noodles and the oleogels significantly improved the product quality. Furthermore,
their study also found that handling the oleogels at various temperatures had not damaged
the structural integrity of the oleogels. The uniqueness of the CW-based oleogels is that
the CW, a thermos-reversible plant wax, has a multiversatility usage and is perfectly suit-
able for organogelation and a simultaneous emulsification process [23]. Furthermore, the
melting enthalpy of the oleogels significantly differed (p < 0.05), and, overall, the enthalpy
of oleogels ranged between 21.04–27.84 ∆Hm (J/g). Oleogels without the ultrasonication
process had a slightly low enthalpy (21.04–24.78 ∆Hm (J/g)) value as compared with the
ultrasonicated oleogels (26.54–27.84 ∆Hm (J/g)). Co ED and Marangoni [24] reported that
increased concentration of plant wax in the oleogel emulsions greatly increased the melting
temperatures. The present study is in accordance with their study.
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Figure 2. Hardness (A), stickiness (B), and tackiness (C) of palm oil-based oleogels prepared with
different concentrations of carnauba wax and the ultrasonication process.
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Figure 3. Melting onset (A), melting peak temperature (B), and melting enthalpy (C) of palm oil-based
oleogels prepared with different concentrations of carnauba wax and the ultrasonication process.

2.3. FTIR Spectra and X-ray Diffractions

The FTIR spectra of the oleogel samples made of palm oil with CW and processed
under ultrasonication were tested, and the results are shown in Figure 4. Normally, the FTIR
is considered to be a powerful technique to identify the formation of hydrogen bonding
between food molecules [25]. Overall, the spectra result of oleogels exhibited a similar
trend across all the samples tested. The oleogel samples showed specific peaks at different
areas, particularly at around 730, 1150, 1530, 1700, 2900, and 2950 cm−1, respectively. Some
deformation peaks were observed at around 3600 to 4000 cm−1, which could be due to in-
termolecular hydrogen bonding by exchanging protons between the alcohol, amine, amide,
and/or carboxylic groups [26]. The peaks at this wavelength region are also specific to
polyunsaturated fatty acids and normally less visible in oleogels. This is in accordance with
the study of Thakur et al. [8]. During the FTIR spectra observation, the oleogel exhibited
various peaks with medium (730–1150 cm−1) and vigorous intensities (1530–1700 cm−1 and
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2900–2950 cm−1), which represent the intermolecular and intramolecular hydrogen bonds,
respectively. This finding suggests the presence of C-H and C=O stretching in the oleogels.
The peak observed between 715 and 730 cm−1 could be the cause of the cycloalkane bend-
ing of alkyl groups in the oleogel compositions. Peaks observed at 1160 cm−1 represented
the C-O, C-O-O, and C-O-H stretching in the oleogels. Peaks between 1500–1600 cm−1

could be the effect of stretching of C-H in the methylene and methyl groups, which are
the fatty acid’s backbone. Peaks found between 1600 and 1700 cm−1 could be the effect of
stretching and vibration of the carbonyl group of esters and alkene groups and could also
be due to the interesterification process by the oleogels [16]. Studies have reported that
oleogel made of carnauba wax produces strong intermolecular hydrogen bonding between
the oil and the wax [15,22]. Therefore, the results of FTIR spectroscopy indicated that there
were no significant chemical interactions that happened by depicting similar peak positions
amongst the different oleogel samples, and, mainly, the oleogel may have formed based on
molecular self-assembly or building blocks, which are usually stabilized by noncovalent
interactions such as hydrogen bonding, short-range Van der Waals attractive interactions
(dispersion forces), and π–π stacking [17]. Several studies suggest that the formation of
noncovalent interaction in the oleogels would form a semicrystalline structure [27,28].
According to the previous literature, the semicrystalline structure formation of oleogels is
mainly due to the intramolecular or intermolecular hydrogen bonding during the prepara-
tion [18]. X-ray diffraction of the oleogel samples was tested, and the results are shown
in Figure 5. Generally, the X-ray diffraction method is used to understand the internal
structure of the oleogels [29]. The present study revealed that all the tested oleogels had
formed a relatively orderly structure by CW, binding tightly with liquid palm oil without
the outburst of the oil upon handling. XRD patterns of the oleogels in this study were very
similar, and there were no obvious differences among the oleogels on the XRD patterns
despite different wax and ultrasonication processes applied. Two common XRD peaks were
observed at the wide-angle region in all oleogel samples, particularly around 21.8 and 23.9,
indicating the extension of enlargement of the molecular chain in the emulsion medium
and leading to the transition confirmation. The application of ultrasonication in the oleogel
preparation increased the confirmation rate. Additionally, peaks at that particular region
indicate the orthorhombic perpendicular subcell packing-type crystals, and this type is
very similar to the crystals of margarine, spreads with a smooth texture, and has better
mouthfeel properties. This is in accordance with the study of Ögütcü et al. [22]. The
present study results indicated that the formation of crystals within the oleogel network
was well-developed and depicted clear diffraction intensity. This is in accordance with
Ghose et al. [30].

