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Abstract: SiO2 aerogels have attracted extensive attention due to their unique structural character-
istics, which exhibit many special properties, especially good optical transparency. As far as we
know, the sol-gel stage during the synthesis of aerogel plays an important role in the construction of
the gel skeleton. In this study, we adjusted the amount of silicon source and catalyst to explore the
best scheme for preparing highly transparent SiO2 aerogels, and further clarify the effects of both
on the properties of SiO2 aerogels. Results indicated that the pore size distribution was between 10
and 20 nm, the thermal conductivity was between 0.0135 and 0.021 W/(m·K), and the transmittance
reached 97.78% at 800 nm of the aerogels, better than most studies. Therefore, it has the potential to
be used in aerogel glass for thermal insulation.

Keywords: SiO2 aerogels; high transparency; thermal insulation; mesoporous materials

1. Introduction

Aerogel [1] is a typical thermal insulation material with a three-dimensional (3D)
porous network structure connected by nanoparticles. It has been widely used in numerous
fields due to its many unique characteristics and properties, such as low density, high
porosity, extremely low thermal conductivity and excellent acoustic properties. SiO2 aero-
gel [2] with excellent optical transparency has emerged as the most representative aerogel
due to its inexpensive cost and straightforward preparation process [3–6]. Transparent
SiO2 aerogel [7,8] has been utilized extensively in Cherenkov detectors [9,10], thermal
insulation [11–15], energy-saving [13,16–19], photoelectric materials [20–22], wearables
fields [23], thermal collectors [24–28], adsorbents and sensors. Thus, transparent SiO2
aerogel has great research value and the prospects are very broad.

The thermal insulation performance of aerogels has been demonstrated to be due to
the low thermal conductivity provided by the high porosity structure [29] and the pore
size is preferably smaller than the air free path (70 nm). In addition, high transparency
performance requires that the pores of aerogel be much smaller than the wavelength of
visible light, so as to minimize the scattering of block. As a result, the porous size of
aerogels with thermal insulation as well as highly transparent must be small and uniformly
distributed to avoid large deviation of light at the interface of pores. Moreover, SiO2
aerogels are generally prepared by the sol-gel method. Due to the internal disordered
porous structure, they are easily cracked and broken during the preparation process, and it
is a big challenge to obtain the overall block structure without defects [30]. In most research,
the supercritical drying method without gas-liquid interface is used to avoid the generation
of capillary forces and reduce the shrinkage of gel.

Researchers have been trying to improve the optical transparency of SiO2 aerogels,
but it is exceedingly difficult to combine thermal insulation with high transparency [31–34].
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At present, there are many mainstream or mature strategies to improve the transmittance
of SiO2 aerogels. Firstly, in the sol-gel stage, Shimizu et al. [35] found, based on surfac-
tants, that different concentrations of the base catalyst affected the size and uniformity
of aerogels skeleton, and thus affected transparency. Zhao et al. [24] proposed a rapid-
hydrolysis-condensation procedure and restricted-cluster, and the molar ratio of catalyst
was identified as the most critical parameter in the experimental process in order to obtain
highly transparent aerogels. Moreover, during the drying process after sol-gel, by control-
ling shrinkage in the aging process of the gels, Lei et al. [36] prepared polysesiciloxane
aerogels with smaller particles and pores. The aerogels with the density of 0.25 g/cm3 had
a transmittance of 70% at 550 nm. Similarly, Tabata et al. [9] prepared SiO2 aerogels with
higher transparency than conventional methods using a method called pinhole drying [37].
Despite the fact that the transmittance was improved and there were no cracks in the
appearance of aerogels, the shrinkage rate of aerogels after drying was very high, which
was a common problem in atmospheric drying [1,21]. Finally, after the preparation stage,
high-temperature annealing is one of the effective methods to change the microstructure of
aerogels. Strobach et al. [25,26] used the viscosity change of aerogels at high temperature
to continue to improve transparency. The results showed that aerogels were relatively
stable at a low temperature, but particles tend to be extremely aggregated and densified at
high temperature. Hence, the size of the scattering source also had a great dependence on
temperature, resulting in the increase of transparency. Although temperature treatment
can significantly improve transparency, high-temperature treatment is time-consuming
and laborious, and will cause shrinkage of aerogels, resulting in an increase in thermal
conductivity. In general, the monolithic SiO2 aerogel system became a promising material
for windows with highly energy-efficient [12,14,38].

