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Abstract: To control the filtration loss of drilling fluids in salt–gypsum formations, a novel type
of zwitterionic polymer gel (DNDAP) was synthesized by free radical polymerization, which was
used as a salt- and calcium-resistant fluid loss reducer for water-based drilling fluids (WBDF).
DNDAP was prepared with N, N-dimethylacrylamide (DMAA), N-vinylpyrrolidone (NVP), Diallyl
dimethyl ammonium chloride (DMDAAC), 2-acrylamide-2-methylpropaneonic acid (AMPS), and
isopentenol polyether (TPEG) as raw materials. Fourier transform infrared spectroscopy (FT-IR)
and proton nuclear magnetic resonance (1H-NMR) were used to characterize the composition and
structure of the DNDAP copolymer. The thermal stability of DNDAP was evaluated by the use of
thermogravimetric analysis (TGA). WBDF with DNDAP was analyzed for zeta potential and particle
size and the corresponding filter cake underwent energy dispersive spectrum (EDS) analysis and
scanning electron microscope (SEM) analysis. The results showed that the thermal decomposition
of DNDAP mainly occurred above 303 ◦C. DNDAP exhibits excellent rheological and filtration
properties in water-based drilling fluids, even under high-temperature aging (up to 200 ◦C) and
high salinity (20 wt% NaCl or 5 wt% CaCl2) environments. The strong adsorption effect of DNDAP
makes the particle size of bentonite reasonably distributed to form a dense mud cake that reduces
filtration losses.

Keywords: zwitterionic; gel; high-temperature resistance; salt- and calcium-resistant; fluid loss reducer

1. Introduction

With the rapid growth of oil demand and the decline of shallow oil and gas resources,
deep oil and gas have become the focus of oil and gas exploration and development as a
result of the increased oil demand [1,2]. The drilling fluid requirements in deep reservoirs
are higher due to their high temperatures, pressures, and complex geological conditions
(mainly the salt paste layer). It has been found that gypsum is a potentially reliable
reservoir for oil and gas [3–7]. It is estimated that overburdened materials such as gypsum
and salt rocks constitute nearly 30% of the overburden of large oil fields throughout the
world [8–10]. The gypsum layer contains a large amount of Na+ and Ca2+. The drilling fluid
is highly likely to be contaminated by high temperatures and cations during the drilling
process [11,12]. Therefore, drilling fluids require high-temperature resistance and salt and
calcium resistance in oil and natural gas drilling operations. Drilling fluids carry and
suspend cuttings, stabilize wellbore, balance formation pressure, cool and lubricate drill
tools, transfer energy, and assist in rock breaking during drilling. In the current drilling fluid
market, both water-based and oil-based drilling fluids are commonly used for the drilling
process. Even though oil-based drilling fluids are superior to water-based drilling fluids
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when it comes to stability at high temperatures and pressures, they are more expensive,
make it difficult to dispose of cuttings, and pose a serious risk to the environment [13–16].
Considering the low cost and environmental friendliness of water-based drilling fluid, it
has been a key research area. Essentially, water-based drilling fluids consist of bentonite,
various polymeric agents (diluents, fluid loss reduction agents, shale inhibitors, etc.), and
weighting materials. The fluid loss reducer has been widely studied as one of the most
critical treatment agents in water-based drilling fluids. Currently, the commonly used fluid
loss additives are generally divided into naturally modified materials and polymer fluid
loss additives. The modified natural materials usually cannot withstand temperatures
higher than 180 ◦C, or even 160 ◦C, and cannot meet the requirements of deep well drilling
operations. Polymer materials are widely used in petrochemistry, environmental protection,
medicine and biology, and other fields because of their high-temperature resistance, high
strength, strong toughness, and other advantages. Therefore, polymers are synthesized as
filter loss reduction agents in deep well drilling operations [17–25]. Li et al. [26] synthesized
a polymer, SPL, by chemically cross-linking starch, polyphenols, and lignosulfonate in
a filtration volume of 7.0 mL at 150 ◦C in water-based drilling fluid. In addition, SPL
was resistant to 0.75 wt% CaCl2 and 7.5 wt% NaCl at 150 ◦C. Shan et al. [27] prepared
nano-SiO2 graft copolymers by inverse emulsion polymerization. It was found that EAANS
polymers were prepared using acrylamide (AM), AMPS, NVP, and KH570-modified nano-
silica (M-SiO2). Even after aging at 150 ◦C, EAANS still exhibits good filtration loss
and rheological properties when NaCl or CaCl2 concentrations are up to 36 or 30 wt%,
respectively. Liu et al. [28] synthesized an amphoteric polymer, ADD, by using AMPS,
AM, and DMDAAC, which acts as an anti-calcium pollution filtration additive. The API
filtration volume was maintained at 9.6 mL after hot rolling at 150 ◦C in 11.1 wt% CaCl2-
contaminated sodium bentonite-based mud.