2.4. Microscopical Observations

The morphological structures of palm oil-based oleogels made of different concentra-
tions of CW and the ultrasonication process were tested by light microscope and presented
in Figure 6. Generally, the microscopical analysis of oleogels displays the differences in
the sample’s microstructure due to their dominance of ingredients [16]. The results ex-
hibited a smooth, smear-like structure of CW crystals that were smoothly dispersed in
the continuous phase of liquid palm oil in all the tested oleogels. On the other hand, the
level of smears in the oleogels was heavily affected by the level of CW and ultrasonication
applied. Overall, this study showed that when oleogels were made of CW alone, they were
congested, and a large number of smear-like structures were found all over the observed
areas. Meng et al. [18], in a study, found that the addition of more concentrations of gelators
in the oleogel emulsion could result in a smaller crystalline network. This is in accordance
with the present study; OG2 oleogel, which contains 10% CW, showed a tiny crystalline
structure compared to OG1 (5% CW). This is in agreement with the study of Yang et al. [31],
which found that adding a higher concentration of gelators in the oleogel emulsion had the
ability to self-assemble in the oil phase and produce a tiny and tighter crystalline network
with smoother morphology. Furthermore, the oleogels made of similar CW concentrations,
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but processed under ultrasonication, significantly reduced the large smears and exhibited
smoother and firmer crystalline networks in the oleogels. Ögütcü et al. [22] reported that
droplet size of the oleogel emulsion plays a crucial role in retaining structural stability. Ap-
plying the ultrasonication process could reduce the droplet size in the oleogel emulsion and,
thus, make smooth and strong structural oleogels (OGU1-OGU2). Pucas et al. [16] reported
that oleogel-based spreads can have more dense structures. Szymanska et al. [32] reported
that oleogels’ morphological observations are critically influenced by their compositions,
particularly crystalline sizes, which are categorized as small, medium, and maximum.
Small, crystalline-like oleogels normally exhibited dense and firm networks. Yu et al. [33]
found that the application of ultrasonication in the oleogel preparation led to forming a
small crystalline network in the oleogels.
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Figure 4. FTIR spectrum of palm oil-based oleogels (OG1 (A), OG2 (B), OGU1 (C), and OGU2 (D))
prepared with different concentrations of carnauba wax and the ultrasonication process.

