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Abstract: The effective utilization of biomass and the purification of dye wastewater are urgent prob-
lems. In this study, a biomass aerogel (CaCO3@starch/polyacrylamide/TEMPO-oxidized nanocellu-
lose, CaCO3@STA/PAM/TOCN) was prepared by combining nanocellulose with starch and intro-
ducing calcium carbonate nanoparticles, which exhibited a rich three-dimensional layered porous
structure with a very light mass. Starch and nanocellulose can be grafted onto the molecular chain
of acrylamide, while calcium carbonate nanopores can make the gel pore size uniform and have
excellent swelling properties. Here, various factors affecting the adsorption behavior of this aerogel,
such as pH, contact time, ambient temperature, and initial concentration, are investigated. From
the kinetic data, it can be obtained that the adsorption process fits well with the pseudo-second-
order. The Langmuir isotherm model can fit the equilibrium data well. The thermodynamic data
also demonstrated the spontaneous and heat-absorbing properties of anionic and cationic dyes on
CaCO3@STA/PAM/TOCN aerogels. The adsorption capacity of Congo red (CR) and methylene
blue (MB) by CaCO3@STA/PAM/TOCN was 277.76 mg/g and 101.01 mg/g, respectively. Therefore,
cellulose and starch-based aerogels can be considered promising adsorbents for the treatment of
dye wastewater.

Keywords: aerogel; cellulose; starch; adsorption

1. Introduction

With the rapid industrial development of modern society, the issue of environmen-
tal pollution (especially water pollution) has become a worldwide hot topic [1]. Water
pollution has become an urgent environmental issue, with over 50,000 tons of industrial
dyes reportedly being discharged into rivers or the sea every year [2]. The disadvantage
of textile dyes in wastewater is that they can reduce water reoxygenation capacity and
complicate the steps to treat wastewater [3]. Methods to treat dyes in water pollution have
emerged. Currently, there are many effective methods for removing organic dyes from
wastewater, such as membrane separation [4], biodegradation [5], catalytic degradation [6],
and adsorption [7]. Adsorption methods are widely used because of their ease of operation,
low energy consumption, and essentially no secondary contamination. For adsorption, the
presence or absence of abundant adsorption sites is the key to evaluating a good adsorbent.

Aerogels are solid materials [8] that replace the liquid or gel phase with a gas in a
three-dimensional mesh structure. It has many features ideal for adsorption, such as large
internal surface area, wide pore size distribution, rapid recovery from aqueous solutions,
and low density, which will be developed to meet various industrial wastewater treatment
needs and greatly increase the adsorption capacity of the adsorbent [9]. Compared with
traditional aerogels, biomass aerogels also have the advantages of being economical and
environmentally friendly, biodegradable, and easily accessible [10]. Currently, classical
biomass-based aerogels include lignin-based aerogels [11], chitosan-based aerogels [12],
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and cellulose-based aerogels [13]. Cellulose (CE) is considered a promising raw material
for preparing biomass aerogels due to its unique linear structure and mechanical properties.
It is also the world’s most abundant renewable biological resource. In addition, cellulose
contains many hydroxyl groups, making it a good adsorbent for organic dyes [14,15]. How-
ever, the hydroxyl groups of cellulose may form hydrogen bonds with substances in the
wastewater, leading to a decrease in the affinity of the adsorbent. Cellulose-based aerogels
need to be modified to enhance the adsorption effect [16]. For TEMPO-oxidized nanocel-
lulose, the particle size distribution is uniform, and the carboxyl group content is high,
which enhances the stability of the gel itself. Secondly, drying the gels is essential for the
formation of porous structures. Cellulose is a polysaccharide chain that tends to keratinize
during drying. Polyhydroxy substances (e.g., starch) prevent synergistic hydrogen bonding
of cellulose chains by introducing space-site blocking or electrostatic groups, effectively
mitigating keratinization and maintaining our desired porous structure [17]. In the absence
of cross-linking agents, starch can form a complete gel network structure. Starch-based
aerogels, with advantages such as low density (0.10 g/cm3—0.24 g/cm3) and low thermal
conductivity (0.024 W/m·K—0.043 W/m·K) [18]. Wang et al. [19] prepared aerogels from
konjac glucomannan and starch using environmentally friendly sol-gel and freeze-drying
methods and showed that starch addition significantly enhanced the mechanical strength
of the aerogels. It is worth mentioning that calcium carbonate also has good performance
in wettability, hydrophobicity, and particle adhesion, in addition to basic properties such
as low cost, non-toxicity, and biocompatibility [20]. In contrast, nano-CaCO3 has a small
particle size, surface size effect, and macroscopic quantum tunneling effect, with the disad-
vantage of poor dispersion in water, which is detrimental to the adsorption process [21].
Previously, CaCO3 has been applied to the adsorption of Congo red dye [22]. Chong
et al. [23] loaded CaCO3 onto cellulose aerogels by in-situ precipitation of CaCO3, which
led to the adsorption of Congo red. The results showed that CaCO3 incorporation into the
cellulose aerogel significantly enhanced the adsorption capacity of the aerogel for the dye.