In recent years, amphoteric polymers have received extensive attention due to their
excellent hydration, adsorption, biocompatibility, and stability. Up to now, many new
and functional zwitterionic polymers have been synthesized and applied in the petroleum
industry, biomedical materials, drug synthesis, sewage treatment, and other fields [29,30].
In this study, a new zwitterionic copolymer gel, DNDAP, was prepared by using DMAA,
NVP, DMDAAC, AMPS, and TPEG monomers as raw materials. Since DMAA is the
backbone of the copolymer, it is more hydrolysis-resistant than the AM monomers com-
monly used in copolymers. NVP contains a five-membered ring structure with high steric
hindrance, which can enhance backbone rigidity [31–33]. In addition, carbonyl groups in
NVP can form hydrogen bonds with amide groups, thus inhibiting the decomposition of
adjacent amide side groups. As a result of the strong hydration provided by AMPS anionic
monomers, the sulfonic acid group is not sensitive to external cations or high temperatures,
which is beneficial for improving the copolymer’s tolerance to temperature and salt [34–36].
A five-membered intramolecular ring bond is formed on the macromolecular chain of the
synthesized copolymer as a result of the use of DMDAAC, which improves the rigidity and
resistance of the copolymer at different temperatures and in different salt environments.
The molecular structure of TPEG is comb-like, and the long polyethylene oxide chain in
the comb-like structure can invade the dispersion medium and improve the stability of the
polymer through steric hindrance [37,38]. In this paper, TPEG monomer was introduced
into a zwitterionic copolymer for the first time, which is beneficial for improving the high-
temperature resistance and salt- and calcium-resistance of the polymer, and provides a new
idea for the subsequent study of filtration loss agents.

2. Results and Discussion
2.1. Characterization of DNDAP Copolymer

A FTIR spectrum of DNDAP is shown in Figure 1, with the absorption peak at
3445.52 cm−1 corresponding to the stretching vibration of the N–H bond in DMAA, AMPS,
DMDAAC, and NVP. The molecular main chain stretching vibration of CH2 in DNDAP is
responsible for an absorption peak at 2930.20 cm−1. It can be seen from the figure that there
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is an obvious absorption peak at 1629.68 cm−1, which corresponds to the tensile vibration
of C=O in DMAA and NVP. C–N stretching was observed at approximately 1458.70 cm−1 in
DMAA, DMDAAC, and NVP. It has been determined that SO3 from AMPS has a stretching
vibration at 1212.00 cm−1 [39]. The absorption peak at 1156.59 cm−1 is attributed to TPEG. A
C-S absorption band from AMPS was responsible for the characteristic peak at 628.90 cm−1.
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Figure 1. FTIR spectrum of DNDAP.

The results of the NMR spectroscopy with the peak assignments are shown in Figure 2.
The chemical shift peaks of –CH3 in AMPS and CH3 in DMAA are 1.46 and 2.88, respectively.
The chemical shift peaks of N-CH2 in NVP, O-CH2 in TPEG, as well as -CH3 and -CH2-CH-
in DMDAAC are 2.62, 3.17, 2.97, and 3.85 ppm, respectively. Based on Figures 1 and 2, it can
be concluded that the synthesized DNDAP possesses the characteristic functional groups
and chemical shift peaks of all monomers, suggesting that it is the intended product.