In this paper, we aim to prepare highly transparent SiO2 aerogels with a concise and
efficient method. Thus, the alkaline one-step sol-gel method was adopted, and tetram-
ethoxysilane (TMOS), a silicon source with a small molecular volume was selected, and
by adjusting the amount of silicon source and alkali catalyst to simply regulated the gel
structure. Lastly, the highly transparent SiO2 aerogels were obtained by the appropriate
drying method. Here, no additional surfactants and post-treatment were required, the SiO2
aerogels with great advantages in optical transparency were directly obtained through
simple processes. Compared to glass, SiO2 aerogels do not generate glare spots, and hold
great promise as a means of thermal insulation in the interspace of double-glazing systems
as well as in solar collectors.

2. Results and Discussion
2.1. FTIR Spectrum Analysis

Figure 1 showed the FTIR spectrum of SiO2 aerogels, in which 3422 cm−1 was the
antisymmetric stretching vibration peak of -OH and 1627 cm−1 was the bending vibration
peak of H-O-H; 1094 cm−1 was the antisymmetric stretching vibration peak of the Si-
O-Si group, which belonged to the characteristic peak of SiO2, indicating that the main
component of sample was SiO2; 957 cm−1 was the stretching vibration peak of Si-OH, and
this group was the main reason for the hydrophilicity of SiO2 aerogel; 802 cm−1 was the
symmetric stretching vibration peak of Si-O, which also belonged to the characteristic peak
of SiO2.

2.2. Microstructure Analysis

The micromorphology of SiO2 aerogels was a typical nano-porous 3D network struc-
ture. As shown in Figure 2, when the concentration of NH4OH solution was 0.75 mol/L
and the mass fraction of TMOS was 15 wt.%; 25 wt.%; 35 wt.% and 45 wt.%, the micro-
morphologies with continuous porousity of the prepared SiO2 aerogels were very similar.
Small and uniform particles were closely connected with each other through the "neck",
and the structure was relatively dense. Due to the different mass fractions of TMOS, the
aerogels occurred different shrinkage after drying, as shown in Table 1, resulting in a
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secondary change in the microstructure. With the decrease in the mass fraction of silicon
source, the shrinkage gradually increased, and the structures tended to be dense, which
made the structure of SiO2 aerogels with high and low mass fraction very similar, and
still maintained a pearl-like 3D network structure. The increase in TMOS content only
deepened the densification of the structure slightly. Therefore, the SiO2 aerogels prepared
under the condition of different TMOS mass fractions presented a small difference in the
micromorphology.
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Figure 1. FTIR spectrum of SiO2 aerogels.

Table 1. Shrinkage of SiO2 aerogels with different mass fractions of TMOS.

TMOS (wt.%) 15 25 35 45

Line Shrinkage
(%) 22~27 11~15 8~10 5~9

However, When the mass fraction of TMOS was 45 wt.% and the concentration of
NH4OH solution was 0.15 mol/L; 0.30 mol/L; 0.45 mol/L; 0.60 mol/L and 0.75 mol/L, the
size of SiO2 particles and pores decreased with the increase in the concentration of NH4OH
solution, and the structure tended to be denser, as shown in Figure 3. It was attributed to
the high catalyst concentration improving the speed of gelation, so that the silicon source
can rapidly hydrolyze and condense into primary particles. Then, due to the depletion of
the silicon source, the formation of secondary particles lacked raw materials at the later
stage, so the clustering process stopped abruptly, resulting in smaller SiO2 particles, smaller
pores, and more uniform distribution [24].
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NH4OH solutions were (a) 0.15 mol/L; (b) 0.30 mol/L; (c) 0.45 mol/L; (d) 0.60 mol/L; (e) 0.75 mol/L.

Moreover, as shown in Figure 4, the effect of silicon source content and catalyst con-
centration on the microstructure was also illustrated. Figure 4a showed the N2 adsorption-
desorption isotherm curves of SiO2 aerogels which belonged to the type IV, a typical
characteristic of mesoporous materials [21]. With the increase in TMOS mass fraction, the
specific surface area gradually decreased. On the contrary, with the increase in NH4OH
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solution concentration, the specific surface area increased accordingly. This was mainly be-
cause more silicon sources, the hydrolysis and condensation reaction will be more sufficient,
and more SiO2 particles can be generated to secondary particles, as well as the catalyst en-
abling the reduction of SiO2 particle size by rapid gel process. As shown in Figure 4b, it can
be seen that the pore size distribution of each sample was mainly concentrated between 10
and 20 nm, which was divided obviously into two concentrated points due to the different
concentration of NH4OH solution. When the concentration of NH4OH solution was low, it
was between 15 and 20 nm with wide distribution, and when the concentration of NH4OH
solution was high, it is between 10 and 15 nm with narrow distribution. However, the pore
size of the NH4OH solution with the same concentration and different TMOS content was
roughly the same. Therefore, the effect of NH4OH solution concentration on the pore size
distribution was more significant.
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2.3. Thermal Properties