In this study, an environmentally friendly multifunctional biomass-based aerogel
(CaCO3@STA/PAM/TOCN) was prepared for the removal of anionic and cationic dyes
using a one-step sol-gel and freeze-drying method using TEMPO-oxidized nanocellulose,
tapioca starch, and calcium carbonate nanoparticles. The morphological structure of the
prepared aerogel was systematically characterized, and the effects of pH, contact time,
temperature, and other variables on the adsorption effect were discussed. Finally, the
kinetic, isothermal, and thermodynamic models of the adsorption process were investigated
in detail.

2. Results and Discussion
2.1. Characterization of Aerogels

The surface morphology and internal structure of the prepared aerogels were observed
by SEM. CaCO3@STA/PAM/TOCN showed a flexible, porous skeleton with a homoge-
neous channel structure, which facilitated ion diffusion and liquid permeation during
dye adsorption (Figure 1d–g). In contrast, pure CaCO3-doped cellulose presents a bundle
structure with an unsmooth surface [23]. The homogeneous pore distribution of the gel is
due to its ease of forming hydrogen bonds between the molecular chains of starch, nanocel-
lulose, and polyacrylamide. This makes the nano-calcium carbonate a cohesive center, thus
making the molecular chains more tightly based [24]. It is observed from Scheme 1 that
the synthesized aerogel is light in mass, and a piece of CaCO3@STA/PAM/TOCN with
dimensions of 1.5× 1.5× 0.5 cm is easily supported by several petals due to its light density
(42 mg/cm3). Figure 1a shows the morphology of the prepared aerogel, and Figure 1b,c
shows the morphology of the aerogel adsorbed with methylene blue and Congo red.
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The elemental mapping technique was used to further investigate the structural ele-
ment distribution, as shown in Figure 1h. The elemental mapping results showed that Ca 
was uniformly distributed on the aerogel surface. CaCO3 particles were uniformly precip-
itated around, and the starch became active after cooking and complete pasting, allowing 
bonding [25]. This uniform distribution of inorganic nanoparticles in the aerogel adsor-
bent network may improve dye adsorption efficiency [26]. 

Figure 2a shows the adsorption/desorption isotherm curves of the aerogel obtained 
for N2 at 77 K. The BET method shows a specific surface area of 39.23 m2/g. The average 
pore size is 9.87 nm. The lower specific surface area of CaCO3@STA/PAM/TOCN is due to 
fewer micropores/mesopores. The BET area measurement matches well with the mor-
phology observed by SEM characterization [27]. The thermal behavior of 
CaCO3@STA/PAM/TOCN aerogels was analyzed using TGA, and the curves were plotted 
as a function of temperature, as shown in Figure 2b. The thermal decomposition of the 
biomass aerogel is divided into three stages in Figure 2b. In the first stage, a small weight 
loss of the aerogel is observed below 230 °C, corresponding to the evaporation of water. 

Figure 1. Digital photos of the (a) CaCO3@STA/PAM/TOCN aerogel; (b) CaCO3@STA/PAM/TOCN
aerogel after adsorption of methylene blue; (c) CaCO3@STA/PAM/TOCN aerogel after adsorption of
Congo red; SEM images of the (d,e) CaCO3@STA/PAM/TOCN aerogel; (f) CaCO3@STA/PAM/TOCN
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Scheme 1. Schematic illustration of the preparation of CaCO3@STA/PAM/TOCN aerogel.

The elemental mapping technique was used to further investigate the structural
element distribution, as shown in Figure 1h. The elemental mapping results showed that
Ca was uniformly distributed on the aerogel surface. CaCO3 particles were uniformly
precipitated around, and the starch became active after cooking and complete pasting,
allowing bonding [25]. This uniform distribution of inorganic nanoparticles in the aerogel
adsorbent network may improve dye adsorption efficiency [26].