2.5. Oil Loss and Oxidative Stability

The oil loss in the palm oil-based oleogel samples that were prepared with different
concentrations of CW and the ultrasonication process are shown in Figure 7. The oil-binding
capacity of wax oleogels is one of the main characteristics that define their functionality
in food products. Generally, the fresh oleogels show no oil loss; however, the severity of
loss exhibits only when the oleogels are stored for a prolonged period. This study tested
the oil loss in the oleogels every 15 days for a period of 90 days, and the results showed
that an increased storage period significantly increased the oil loss in the oleogels (p < 0.05).
On earlier days of the storage, the oil loss was very rapid and slowly remained stable;
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however, throughout the storage period, a loss of oil was continuously recorded in all the
samples. Furthermore, the results showed that different concentrations of CW and the
ultrasonication process significantly affected the oil loss in the oleogels (p < 0.05). A low
concentration of CW poorly withstood the oil in the oleogel structure as compared with
the higher CW concentration (p < 0.05). On the other hand, the ultrasonication process
increased the structural stability of the oleogels and improved the strong bonding between
oil and the wax samples, which resulted in a lower oil loss (p < 0.05). Meng et al. [18]
reported that increased gelator concentration significantly decreased the oil loss in the
oleogels. Bascuas et al. [34] also observed similar findings when edible oleogels stored for
a prolonged period experienced severe oil loss, despite the different oil composition and
gelator concentration used. Gaudino et al. [35] reported that waxes could be able to provide
a crystalline structure that provides tolerances against processing conditions involving
mixing and shearing while not falling apart and releasing all the bound oil. Blake et al. [36]
reported that the oil loss in the oleogels during minimal to moderate processing conditions
is mainly attributed to three important properties, which include structural properties, wax
crystal size, and spatial distribution and displacements. In another study, Meng et al. [18]
reported that semicrystallization in the oleogel polymer network could induce oil loss in
the oleogels. The oxidative stability of the oleogels samples was examined by measuring
peroxide value during storage under ambient temperature for 90 days. The obtained results
are shown in Figure 7. Overall, a steady increase in PV values was observed in all oleogel
samples throughout the storage period (p < 0.05). Among the samples, oleogels made
of CW at 5% concentration exhibited a significantly higher level of PV than the others
(p < 0.05). On the other hand, the ultrasonication-processed oleogel samples with different
concentrations of CW did not significantly differ (p > 0.05); however, their oxidative stability
was slightly higher than the other tested samples (p < 0.05). These results indicate that
oleogels made of CW with a higher concentration and with or without the ultrasonication
process could be able to control the peroxide values. According to Codex Alimentarius [37],
if oil-based food products contain a peroxide value of less than 15–20 meg kg−1, it is
considered safe. Peroxidation in oil-based products is generally produced upon prolonged
storage and could be the effect of autoxidation. Unsaturated fatty acids are the key sources
of peroxidation, and, particularly, polyunsaturated fatty acids are susceptible in comparison
with monounsaturated fatty acids. In this study, the free mono- and polyunsaturated fatty
acids could strongly integrate with the oleogels by the increased CW concentration and
ultrasonication process and thus slightly lowered the level of peroxidation in the oleogels.
Valoppi et al. [38] reported that ultrasonication treatment on the oleogel emulsion could
induce physical barriers against various external stimuli that promote degradations.
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Figure 5. XRD patterns of palm oil-based oleogels (OG1 (A), OG2 (B), OGU1 (C), and OGU2 (D))
prepared with different concentrations of carnauba wax and the ultrasonication process.
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Figure 7. Oil loss (A) and peroxide value (B) of palm oil-based oleogels prepared with different
concentrations of carnauba wax and the ultrasonication process.

3. Conclusions

Using oleogels instead of chemically modified trans fat has proven to be successful
without negatively impacting food quality. Moreover, a growing number of consumers rely
on it for its health benefits. There are numerous ways to produce oleogels; however, their
stability is still a major concern. The present study evaluated ultrasonication in comparison
with a homogenizer to improve the properties and storage stability of palm oil-based
oleogels prepared using carnauba wax at different concentrations (5% or 10%). The results
showed that ultrasonication improved yellowness and enhanced the textural properties,
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including hardness, stickiness, and tackiness of oleogels. Moreover, thermal properties
such as melting enthalpy, melting onset, and peak temperature were found to be higher
in oleogels processed with ultrasonication. FTIR spectra revealed that ultrasonication
promotes the formation of more intermolecular hydrogen bonds in oleogels. In addition,
XRD indicated that ultrasonication-processed oleogels had more crystalline polymorphs.
The microscopic observation found that oleogels processed with ultrasonication at 10%
carnauba wax had a smooth and strong crystalline structure. Furthermore, it showed
lower oil loss and higher peroxidation stability during storage of 90 days under ambient
conditions. Overall, this study recommends that use of ultrasonication could improve the
properties and enhance storage stability of palm oil-based oleogels, which could be used as
a functional food.