As shown in Figure 5a, there are three ways of heat conduction in aerogels: solid-
phase heat transfer, gas convection heat transfer, and radiation heat transfer. In general,
radiation heat transfer is ignored at room temperature [1]. Figure 5b showed the thermal
conductivity of SiO2 aerogels. It can be seen that with the increase in TMOS mass fraction,
the thermal conductivity increased, because higher TMOS mass fraction led to higher
bulk density, resulting in an increase in the solid-phase heat conduction of the network
skeleton. However, the thermal conductivity of 15 wt.% aerogels was slightly higher than
that of 25 wt.%. Maybe because too little TMOS content led to larger pores, resulting in
higher gas convection heat transfer. At the same time, when the mass fraction of TMOS
was same, the thermal conductivity decreased with the increase in the concentration of
NH4OH solution. This was owing to a high catalyst concentration, which led to smaller
SiO2 particles and pores, which limited the solid-phase heat transfer and gas convection
heat transfer, resulting in a lower final thermal conductivity.
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Figure 6 showed the infrared thermal imaging of the SiO2 aerogel. It can be seen that
the surface temperature of the SiO2 aerogel tended to be stable after 300 s, and the tempera-
ture difference ∆T = 44 ◦C at 600 s, which was about 40% of panel temperature, indicating
that the highly transparent SiO2 aerogel had excellent thermal insulation performance.
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Table 2 listed the thermal conductivities of SiO2 aerogels, xerogel and cryogel. Through
comparison, we found that thanks to the supercritical drying method, SiO2 aerogel had the
lowest thermal conductivity and had a great advantage in thermal insulation.

Table 2. The thermal conductivities of SiO2 aerogels, xerogel and cryogel [29,30,39,40].

Samples SiO2 Aerogel SiO2 Xerogel SiO2 Cryogel

Thermal conductivity
(W/(m·K)) 0.01–0.03 0.03–0.09 0.03–0.05
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2.4. Optical Transmittance

According to the Rayleigh-Gans theory, the extinction coefficient of aerogels is pro-
portional to the bulk density of aerogels and the diameter of the scattering source [7], as
follows:

σs = 4π4 ρap

ρSiO2

d3

λ4

(
n2 − 1
n2 − 2

)
(1)

where σs is scattering coefficient, ρap is apparent density or bulk density of SiO2 aerogels,
ρSiO2 is true density of amorphous silicon (2.2 g/cm3), d is diameter of particle scattering
center, λ is wavelength, n is relative refractive index (n1 is refractive index of the SiO2
particles, n2 is refractive index of the external medium (air)). The formulation applies to
isolated SiO2 spheres, which approximate a highly porous bulk.

In detail, one of the scattering sources is the macroscopic defects of appearance,
which may be caused during the sol-gel process or demolding process [16], so the whole
preparation process should try to ensure no pollution and destruction. Another scattering
source is the scattering of nano-porous structures, which is the result of the interaction
between SiO2 particles and pores [16]. In fact, we can control the density of SiO2 aerogels
and the diameter of the scattering source, but because the relationship between the diameter
of the scattering source and the extinction coefficient is a power of 3, it becomes a more
critical factor.

As shown in Figure 7, SiO2 aerogels themselves have a very low absorption of light.
When SiO2 aerogels are irradiated by a beam of light, it may interact with the scattering
source in the aerogels and then weaken the intensity of transmittance. According to the
Rayleigh-Gans theory, the smaller the size of the SiO2 aerogels structural unit, the smaller
the extinction coefficient and the higher the transmittance [41]. Therefore, the optical
transparency of SiO2 aerogels was related to the gel structure construction [41,42]. The
optimization of composition and microstructure control are effective strategies to improve
the high performance and multi-performance of SiO2 aerogels [1].
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Figure 8 showed that the transmittance curves of SiO2 aerogels. Figure 8a–d were
the transmittance curves under the same TMOS mass fraction and different NH4OH
solution concentrations, respectively. According to Figure 8e,f, the results showed that
the transmittance of SiO2 aerogels prepared by 45 wt.% TMOS and 0.75 mol/L NH4OH
solution were the highest, which reached 97.78% at 800 nm. The reason for that was because
the high content of silicon source led to sufficient SiO2 particles generated, while the high
concentration of catalyst promoted the hydrolysis and condensation reaction of SiO2, and
the cluster was restricted. Under these conditions, the generated SiO2 particles and pores
were small and uniform, the scattering source was small, which reduced the deviation of
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light as well as the scattering of light in the aerogels, so the transparency of aerogels was
the highest. The results were consistent with the previous analysis.
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3. Conclusions