The thermogravimetric analysis (TGA) method was used to determine the thermal
stability of the DNDAP copolymer. The results of the TGA experiments are shown in
Figure 3. Based on the figure, weightlessness can be divided into three stages from room
temperature to 610 ◦C. In the first stage, the temperature ranges from room temperature to
303 ◦C. As the temperature rises, the mass decreases slowly, and the TGA curve is flat at
this point. It is estimated that 10.87% of the mass has been lost during this stage. Due to
the existence of a large number of amide, sulfonic acid, and quaternary ammonium groups
in the DNDAP copolymer, which are strong polar hydrophilic groups, the copolymer
easily adsorbs water molecules in the air or interacts with water molecules. The main
cause of mass loss is the gradual evaporation of water and volatile components in the
DNDAP polymer with the increase in temperature. The temperature of the second stage is
303–346 ◦C, and the weight loss rate of this stage is 26.38%. The weight loss rate is higher
relative to the first stage. It is caused by the decomposition and volatilization of the amide
group in the copolymer and the absorption of a large amount of heat. A third stage of the
process occurs between 346 and 610 ◦C. During this stage, the C-C bond in the copolymer
backbone breaks as the temperature rises. The results show that the initial decomposition
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temperature of the DNDAP copolymer is 303 ◦C. Before that, the functional groups in the
copolymer are stable, and the polymer has good thermal stability.
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2.2. Filtration Loss Reduction Performance of DNDAP in the WBDF

As a result of the pressure difference, the free water in the drilling fluid penetrates
into the cracks or pores of the rock on the borehole wall, and the solid particles in the
drilling fluid attach to the borehole wall and form mud cake, thus preventing or slowing
the further invasion of the drilling fluid into the formation. During drilling, drilling fluid
filtration mainly refers to the filtration loss and the quality of the mud cake formed, which
plays a crucial role in ensuring wellbore stability. Drilling fluids are commonly evaluated
based on American Petroleum Institute (API) standards. It can be seen from Figure 4a
that the filtration loss increases significantly after drilling fluid aging, indicating that high
temperature affects the performance of bentonite, and the filtration control ability of filter
cake decreases. In the case of both drilling fluids before and after aging, filtration loss
decreases gradually with increasing DNDAP concentration. Adding 0.5 wt% DNDAP
significantly reduced the drilling fluid filtration loss from 18.4 mL to 9.9 mL before aging
and 29.2 mL to 11.5 mL after aging. When the DNDAP addition was increased to 2 wt%, the
filtration loss was reduced from 18.4 mL to 3.8 mL before aging and from 29.2 mL to 4.4 mL
after aging. As DNDAP dosage is continuously increased, the fluid loss reduction volume
of the drilling fluid continues to remain relatively unchanged, and the performance of fluid
loss reduction does not improve significantly. Accordingly, 2 wt% DNDAP is recommended
from the standpoint of cost. Figure 4b shows the filtration loss of DNDAP/WBDF with
a DNDAP content of 2 wt% after aging at different temperatures. As a result of aging
the drilling fluid at 200 ◦C for 16 h, the filtration loss decreased from 29.2 mL to 4.4 mL.
Upon aging at 220 ◦C for 16 h, the filtration loss decreased to 8.4 mL, indicating that
DNDAP exhibited good anti-high-temperature filtration loss properties. When different
concentrations of NaCl were added to DNDAP/WBDF, the filtration loss of the drilling
fluid increased, as shown in Figure 4c. The filtration loss of the drilling fluid is 5.2 mL
when the NaCl dosage is 20 wt%. Upon adding NaCl at 25 wt%, the filtration loss increased
sharply to 14.0 mL. Compared to WBDF without DNDAP, the filtration loss after aging
decreased from 138.2 mL (Table 1) to 5.2 mL after contamination with 20 wt% NaCl. As
a result, DNDAP is resistant to NaCl pollution after aging at high temperatures. When
different concentrations of CaCl2 were added to DNDAP/WBDF, the filtration loss of
the drilling fluid increased gradually, as shown in Figure 4d. The fluid loss is 5.7 mL
when CaCl2 is added at 5 wt%. Adding CaCl2 at 8 wt% results in a fluid loss of 10.2 mL.
Compared to WBDF without DNDAP, the filtration loss after aging decreased from 143.8 mL
(Table 1) to 5.7 mL after contamination with 5 wt% CaCl2. This indicates that DNDAP
still has good anti-CaCl2 pollution ability after high-temperature aging. The results show
that, under the same conditions, the influence of divalent calcium ions on the fluid loss
reduction performance of the WBDF is greater than that of monovalent sodium ions. In
addition, DNDAP exhibits superior filtration performance in saline-calcium water-based
drilling fluids.