Figure 2a shows the adsorption/desorption isotherm curves of the aerogel obtained for
N2 at 77 K. The BET method shows a specific surface area of 39.23 m2/g. The average pore
size is 9.87 nm. The lower specific surface area of CaCO3@STA/PAM/TOCN is due to fewer
micropores/mesopores. The BET area measurement matches well with the morphology
observed by SEM characterization [27]. The thermal behavior of CaCO3@STA/PAM/TOCN
aerogels was analyzed using TGA, and the curves were plotted as a function of temperature,
as shown in Figure 2b. The thermal decomposition of the biomass aerogel is divided into
three stages in Figure 2b. In the first stage, a small weight loss of the aerogel is observed
below 230 ◦C, corresponding to the evaporation of water. As previously reported, a severe
mass reduction is observed in the phase around 270–420 ◦C, which may be related to the
depolymerization and decomposition of glucose units in cellulose [28]. The mass loss of
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9.28% in the final stage (400–600 ◦C) is attributed to the decomposition of the aerogel cross-
linked structure and further conversion to CO2 and H2O [29]. The XRD patterns obtained
for CaCO3@STA/PAM/TOCN are shown in Figure 2c. CaCO3@STA/PAM/TOCN exhibits
a typical cellulose II diffraction pattern, where the peaks at 2θ = 20.2◦ and 22.2◦ correspond
to the (110) and (200) crystal planes, respectively [23]. The XRD patterns obtained for
CaCO3@STA/PAM/TOCN confirm that the lattice structure is mainly the calcite phase,
in agreement with the SEM observations (Figure 1e). Owing to starch pasting, strong
diffraction peaks were not observed in the prepared aerogels. The FTIR spectra before and
after aerogel adsorption are shown in Figure 2d. After cellulose aerogel, three strong peaks
appear at 3337 cm−1, 1450 cm−1, and 1154 cm−1, attributed to the O-H, H-C-H, and C-O-C
bands in the cellulose group, respectively. The peak at 1618 cm−1 was attributed to the
water absorbed by the cellulose. As seen in Figure 2d, a slight blue shift and weakening of
the broadband of the OH group of the hydrogen bond occur. It is possible that the hydrogel
bonds are formed between functional groups and OH groups in MB or CR. In addition, the
peak of the vibrational mode belonging to the methylene group at 2931 cm−1 is shifted
to 2923 cm−1, indicating that hydrophobic interactions are involved in addition to the
electrostatic interactions between the dye and the aerogel. Thus, the adsorption mechanism
of CaCO3@STA/PAM/TOCN on CR is mainly electrostatic attraction, hydrogen bonding
and there is a transfer of electrons in the process, and the adsorption mechanism on MB is
hydrogen bonding adsorption and electrostatic attraction.
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2.2. Study of the Adsorption Properties of MB and CR
2.2.1. Effect of Solution pH

The pH of the initial solution can significantly affect the adsorption process of dyes
because the surface charge of the adsorbent and the degree of ionization of the dye,
and even the structure of the dye molecules, can change with pH. In order to make the
CaCO3@STA/PAM/TOCN adsorbent achieve the best adsorption effect (qe: adsorption
at equilibrium, mg/g) on MB and CR in a suitable acidic and alkaline environment, we
set different gradients of pH (3–10) to determine the best conditions for the experiment,
as shown in Figure 3. Both the concentrated acidic and basic environments affect the
conjugated structure of dye molecules.

The adsorption capacity of the MB and CR reached the maximum adsorption capacity
at neutral or weakly basic, and the adsorption capacity increased with increasing pH
(pH 3–7), and both dyes were comparable at a pH of 7–9. For MB, in an acid solution,
the presence of large amounts of hydrogen ions around the adsorption site hinders the
approach of MB, and the protonated amino and hydroxyl groups on the sugar molecule
chains generate electrostatic repulsion, leading to a decrease in the adsorption capacity. In
alkaline solutions, the aerogel is deprotonated, and the electrostatic attraction between the
aerogel and the cationic MB leads to a higher adsorption capacity [30]. For the CR dye,
the adsorption mechanism is slightly different. Under alkaline conditions, the electrostatic
repulsion decreased with increasing pH, increasing the adsorption capacity; when the pH
continued to increase, the gravitational force between the aerogel and CR also decreased,
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and the adsorption capacity tended to decrease. In acid solutions, electrostatic repulsion
between protonated aerogels and cationic CR molecules leads to a decrease in adsorption
capacity as the pH decreases due to the presence of nitrogen atoms and sulfonate groups in
the acid solution [31,32]. Thus, the adsorption of cationic and anionic dyes was strongly
influenced by the change in pH.
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2.2.2. Effect of Contact Time

Contact time is one of the important factors in determining dye removal. The effect of
MB and CR dye adsorption is shown in Figure 4. The adsorption trends of CR and MB are
approximately the same. The trend of adsorption was roughly divided into three stages, i.e.,
the initial rapid adsorption stage, followed by a gradual decrease in the adsorption rate, and
finally reaching the equilibrium state. The adsorption of MB and CR dyes gradually reached
the optimum effect within 6–8 h. The contact time and percentage removal efficiency
increased from 15 min (17.24%) to 6 h (94.56%) for MB and CR, respectively, and the contact
time and removal efficiency percentages increased from 15 min (10.76%) to 6 h (95.13%),
respectively. In the first region, the adsorbent surface was rich in active sites and dyes
aggregated on the monolayer of the adsorbent surface. As the adsorption time increased,
both pores and active sites were occupied [33]. In the second time period, the saturation
of the active sites on the outer surface is observed, and the adsorption capacity can only
increase slowly. In the last region, dye molecules penetrate into the adsorbent pores, and
the adsorption capacity remains essentially unchanged due to the small repulsive forces
between the free dye molecules in solution and those adsorbed on the adsorbent surface,
which may be related to the resistance to dye adsorption [34].