We used different mass fractions of TMOS and different concentrations of NH4OH so-
lution to simply control the structure of SiO2 aerogels, thereby improving the transmittance.
The micromorphology including densification, particle size and pore size distribution of
SiO2 aerogels were closely related to the silicon source content and catalyst concentration.
After adjusting the experimental parameters, the particles and pore size distribution of
SiO2 aerogels were small, and the thermal conductivity was low. More notably, the highest
transmittance of SiO2 aerogels can reach 97.78% at 800 nm, which was higher than that of
ordinary SiO2 aerogels and undoubtedly broaden the application prospect of SiO2 aerogels
in highly transparent materials, such as aerogel glass. However, the mechanical properties
and hydrophilicity of highly transparent SiO2 aerogels should be further modified for
improvement.

4. Materials and Methods
4.1. Materials

TMOS (AR) was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). Methanol (AR) was purchased from Beijing Tongguang Fine Chemical
Company (Beijing, China). The water (deionized water) was purchased from Shanghai
Yien Chemical Technology Co., Ltd. (Shanghai, China). NH4OH (GR) was purchased from
Shanghai Maclin Biochemical Technology Co., Ltd. (Shanghai, China). Ethanol (AR) was
purchased from Beijing Tongguang Fine Chemical Company (Beijing, China). All chemical
regents were used without further purification.

4.2. Preparation of SiO2 Aerogels

The schematic of the preparation process was shown in Figure 9 and the reaction
process was shown in Figure 10. The preparation formulations of SiO2 aerogels were listed
in Table 3. In the experiments, the mass ratios of TMOS were 15, 25, 35 and 45 wt.%, and
the concentrations of NH4OH solution were 0.15, 0.30, 0.45, 0.60 and 0.75 mol/L. Firstly,
a certain amount of TMOS and methanol were mixed at room temperature and stirred
for 30 min. Then, NH4OH solutions were added and continued to stir until uniform and
moved to the mold, which needed to be sealed and placed in a 30 ◦C oven for 24 h. After the
demolding process, the gel was soaked in ethanol for 3 days for solvent replacement and
cleaning. Finally, supercritical CO2 drying [43] was performed to obtain highly transparent
SiO2 aerogels. The specific parameters of supercritical CO2 drying were set as follows: the
temperature of the drying kettle was 32 ◦C, the temperature of the separating kettle was
37 ◦C, the pressure of the storage tank was 5.5 MPa, the drying pressure was 7.5 MPa, the
separation pressure was 5.5 MPa, and the supercritical state was maintained for about 1 h.
Parameters can be adjusted according to different aerogel formulations. Figure 11 showed
the pictures of the prepared SiO2 aerogels with difference transparency.

4.3. Characterizations

The microstructure of SiO2 aerogels was observed using a Hitachi S4800 scanning
electron microscope. Nitrogen adsorption-desorption tests for observation of pore structure
were performed using a Micrometeritics APSP 2460 automatic specific surface area and
porosity analyzer. The DRPL-III high-precision thermal conductivity tester was used to
test the thermal conductivity of the SiO2 aerogels; the temperature of the hot surface was
40 ◦C, the temperature of the cold surface was 20 ◦C, and the pressure was 5 N. A TU-1901
double-beam UV-Vis spectrophotometer was used to perform spectral scanning on the SiO2
aerogels to obtain the transmittance (T%), and the test wavelength range was 200–900 nm.
The SiO2 aerogels were formed into a size of 80×80 mm and the thickness was 2–3 mm.
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Table 3. Preparation formulations of highly transparent SiO2 aerogels.

Samples TMOS (wt.%) TMOS (g) Methanol (g) NH4OH (g) Deionized Water (g)

1

15 2.47 10.4

0.019

3.6
2 0.038
3 0.058
4 0.077
5 0.097
6

25 4.67 10.4

0.019

3.6
7 0.038
8 0.058
9 0.077

10 0.097
11

35 7.53 10.4

0.019

3.6
12 0.038
13 0.058
14 0.077
15 0.097
16

45 11.45 10.4

0.019

3.6
17 0.038
18 0.058
19 0.077
20 0.097
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