2.3. Rheological Properties of DNDAP-Based Drilling Fluid

It is critical that drilling fluids have adequate rheological properties to carry and
suspend cuttings as well as to maintain wellbore stability. Therefore, the viscosity character-
istics of DNDAP in water-based drilling fluids were examined. As shown in Figure 5, the
rheological parameters of the base drilling fluid were low but increased with the addition
of the DNDAP polymer. With the increase in DNDAP dosage to 2 wt%, AV increased
from 9 mPa·s to 80 mPa·s, PV increased from 5 mPa·S to 45 mPa·s, and YP increased from
4.5 mPa·s to 32 mPa·s. It is evident from the results that the copolymer possesses excellent
rheological properties. In general, when the AV value in the WBDF exceeds 80 mPa·s,
the fluidity of the WBDF is weakened, and drilling accidents can occur, such as sticking.
Based on the filtration reduction performance of DNDAP, as well as its economy and safety,
2 wt% is the recommended dosage of DNDAP. The rheological properties of DNDAP in
water-based drilling fluid are slightly reduced after aging at high temperatures, but the
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changes are not significant, and the rheological characteristics continue to meet drilling
demands after aging, which is better than the rheological properties of basic drilling fluids.
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Figure 4. Filtration performance of DNDAP in the WBDF. (a) WBDF containing various concen-
trations of DNDAP and its filtration loss before and after aging at 200 ◦C for 16 h. (b) Filtration
performance of the WBDF supplemented with 2 wt% DNDAP at various temperatures. (c) The filter
loss of DNDAP in Na-WBDF at different concentrations after aging at 200 ◦C for 16 h. (d) The filter
loss of DNDAP in Ca-WBDF at different concentrations after aging at 200 ◦C for 16 h.

Table 1. The Fluid Loss of the WBDF at Different Temperatures and Salt Concentrations.

C (Bentonite) (wt%) C (Na+) (wt%) C (Ca2+) (wt%) T (°C) FLAPI (mL)

4

0 0
25 18.4

200 29.2

20 0
25 84.6

200 138.2

0 5
25 57.6

200 143.8

Note: C (bentonite): Amount of bentonite, C (Na+) and C (Ca2+): concentration of NaCl and CaCl2, FLAPI: API
fluid loss.
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Figure 5. Rheological parameters of different concentrations of DNDAP before (BHR) and after
(AHR) aging in the WBDF (a–c).

The filtration loss reduction effect of DNDAP was still effective after high-temperature
aging when it was added to WBDF contaminated with 20 wt% NaCl or 5 wt% CaCl2. A
series of experiments was conducted to evaluate whether the rheological properties of
DNDAP in WBDF contaminated with calcium salts meet the requirements. As shown in
Figure 6, with the increase in NaCl or CaCl2 content, the viscosity of the WBDF decreased
continuously. When the NaCl content increased to 20 wt%, the AV of DNDAP/WBDF
dropped from 62 to 14 mPa·s, the PV decreased from 50 to 9 mPa·s after high-temperature
aging, and the YP decreased from 12 to 4 Pa. The AV of DNDAP/WBDF decreased from
62 mPa·s to 12 m·s, the PV fell from 50 mPa·s to 9 mPa·s, and the YP decreased from
12 Pa to 4 Pa after aging at 200 ◦C for 16 h with the increase in CaCl2 content to 5 wt%.
The rheological parameters of DNDAP/WBDF decreased more after salt and calcium
contamination because the DNDAP polymer chain was cowering after adding cations,
resulting in a decrease in viscosity. Nevertheless, it is sufficient to meet drilling demands.