Gels 2022, 8, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 4. Effects of the adsorption time on the MB and CR adsorption capacity (pH value pH = 7, 
ambient temperature T = 20 °C). 

2.2.3. Influence of Ambient Temperature 
To investigate the effect of ambient heat on the dye adsorption process, we conducted 

experiments at different temperatures (20 °C, 30 °C, 40 °C, 50 °C, and 60 °C), as shown in 
Figure 5. In the range of 20–40 °C, the adsorption capacity was essentially flat, and 30–40 
°C was the optimum adsorption temperature, at 30–60 °C indicating a slight decrease in 
adsorption capacity with increasing temperature, which is unfavorable for adsorption. 
The possible reason for this is that the dye adsorption reaction process is exothermic, and 
high temperatures contribute to the inability of the reaction to proceed [35]. It can also be 
seen from Figure 5 that the adsorbent performed satisfactorily at all the temperatures 
studied, and it shows that temperature does not have much influence on the adsorption 
process [36]. 

 
Figure 5. Effects of ambient temperature on the MB and CR adsorption capacity (pH value pH = 7, 
adsorption time t = 6 h). 

2.2.4. Adsorption Kinetics, Isotherms, and Thermodynamics 
To evaluate the kinetic mechanism of MB and CR adsorption, Figure 6 shows the 

fitted data through pseudo-first-order and pseudo-second-order kinetic models [37], 
Equations (1) and (2). 

𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒(1 − 𝑒𝑒−𝑘𝑘1𝑡𝑡) (1) 

Figure 4. Effects of the adsorption time on the MB and CR adsorption capacity (pH value pH = 7,
ambient temperature T = 20 ◦C).



Gels 2022, 8, 755 6 of 16

2.2.3. Influence of Ambient Temperature

To investigate the effect of ambient heat on the dye adsorption process, we conducted
experiments at different temperatures (20 ◦C, 30 ◦C, 40 ◦C, 50 ◦C, and 60 ◦C), as shown
in Figure 5. In the range of 20–40 ◦C, the adsorption capacity was essentially flat, and
30–40 ◦C was the optimum adsorption temperature, at 30–60 ◦C indicating a slight decrease
in adsorption capacity with increasing temperature, which is unfavorable for adsorption.
The possible reason for this is that the dye adsorption reaction process is exothermic, and
high temperatures contribute to the inability of the reaction to proceed [35]. It can also
be seen from Figure 5 that the adsorbent performed satisfactorily at all the temperatures
studied, and it shows that temperature does not have much influence on the adsorption
process [36].
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2.2.4. Adsorption Kinetics, Isotherms, and Thermodynamics

To evaluate the kinetic mechanism of MB and CR adsorption, Figure 6 shows the fitted
data through pseudo-first-order and pseudo-second-order kinetic models [37], Equations (1)
and (2).

qt = qe

(
1− e−k1t

)
(1)

qt = qe

(
1− 1

1 + k2qet

)
(2)

Here, k1 (h−1) and k2 (g·mg−1·h−1) are the rate constants. The fitted kinetic parame-
ters are shown in Figure 6. As can be seen in Figure 6, the pseudo-second-order kinetics
of the fit coefficients (R2 > 0.994) for CR and MB are better than the proposed first-order
kinetics. This indicates that the adsorption is mainly controlled by the multiplicative de-
cision step. In addition, the pseudo-second-order model considers the chemosynthetic
interactions between the adsorbent and the adsorbate in chemisorption. The lower rate
constant (k2) indicates that the adsorption rate decreases with increasing contact time,
which may be related to the reduction of active sites during the adsorption process [37]. In
this work, the Lagrangian pseudo-second-order model is more consistent with the adsorp-
tion process of aerogels, indicating adsorption with predominantly shared or exchanged
electrons between the adsorbent and the adsorbate, which is consistent with most reports
on aerogel adsorbent.



Gels 2022, 8, 755 7 of 16

Gels 2022, 8, x FOR PEER REVIEW 7 of 17 
 

 

𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒(1 −
1

1 + 𝑘𝑘2𝑞𝑞𝑒𝑒𝑡𝑡
) (2) 

 
Figure 6. Pseudo-first-order and pseudo-second-order kinetic models for the adsorption of CR (a,c) 
and MB (b,d) on the aerogel. 