4. Materials and Methods
4.1. Raw material, Chemicals, and Reagents

The refined palm oil at a commercial grade was purchased from the local supermarket
at Surat Thani province, Thailand. The phyto-gelators such as carnauba wax flakes were
purchased from DCMC corporation Co., Ltd., Bangkok, Thailand. All the chemicals and
reagents used in this study for various analyses were purchased from Sigma (St. Louis,
MO, USA).

4.2. Oleogel Preparation

The oleogel used in this study was prepared in accordance with the method of
Noonim et al. [10], with slight modifications. Four groups of oleogels (OG1 (palm oil
+ 5% carnauba wax), OG2 (palm oil + 10% carnauba wax), OGU1 (palm oil + 5% carnauba
wax + ultrasonicated), and OGU2 (palm oil + 10% + ultrasonicated)) were prepared and
tested in this study. For OG1 and OG2 preparation, the carnauba wax at a selected con-
centration was mixed well in the palm oil, using a temperature-controlled hot plate which
was set to 90 ◦C, once the carnauba wax was completely dissolved in the palm oil; then,
the mixture was removed from the hot plate and vigorously homogenized with the hand-
held homogenizer for 10 min, and after that, the oleogel mixture was cooled at ambient
temperature. For OGU oleogels, all the steps for preparing oleogels were similar to the
process shown above for the OG; however, the homogenization process with handheld
homogenizer was replaced by the ultrasonication process and was performed by using
a portable ultrasonic processor (Hielscher UP200Ht, Hielscher Ultrasound Technology,
Germany) that was equipped with a probe tip (40 mm) and processed at a constant 25 kHz
for 10 min, followed by cooling at ambient temperature. Figure 8 shows the infographic of
the oleogel preparations.

4.3. Analysis
4.3.1. Color Characteristics

Color characteristics, including lightness (L*), redness (a*), and yellowness (b*), were
recorded on the oleogels at random points by using the Hunter LAB colorimeter (Hunter
Associates Laboratory, Inc. Reston, VA, USA). The total color characteristics of the oleogels
were calculated using the L*, a*, and b* values by following the equation proposed by
Tiga et al. [39].

∆E∗ =
√

∆L∗2 + ∆a∗2 + ∆b∗2
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4.3.2. Texture Profile

Texture profile (hardness, stickiness, and tackiness) in the oleogels was measured in
accordance with the method of Gravelle et al. [40]. Prior to analysis, the oleogels were
place in a 100 mL beaker at room temperature, and then, the textural analyzer (LFRA
4500, Brookfield Engineering, Middleborough, England) probe (40 mm diameter flat acrylic
probe) was penetrated around 15 mm into the oleogels from the surface at a speed of
1.0 mm/s. The obtained data from the texture analyzer were calculated, and the results
were presented in force (N).

4.3.3. Thermal Properties

The thermal analysis of oleogels, including melting onset temperature, melting peak
temperature, and melting process enthalpy, was measured using a differential scanning
calorimetry (DSC, Perkin Elmer 4000 series, Groningen, The Netherlands) equipped with
Pryis 1 Manager Software by following the method of Ogutcu and Yilmaz [22]. Due to
the fact that the cooling might promote the crystallization process, in this study, only the
melting (heating) experiment was performed in the oleogel samples.

4.3.4. Morphological Observations

A polarized light microscope (PLM) (Olympus BX51, Olympus Co., Ltd., Tokyo,
Japan) equipped with a CCD color digital camera (Canon, Japan) was used to observe the
crystalline structures of the oleogel emulsions. Small amounts of fresh oleogel sample were
placed on glass microscope slides, and these slides were covered with glass coverslips,
and the PLM was used to observe the morphological observation. In order to observe the
polymorphic forms of the crystals of oleogels, fully polarized digital images were taken at
50x zoom level at room temperature.