2.4. Mechanism Analysis
2.4.1. Morphological and Elemental Analysis of Mud Cake Surface

A filter cake’s density can be used to determine the filtration performance of drilling
fluids. Typically, thin and dense filter cakes have low permeability and small fluid losses.
Conversely, a thick, loose filter cake may have higher permeability and porosity, thus
resulting in greater fluid loss. As shown in Figure 7, digital images and SEM images were
obtained after the aging of the filter cake. Figure 7 shows filter cakes’ digital images and
SEM images after drilling fluid aging. As seen from Figure 7(a1), after high-temperature
aging of water-based drilling fluid, the filter cake is thicker but the surface is smooth. The
results of further analysis by SEM revealed that bentonite accumulated on the surface of
the filter cake, with pores and cracks clearly visible in Figure 7a. Based on this comparison,
it can be concluded that high temperatures change the characteristics of filter cakes. As
shown in Figure 7(b1,c1), when NaCl or CaCl2 are added to the water-based drilling fluid,
the thickness of the filter cake increases and small holes appear on the surface. In this case,
the filter cake’s ability to block water is significantly reduced. The fluid can easily penetrate
the filter cake, resulting in a large loss of drilling fluid. Furthermore, the macroscopically
large amount of filtration loss is consistent with this conclusion. Because of the high
temperature and the cations (Na+ and Ca2+), the flocculation and aggregation of bentonite
particles in the drilling fluid are aggravated, resulting in increased porosity of the filter
cake and an inability to plug the filtrate. Upon aging at high temperatures, the filter cakes
obtained after adding 2 wt% DNDAP to the WBDF, 20 Na-WBDF, and 5 Ca-WBDF were
significantly thinner than the filter cakes without DNDAP. As seen in Figure 7(e1,f1), the
drilling fluid containing DNDAP formed thin and dense filter cakes without pores on their
surface. Scanning electron microscopy demonstrated that almost no bentonite particles
accumulated on the filter cake surface and that no pores or cracks developed, as shown in
Figure 7d–f. DNDAP has proven effective due to improved filter cake densification and
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low permeability. The addition of DNDAP can hinder the synergistic destruction caused by
high temperatures and high salt concentrations, indicating that DNDAP is highly resistant
to high temperatures and high salt concentrations.
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Figure 6. Rheological parameters of DNDAP before and after aging in WBDF with different salt and
calcium concentrations (a–f).
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EDS is used to explain the role of DNDAP, as shown in Figure 8. For the WBDF, peaks
were observed for aluminosilicate, including the elements silicon, aluminum, magnesium,
and oxygen. Nevertheless, when the WBDF was contaminated with 20 wt% NaCl or 5 wt%
CaCl2, aluminosilicate peaks were weak or even disappeared, while Na, Ca, and Cl peaks
appeared. This means that the surface of the bentonite particles was covered with an
abundance of inorganic salts. When DNDAP was added to salt-contaminated WBDF, the
peak caused by inorganic salt decreased sharply, while the peak caused by aluminosilicate
recovered. In the filter cake, the content of sodium and chlorine was significantly reduced,
which may be due to the fact that part of the DNDAP copolymer was well adsorbed on the
bentonite particles during the formation of the mud cake, preventing cations from entering
the bentonite. A complex is formed when the cation penetrates the ion network structure
of the DNDAP copolymer.
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2.4.2. Particle Size Distribution Test

As a result of pressure differences, solid particles in drilling fluids adhere to the surface
of the well wall to form a mud cake. A thin and dense mud cake is necessary to reduce
the filtration loss of the drilling fluid, so the bentonite in the water-based drilling fluid
must contain a combination of large and small particles. The large particles are used as
bridging particles, while the small particles are used as fillers. Therefore, the particle size
distribution of the drilling fluid system should be reasonable. Figure 9 shows the particle
size distribution of each system after aging. The particle size distribution curve shifted to
the left after adding 2 wt% DNDAP to the WBDF, changing from unimodal to bimodal. The
results show that DNDAP can be adsorbed on the bentonite particles and form a polymer
adsorption layer after high-temperature aging, thus reducing the probability of collision
and coalescence between particles. The bentonite particles maintain good dispersion, have
a reasonable particle size distribution, make the formation of mud cake dense, and finally
achieve the effect of reducing filtration loss. The particle size distribution curve of the
WBDF shifted to the right when 20 wt% NaCl or 5 wt% CaCl2 were added. Consequently,
high salt levels will result in flocculation and aggregation of bentonite particles, increasing
size and destroying their distribution range. The particle size distribution curves were
shifted to the left after 2 wt% DNDAP was added to 20NaCl-WBDF or 5CaCl2-WBDF,
and the range of particle sizes became wider as a result. The results show that DNDAP
adsorbed on bentonite particles under high salt conditions can reduce the effect of Na+ or
Ca2+ on bentonite particles and promote the dispersion of bentonite particles. The system
has a wider particle size distribution and more reasonable particle size grading, which is
conducive to forming dense mud cakes. As a consequence of the results, it appears that
DNDAP can optimize the WBDF’s size distribution under conditions of high temperature
or high calcium salt concentration to ensure its stability under such conditions.
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2.4.3. Zeta Potential Test