Here, k1 (h−1) and k2 (g·mg−1·h−1) are the rate constants. The fitted kinetic parameters 
are shown in Figure 6. As can be seen in Figure 6, the pseudo-second-order kinetics of the 
fit coefficients (R2 > 0.994) for CR and MB are better than the proposed first-order kinetics. 
This indicates that the adsorption is mainly controlled by the multiplicative decision step. 
In addition, the pseudo-second-order model considers the chemosynthetic interactions 
between the adsorbent and the adsorbate in chemisorption. The lower rate constant (k2) 
indicates that the adsorption rate decreases with increasing contact time, which may be 
related to the reduction of active sites during the adsorption process [37]. In this work, the 
Lagrangian pseudo-second-order model is more consistent with the adsorption process 
of aerogels, indicating adsorption with predominantly shared or exchanged electrons be-
tween the adsorbent and the adsorbate, which is consistent with most reports on aerogel 
adsorbent. 

In addition, the adsorption behavior of aerogels was described using the intraparticle 
diffusion model proposed by Weber and Morris: 

𝑞𝑞𝑡𝑡 = 𝐾𝐾𝑖𝑖𝑖𝑖𝑡𝑡0.5 + 𝐶𝐶𝑖𝑖 (3) 

Here, Kid (mg·g−1·h0.5) and Ci (mg·g−1) denote the intraparticle diffusion rate constant 
and the parameter associated with the boundary layer thickness, respectively. The values 
of these two parameters can be obtained by plotting qt versus t0.5, as shown in Figure 7. 
This plot is divided into two separate regions rather than a single linear plot through the 
origin. This indicates that the adsorption process of the aerogel on CR and MB is a two-
step process. In addition to the effect of intraparticle diffusion, boundary layer diffusion 
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and MB (b,d) on the aerogel.

In addition, the adsorption behavior of aerogels was described using the intraparticle
diffusion model proposed by Weber and Morris:

qt = Kidt0.5 + Ci (3)

Here, Kid (mg·g−1·h0.5) and Ci (mg·g−1) denote the intraparticle diffusion rate constant
and the parameter associated with the boundary layer thickness, respectively. The values of
these two parameters can be obtained by plotting qt versus t0.5, as shown in Figure 7. This
plot is divided into two separate regions rather than a single linear plot through the origin.
This indicates that the adsorption process of the aerogel on CR and MB is a two-step process.
In addition to the effect of intraparticle diffusion, boundary layer diffusion also affects
the adsorption of dyes. In the second stage, the rate of intraparticle diffusion decreases
accordingly due to the simultaneous decrease in dye concentration and adsorption sites [38].
The adsorption of MB and CR is a multi-stage process that includes the surface adsorption
of cellulose-based aerogels and the porous structure [39].

The adsorption behavior of the aerogel adsorbents was investigated using the Lang-
muir and Freundlich models, as shown in Figure 8. The Langmuir model assumes that
adsorption is limited to a monolayer on a homogeneous surface with identical adsorption
sites and no chemical reactions, while the Freundlich model assumes that adsorption on
multilayer adsorption on heterogeneous surfaces that allow adsorbed molecules to interact.
The equations of the Langmuir and Freundlich models can be expressed as follows:

Ce

qe
=

Ce

qm
+

1
qmKL

(4)

Inqe = InKF +
1
n

InCe (5)
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Figure 8. Langmuir and Freundlich isotherms for the adsorption of CR (a,c) and MB (b,d) on the
aerogel (m = 10 mg, V = 50 mL, t = 6 h).

KL (L/mg) is the Langmuir constant, and qm (mg/g) is the maximum adsorption capacity.
KL and qm can be determined by plotting Ce/qe versus Ce linearly. KF ((mg/g)·(L/mg)1/n) is
the Freundlich constant associated with the adsorption capacity, and 1/n is the adsorption
strength. KF and 1/n can be determined by plotting the intercept and slope of the linear
graph of Inqe versus lnCe. All of the above parameters can be found in Figure 8. As
seen in Figure 8, the CR and MB values of the Langmuir correlation (R2) are higher than
those of the Förster isotherm model. This indicates that the Langmuir isotherm model
dominates the aerogel adsorption CR and MB. Moreover, the maximum adsorption capacity
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(qm) of CaCO3@STA/PAM/TOCN aerogel for the adsorption of CR and MB was 277.76
and 101.01 mg/g, respectively. The adsorption capacity of CaCO3@STA/PAM/TOCN for
adsorption of the anionic dyes CR was greater than that of the cationic dyes MB [40].