4.3.5. XRD Analysis

XRD patterns of the oleogels were tested based on the method of Sahu et al. [41] by
using an X-ray diffractometer (PA Analytical, Eindhoven, The Netherlands). Angular scans
in the oleogels were performed from 5–50◦ at 0.026◦/min scan rate with a copper source
X-ray tube, α = 1.54 Å. X-ray generator power was set to 40 K V and 30 mA.

4.3.6. FTIR Spectroscopy

Oleogels were measured by FTIR spectroscopy by using the method of Totosaus
et al. [42]. Prior to measurement, an oleogel film was prepared by placing the sample
between two glass microscope slides and compressing the film until it reached a thin
thickness. After that, single-beam spectra of the oleogel samples were collected against the
background of air and presented in a transmission unit using an FTIR spectrophotometer
(Thermo Electron Corp., Madison, WI, USA). The samples were measured for FTIR in the
wavelength range between 4500 and 500 cm−1 with a nominal resolution of 10 cm−1. For
spectral analysis, OPUS 3.0 data collection software (Bruker CO., Ltd. Billerica, MA, USA)
was used.

4.3.7. Oil loss and Oxidative Stability of Oleogels

Oleogels were stored in transparent containers for 90 days at room temperature, and
after every 15 days, samples were removed from the containers and tested for oil loss
and oxidative stability. Prior to oxidative stability analysis, all the oleogel samples were
reheated to 45 ◦C to transform from solid to liquid, and after that, they were used for all
the following analyses.

Oil Loss

Oil loss in the oleogel was determined by following the method of Doan et al. [43],
with slight modifications. Oil loss in the oleogels were measured at an interval of every
15 days for a total period of 90 days. In this experiment, a funnel with filter paper was
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placed above an Erlenmeyer flask, into which the dripping liquid oil from the oleogels was
collected. Prior to loading the oleogel, the weight of the funnel, the filter paper, and the
Erlenmeyer flask were weighed and referred to as M1. Afterward, 10 g of oleogel (M3)
were weighed and placed in the funnel. At each interval, samples were collected using
a flat, small spatula. Once again, the funnel, the filter paper, and the flask containing the
liquid oil was weighed (M2). The results were calculated using the following formula, and
oil loss in the oleogels were reported as g oil loss per 100 g oleogel.

Oil loss (g oil loss per 100 g oleogel) =
[M2 − M1 ]

M3
× 100%

Peroxide Value (PV)

PV value in the oleogel was measured using the titration method in accordance with
the method of Pudtikajorn and Benjakul [44]. A total of 0.1 g of oleogel samples was mixed
with 25 mL of acetic acid (3)/chloroform (2) solution, and then, 1 mL of saturated potassium
iodide was added to the samples, followed by the addition of 75 mL distilled water. Then,
the reaction mixture was thoroughly mixed and kept in a dark place for 5 min. Afterwards,
the mixture was titrated with 0.01 N of sodium thiosulfate after starch solution (1%) was
added as an indicator, and the titration endpoint was obtained when the dark blue of the
sample solution faded to pink. The following equation was used to determine the PV value.

PV (meq oxygen per kg) = [V X M X 1000 ]/W

where V is the volume of sodium thiosulfate (mL); M is the concentration of sodium
thiosulfate (N); and W is the weight of the sample (g).

4.4. Statistical Analysis

All analyses were conducted in triplicate in this study, and all data are expressed
as mean ± standard deviation. For significance testing, a one-way analysis of variance
(ANOVA) and Duncan’s multiple ranges post hoc test were conducted using p < 0.05 as
the standard level of significance. Statistical analyses were carried out using the Statistical
Package for the Social Sciences (SPSS) from SPSS Inc, Chicago, IL, USA.
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