WBDF is a colloidal dispersion system composed of bentonite and water. Zeta potential
is an effective indicator used to evaluate the dispersion stability of colloids. According to
Figure 10a, as the concentration of DNDAP increases, the absolute value of the drilling
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fluid zeta potential gradually increases. The results show that the copolymer has a strong
adsorption effect on bentonite particles, thus enhancing its dispersion stability. Zeta
potentials of drilling fluids have been observed to decrease after high-temperature aging. As
a result of the increased thermal motion of water molecules caused by the high temperature
and the thinned hydration film layer on bentonite particles, the dispersion stability is
weakened. As can be seen from Figure 10b, the absolute value of the zeta potential
decreased significantly after Na+ and Ca2+ were added to the solution. As the concentration
of cations increases, the absolute value of the zeta potential gradually decreases. As a result,
the zeta potential for 20Na-WBDF and 5Ca-WBDF decreased to −13.2 and −10.3 mV,
respectively. The results show that the addition of inorganic Na+ and Ca2+ inhibited the
double electric layer and increased colloidal instability, resulting in increased bentonite
particle aggregation and flocculation. The absolute value of the zeta potential increased to
−55.2 mV when 2 wt% DNDAP was added to the WBDF, indicating that DNDAP improved
the stability of the solution. Upon addition of DNDAP to 20Na-WBDF and 5Ca-WBDF,
zeta potentials recovered to −17.2 mV and −16.3 mV, respectively. As can be seen, the
addition of DNDAP is still beneficial to the colloid’s stability under conditions of high
salt concentration. In this case, the positively charged portion of the DNDAP polymer
attaches to bentonite particles, while the negatively charged portion acts as a barrier, thereby
improving the stability of the dispersion. When contaminated by cations, DNDAP adsorbs
cations, minimizing the adsorption of cations by bentonite particles and preventing further
coalescence of bentonite colloids, thus maintaining their dispersion stability.
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3. Conclusions

An amphoteric copolymer gel, DNDAP, was prepared by free radical polymerization
of DMAA, NVP, DMAAC, AMPS, and TPEG as a novel high-temperature-resistant and
calcium salt contamination-reducing filter loss agent. The thermographic analysis showed
that DNDAP exhibited high thermal stability. In addition, the addition of 2.0 wt% DNDAP
to the WBDF can effectively control fluid loss at 200 ◦C with 20 wt% NaCl or 5 wt% CaCl2
contamination and has excellent filtration loss reduction performance. The denseness of
the filter cake was significantly improved under both freshwater and brine conditions with
the addition of DNDAP. At the same time, the addition of DNDAP improved the colloid
stability of the calcium salt-contaminated WBDF. It prevented bentonite particles from
coalescencing under high temperatures, salinity, and calcium. The mechanism analysis
shows that DNDAP produces strong adsorption of bentonite particles in the WBDF through
sulfonic acid groups and quaternary ammonium salts. It maintains a reasonable particle
size distribution of bentonite particles and forms a dense mud cake, thus achieving the
effect of reducing filtration loss. This amphoteric polymer material shows good prospects
for application, especially in oil and gas extraction in deep wells and even ultra-deep wells
drilled under extremely harsh conditions.
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4. Materials and Methods
4.1. Materials

N, N-dimethylacrylamide (98%), N-vinylpyrrolidone (99%), dimethyl diallyl ammonium
chloride (60%), and 2-acrylamide-2-methylpropanesulfonic acid (98%) were purchased from
Beijing Bailingway Technology Co., Ltd. (Beijing, China). Isopentenol polyether (TPEG, 99%)
was purchased from Wuhan lullaby pharmaceutical chemical Co., Ltd. (Wuhan, China). The
remaining reagents were analytical grade and purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). without further purification.