The adsorption of the MB and CR dyes on CaCO3@STA/PAM/TOCN was carried out
at different temperatures of 293, 303, and 313 K, respectively. Different thermodynamic
parameters of adsorption such as Gibbs free energy change (∆G0 (kJ·mol−1)), enthalpy
change (∆H0 (kJ·mol−1)), and entropy change (∆S0 (J·mol−1·K−1)) were calculated using
the following equations [33]:

Ink =
∆S0

R
− ∆H0

RT
(6)

k =
qe

Ce
(7)

∆G0 = −RTInk (8)

where k is the rate constant. R is the ideal gas constant (8.314 × 10−3 J·mol−1·K−1). T is the
specified temperature (K). The values of ∆H0 and ∆S0 are calculated based on the slope
and intercept of Ink versus 1/T.

Figure 9 shows the thermodynamic parameters of the CR and MB dye adsorption on
CaCO3@STA/PAM/TOCN. The positive values of ∆H0 and ∆S0 indicate that the dye ad-
sorption process CaCO3@STA/PAM/TOCN is heat absorbing and is a stochastic increasing
process. This heat absorption property indicates a more favorable dye adsorption process at
higher temperatures. In addition, the negative value of ∆G0 reveals that the dye adsorption
process on CaCO3@STA/PAM/TOCN is spontaneous.
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2.2.5. Recycle Performance

In general, good adsorbents have a high adsorption capacity and a high desorption
efficiency, which can significantly reduce the cost of preparing the adsorbent. For the
sustainable application of the adsorbent, the reusable performance of the aerogel was
investigated, as shown in Figure 10. Twenty-five ml of hydrochloric acid (0.1 mol/L) was
chosen as the elution solvent, and the adsorbent was collected after elution (approximately
10 min), rinsed with distilled water, and finally freeze-dried and reused for MB and CR
removal [41]. In Figure 10, we found that the macropore desorption was relatively easy,
and the adsorption efficiency gradually decreased in each cycle. This decrease may be due
to the pore loss of aerogel during the adsorption-desorption cycle with its own degradation
and due to the permanent occupation of some adsorption sites by solvent molecules [42].
After four adsorption cycles, the adsorption rate of CR was about 74.56%. The adsorption
rate of MB was about 65.75%. The results indicate that CaCO3@STA/PAM/TOCN can be
repeatedly used as an efficient adsorbent for dye wastewater treatment.
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Figure 10. Cyclic adsorption of CaCO3@STA/PAM/TOCN aerogels (reusability experiments were
performed at pH 7.0 with a dose of 10 mg of CaCO3@STA/PAM/TOCN, an elution volume of 25 mL
at 20 ◦C, an initial CR dye concentration of 100 mg/L, an initial MB dye concentration 4 mg/L. After
each elution, the aerogels were freeze-dried at −40 ◦C).

2.2.6. Comparison of Aerogel Adsorption Performance

As shown in Table 1, the CaCO3@STA/PAM/TOCN aerogel has a considerable ad-
sorption effect on cationic dyes MB and anionic dyes CR compared to the literature survey
of published works. It has abundant functional groups and a rich pore structure with
the ability to adsorb and remove both types of dyes of anion and cation from an aque-
ous solution.

Table 1. Comparison of the adsorption effect of the present work with other types of aerogel adsorbents.

Adsorbents Dyes Adsorption Capacity
(mg/g) Reference

Fe3O4@polydopamine/carboxymethyl chitosan aerogel

MB 217.4

[43]
CV 262.3
MO 83.5
CR 92.8

Cellulose/chitosan aerogel CR 380.2 [44]

Graphene-cellulose-polyethyleneimine aerogel Amaranth 369.4 [45]
MB 237.3

Cellulose nanofibrils aerogel MG 203.7 [46]

Poly(propylene glycol adipate)-modified cellulose aerogel CR 120 [47]

Cellulose nanofibrils and (3-mercaptopropyl) trimethoxysilane
compressible aerogels MO 186.7 [48]

Chitosan and cellulose nanofibrils aerogel AB93 1428.7 [49]

Carboxymethyl cellulose-supported graphene oxide aerogel rhodamine B 312.5 [50]

3D graphene oxide/ι-carrageenan composite aerogel MB 245.3 [51]

Cationic cellulose nanofibrils aerogel
Blue dye CR19 230

[52]Red dye 180 160
Orange dye 142 560

Chitin and psyllium biopolymers aerogel CV 227.1 [53]

Carboxymethyl cellulose and graphene oxide composite aerogel MB 245.0 [54]
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Table 1. Cont.