4.2. Synthesis of Copolymer DNDAP

The copolymer DNDAP was synthesized by free radical polymerization. The monomer
was dissolved in deionized water according to a molar mass ratio of n DMAA:n NVP:n
DMDAAC:n AMPS = 5:3:2:2; the pH of the monomer solution was adjusted to 7 by adding
NaOH solution, and then 1% (molar ratio) of the total TPEG monomer was added. Under
nitrogen protection, the above solution was poured into a four-necked flask and uniformly
mixed for 30 min. For further initiation, 0.5 wt% ammonium persulfate and sodium bisulfite
were added as initiators to react at 55 ◦C for 4 h. In the subsequent step, the product was
washed, precipitated, and filtered using anhydrous ethanol–acetone. Finally, the DNDAP
gel was obtained. A diagram of the synthesis process is shown in Figure 11.
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4.3. Characterization of DNDAP

Fourier transform infrared spectroscopy (Nicolet Is10 FTIR spectrometer, Nicolet,
Wisconsin, USA) was used to characterize the DNDAP copolymer. Infrared absorption
spectra between 4000 and 400 cm−1 were measured for the purified DNDAP copolymer
powder by KBr tableting. The 1H NMR spectrum of the DNDAP polymer was measured
using a Bruker NMR spectrometer (Bruker AVANCE III 600 M nuclear magnetic resonance
apparatus, Bruker, Germany). The mass change of the DNDAP copolymer that occurred
from 40 ◦C to 610 ◦C at a heating rate of 4 ◦C per min under N2 protection was measured
using a thermal analyzer (STA449 F5 synchronous thermal analyzer, Netzsch, Germany).

4.4. Preparation of the WBDF

Add 40 g of bentonite and 2 g of Na2CO3 to 1000 mL of deionized water, stir at
high speed for 20 min, scrape off the bentonite on the cup wall twice in the middle, and
then stabilize under sealed conditions for 24 h. The water-based drilling fluid (WBDF)
is successfully prepared. Several experiments were conducted to evaluate the filtration
performance and salt tolerance of DNDAP in the WBDF. In this paper, WBDF supplemented
with NaCl or CaCl2 was labeled as X Na-WBDF or X Ca-WBDF, respectively. WBDF
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with DNDAP added was labeled as DNDAP/WBDF. The X Na-WBDF or X Ca-WBDF
supplemented with DNDAP were labeled as DNDAP/X Na-WBDF or DNDAP/X Ca-
WBDF, respectively. X is the mass percentage of NaCl or CaCl2 added to the solution.

4.5. Filtration Performance and Rheological Properties of DNDAP/WBDF

In accordance with API guidelines, the filtration capacities of freshly prepared drilling
fluid and drilling fluid aged for 16 h were evaluated. Approximately 250 mL of drilling fluid
was passed through an SD-3 medium-pressure filter device (Qingdao Haitongda Special
Instrument Co., LTD., Qingdao, China) for 30 min at a pressure difference of 0.69 MPa.

A ZNN-D6 six-speed viscometer (Qingdao Haitongda Special Instruments Co., Ltd.,
Qingdao, China) was used to study the rheological characteristics of DNDAP/WBDF at
different rotational speeds. The rotational speeds were recorded as θ600, θ300, θ200, θ100, θ6,
and θ3 in descending order. Based on Equations (1) to (3) below, we calculated the apparent
viscosity (AV), plastic viscosity (PV), and yield point (YP) of DNDAP/WBDF.

Apparent viscosity (AV) = 0.5θ600 (mPa·s) (1)

Plastic viscosity (PV) = θ600 − θ300 (mPa·s) (2)

Yield point (YP) = 0.511 × (θ300 − PV) (Pa) (3)

4.6. Mechanism Analysis

A scanning electron microscope (SEM) (Quanta FEG250, Hillsboro, USA) was used to
examine the microscopic morphology and elemental analysis of filter cake surfaces. The
cake obtained from the filtration loss experiment was adhered to the copper plate, sprayed
with gold for 10 min, and then tested.

For the study of WBDF stability, a zeta potential analyzer (Malvern Zetasizer Nano Z,
Nottingham, UK) was employed. After a tenfold dilution of the WBDF, its zeta potential
was measured. To ensure the accuracy of the test, each group of experiments was repeated
three times, and the average value obtained was recorded as the zeta potential value

A Mastersizer 2000 laser particle size instrument (Malvern, UK) was used to examine
the particle size distribution of the particles.
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