Adsorbents Dyes Adsorption Capacity
(mg/g) Reference

Pineapple leaf fibers and cotton waste cellulose aerogel MB 34.0 g/g [55]

Silica aerogel/polyacrylonitrile/polyvinylidene
fluoride nanofiber BR18 182 [56]

Poly(methacrylic acid-co-2-(dimethylamino) ethyl methacrylate)
and carboxylated cellulose nanofibrils aerogel

MB 598.8
[57]NGB 621.1

MO 892.9

Sodium alginate/cellulose nanofibers/polyethyleneimine
composite aerogel

CR 2007.5
[58]MO 2253.4

Polydopamine-Modified Cellulose Nanofibril Composite Aerogel MB 208 [59]

3D rGO/ZIF-67 aerogel CV 1714.2 [60]

CaCO3@STA/PAM/TOCN aerogel CR 277.76
This workMB 101.01

Note: CR: Congo red; MG: malachite green; AB93: acid Blue 93; CV: crystal violet; MO: methyl orange; NGB:
naphthol green B; BR18: basic red 18.

3. Conclusions

Cellulose-based biomass aerogel adsorbent materials have received a lot of attention
in recent years. Starch and cellulose are the most common polysaccharide materials on
earth. They offer many advantages, such as biodegradability, good stability, non-toxicity,
environmental friendliness, a wide range of sources, renewability, and low price. The
aerogel is a bio-based aerogel prepared by TEMPO-oxidized cellulose nanofibers, starch,
calcium carbonate nanoparticles, and acrylamide together. The prepared aerogel has a
regular and non-collapsing three-dimensional mesh structure with pores consisting of large
pores, which greatly improves its water absorption and water retention and has an excellent
ability to adsorb macromolecules. The CaCO3@STA/PAM/TOCN aerogel adsorbs the
organic dye CR and MB mainly through electrostatic interactions and hydrogen bonding.
The calculated adsorption data are consistent with a pseudo-second-order kinetic model
and follow the Langmuir adsorption isotherm. The equilibrium adsorption amounts of
CR and MB for this aerogel were 277.76 and 101.01 mg/g, respectively, obtained from the
Langmuir curve. The aerogel is a green and environmentally friendly material, and the
adsorption efficiency of the aerogel is between 60–80% after four cycles. By the considerable
adsorption of anionic and cationic types of dyes, we infer that this aerogel is promising.
However, the only drawback is that the preparation step of this aerogel is complicated, and
future work can choose a simpler approach to prepare it.

4. Materials and Methods
4.1. Materials

Congo red (CR), methylene blue (MB), acrylamide, N-N’ methylene bisacrylamide,
NaOH, and HCl were purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China. Ammonium persulfate was purchased from Aladdin (Shanghai, China). Cassava
starch was from Yuanye Biotechnology Co., Ltd., Shanghai, China. TEMPO oxidation of
nanocellulose was performed in the lab, with a carboxyl content of 1.85 mmol/g. All the
materials were used without purification.

4.2. Analytical Measurements of MB and CR Concentration

Maximum absorption wavelength determination: Congo red and methylene blue were
accurately weighed for the corresponding organic pollutants, and 100 mg/L of dye solution
was accurately configured in volumetric flasks and formulated into different concentration
gradients. The absorption or reflectance in the visible range directly affects the perceived
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color of the chemicals involved. The full spectrum of the two organic pollutant solutions
can be scanned separately by a UV spectrophotometer (UV2200, Shanghai Sunyu Hengping
Scientific Instruments Co., Ltd., Shanghai, China) to determine the maximum absorption
wavelength of the dyes.

Standard curve determination: Different concentration gradients of CR (20 mg/L,
40 mg/L, 60 mg/L, 80 mg/L, and 100 mg/L) and MB (1 mg/L, 2 mg/L, 2.5 mg/L, 3 mg/L,
and 4 mg/L) were prepared, and the absorbance at the maximum absorption wavelength of
the corresponding organic pollutant solutions were determined at different concentrations.
The linear relationship between the absorbance of organic pollutants and the concentration
of organic pollutants was fitted, and the merit of the fitted relationship was judged by
the correlation coefficient R2 (controlled at about 0.9). As a result, the standard curves of
the organic pollutant solutions were obtained, and the basic information about the two
organic dyes and the relevant parameters of the fitted standard curve equations are shown
in Table 2.

Table 2. Basic parameters and fitting standard curve equation of two organic dyes.

Dyes Congo Red Methylene Blue

Molecular formula C32H22N6Na2O6S2 CHN3ClS
Molecular weight 696.68 g/mol 319.85 g/mol

Structural
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4.3. Fabrication of the Aerogel

The preparation of CaCO3@STA/PAM/TOCN hydrogels was carried out with refer-
ence to the literature [24]. The steps were as follows: 0.5 g of tapioca starch (adiabatic) was
weighed, added to a certain volume of distilled water, and pasted in a water bath at 75 ◦C
for 45 min. Then weigh 0.5 g of TEMPO-oxidized fiber (adiabatic) in a certain volume of
distilled water and sonicate for 45 min to obtain TOCN, and mix the two solutions.

A certain amount of well-dispersed calcium carbonate nanosuspension (4% relative to
the total mass of starch and nanofibers) was added. Then 4 g of acrylamide, 0.06 g of N,
N′-methylenebisacrylamide, and 0.03 g of ammonium persulfate were added to the mixture.
The mixture was made up to 100 g with distilled water and stirred and mixed for 10 min,
after which the samples were transferred to a probe-type ultrasonic cell disintegrator. The
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probe was first placed in the mixture and sonicated for 10 min to mix the components
uniformly.

Before the formation of the gel, the probe was removed and then sonicated in water
for 45 min to obtain a crude gel product with a gel mass fraction of about 5%. During
the sonication process, attention was paid to the water temperature to prevent excessive
pasteification of tapioca starch due to high temperature. The obtained crude gel product
was soaked in a prepared ethanol solution (80% v/v) for 24 h to obtain a hydrogel.

The obtained hydrogel samples were washed repeatedly using distilled water at 20 ◦C,
frozen at −20 ◦C for 24 h, and then dried in a freeze dryer at −40 ◦C to finally obtain
aerogels (CaCO3@STA/PAM/TOCN). The specific preparation steps refer to Scheme 1.

4.4. Characterization of Aerogel

Before SEM testing, the powder samples directly adhered to the top of the conductive
gel on the sample table and then gold sprayed to eliminate static electricity. The microscopic
morphological characteristics of the dry gel sections were observed. An energy-dispersive
spectrometer was used for the elemental analysis to observe the distribution of calcium
elements in the aerogel skeleton. A certain mass of sample (50 mg) was weighed and
placed in a sample tube, degassed at 120 ◦C for 6 h. The adsorption and desorption
capacity of the aerogel to nitrogen was tested using a QUADRASORB-EVO gas adsorber
from the USA. The porosity, average pore size, and specific surface area of the dry gels
were calculated from the adsorption and desorption change curves of nitrogen gas. The
samples were always examined and recorded at different temperatures using a TGA209
F1 thermogravimetric analyzer from NETZSCH, Germany. The test heating conditions
were: in an N2 environment, temperature range 30~700 °C, temperature rise rate was
set to 10 °C/min, and the gas flow rate was 20 mL/min. The crystal structure analysis
of the aerogels was carried out on a multifunctional horizontal X-ray diffractometer of
the Nippon Rigaku Ultima IV combination type. Test conditions: X-ray tube with CuKα

target (λ = 0.15406 nm), graphite monochromator to eliminate CuKα radiation, tube voltage
40 kV, tube current 200 mA, scanning range 2θ = 5~80◦, scanning step 0.02◦, scanning
rate 15 ◦/min, recording “diffraction intensity-2θ” curve. The samples were determined
by the KBr compression method on a German VERTEX 80 V infrared spectrometer in the
wavelength range of 4000–500 cm−1.

4.5. Adsorption Kinetics

To investigate the adsorption performance of the CaCO3@STA/PAM/TOCN adsor-
bent, a single variable method was adopted for different pH values and adsorbent dosages.

For the adsorption performance under different pH conditions, 0.1 mol/L HCl and
0.1 mol/L NaOH were used to adjust the pH in the experiment. Then, 20 mg of adsorbent,
CR, and MB solutions with a concentration of 100 mg/L and pH values of 2, 4, 6, 8, 10,
and 12, respectively, were taken in a conical flask and the adsorption temperature was
25 °C. The adsorption experiments were performed dynamically in a thermostatic oscillator
rotational speed of 100 r/min, Guohua THZ-82, Changzhou, China. After adsorption, the
supernatant was filtered with a 0.22 µm filter membrane, and the supernatant was tested
for absorbance by UV spectrophotometer, choosing proper concentrations for UV analysis.

Then, the absorbance after adsorption was measured and the corresponding adsorp-
tion concentration was calculated from the standard curve. The amount of dye adsorbed
and the removal rates were calculated according to the following Equations (9)–(11):

Qe = (C0 −Ce)V/m (9)

Qt = (C0 −Ct)V/m (10)

Adsorption efficiency =
(C0 −Ce)

C0
× 100% (11)
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In the equation, Qt, Qe—the amount of dye adsorbed in solution at any time and at
equilibrium time, mg/g.

C0, Ct, and Ce—initial concentration of organic dyes, after adsorption and at equilib-
rium, mg/L.

V—the volume of dye to be adsorbed, L; m—the mass of adsorbent, g.
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