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Abstract: Auxetic metamaterials possess unnatural properties, such as a negative Poisson’s ratio,
which offers interesting features when combined with traditional materials. This paper describes
the deformation behavior of a gel consisting of spherical auxetic inclusions when embedded in a
conventional matrix. The auxetic inclusions and conventional matrix were modeled as spherical
objects with a controlled pore shape. The auxetic particle had a reentrant honeycomb, and the
conventional phase contained honeycomb-shaped pores. The deformation behavior was simulated
using various existing models based on continuum mechanics. For the continuum mechanics models—
the simplest of which are the Mori–Tanaka theory and self-consistent field mechanics models—the
auxetic particle was homogenized as a solid element with Young’s modulus and Poisson’s ratio and
compared with the common composite gel filled with rigid spheres. The finite element analysis
simulations using these models were performed for two cases: (1) a detailed model of one particle and
its surroundings in which the structure included the design of both the reentrant and conventional
honeycombs; and (2) a multiparticle face-centered cubic lattice where both the classic matrix and
auxetic particle were homogenized. Our results suggest that auxetic inclusion-filled gels provide an
unsurpassed balance of low density and enhanced stiffness.

Keywords: auxetic; deformation; model; simulation; continuum mechanics

1. Introduction

Porous hydrogels are materials that are frequently used in medicine [1–3]. The me-
chanical response of hydrogels is an important parameter of such materials; it is a part of
the mechanical engine in which hydrogel deformation is tuned with other components,
such as bones, muscles, and tissues. The mechanics can be tuned by the shape of the
pores and their distribution in the sample. This paper presents a model wherein gels are
tuned with auxetic cells as pores, which means a material with unusual deformation in a
perpendicular sense to the specific direction of loading.

Several methods of improving the mechanical performance of gels are described in
the literature. Mechanical performance refers to increased stiffness, i.e., Young’s modulus
and shape stability during deformation. The basic method is additional covalent crosslink-
ing [4,5], which increases the modulus of a macromolecular network. Mostly, additional
crosslinking significantly changes the behavior of a hydrogel, which is unwanted. The
next method of improving mechanical performance is mixing with a filler, which can be a
powder of rigid particles. The disadvantage of a classic rigid filler composite is the high
density of the composite gels. Recent production strategies of lightweight composites are
primarily based on the design of nanocomposites. The reinforcing effect of nanocomposites
is achieved with a smaller fraction of filler than in classical composites [6–9]. The next
strategy is designing syntactic foams in which the solid filler is substituted with hollow
particles [10–13]. The next possible strategy is proposed in this paper: a composite of a
classic matrix and auxetic inclusions. We found that auxetic inclusions provide a reinforcing
effect while simultaneously being lightweight. Such a composite may be an alternative to
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classic particle composites in which the positive effect of reinforcement is reached at the
expense of increased density.

This paper aims to provide a detailed description of the micromechanics of these
composites. The models from micromechanics describe mechanical behavior in terms
of continuum mechanics. The micromechanics of the model comprises materials with
conventional and auxetic inclusions are studied. The conventional porous material is
homogenized as a continuous element with a given modulus and positive Poisson’s ratio.
The auxetic array of pores can be homogenized as an element with a negative Poisson’s
ratio. The models from micromechanics elucidate the underlying reasons for the auxetic
inclusion having a reinforcing effect. Numerical simulations enable us to compare the
deformation behavior of standard composites with rigid particles and gels that include
auxetic particles. The word auxetic—meaning “incremental” in Greek—denotes materials
or structures that have a negative Poisson’s ratio. Materials with a negative ratio of lateral
contraction have been reported in early publications on particle mechanics [14] and have
been systematically investigated since the 1990s [15–18]. The auxetic materials belong to
the group of metamaterials with optical, electromagnetic functions (Supplementary 3).The
first types of auxetic materials were structured in 2D auxetic mats, which were auxetic in
one direction of deformation. Research on auxetic materials was predominantly focused on
theoretical models [19,20]. The next phase was 3D modeling, in which one direction was
stretched or compressed and both of the lateral directions were auxetic [21,22]. There has
been a rapid rise in interest in auxetic materials since approximately 2015 when 3D printing
became a widely available technology. The expansion of the use of printed auxetic materi-
als then followed, and deformation was frequently analyzed by video recording [23–26].
Auxetic structures have rapidly evolved over the past three decades. However, discussions
remain surrounding its appropriate applications, which were relatively rare in the textile
industry [27], building industry [28], or in mechanical engineering industries in the form
of dowels [29]. In recent years, additional applications in the field of medicine have also
been proposed.

Specifically, attempts have been made to incorporate auxetic materials in tissue en-
gineering [30,31]. However, the number of applications in which auxetic materials can
be used remains small despite the intensive development in recent years. To date, the
research on auxetic materials has been largely limited to descriptions of homogenous aux-
etic materials and geometric evolution during deformation [32–34]. Recently, the behavior
of the traditional/auxetic material interface has attracted considerable interest [35], and
this interface is important for several reasons. Parts of auxetic materials can be used as
components of complex products and specialized units [20]. Auxetic parts must be mechan-
ically integrated into the machine design, whereas the other components are conventional.
Alternatively, auxetic materials are used as wound healing scaffolds [26,31,36], where the
materials are attached to the surrounding tissue with a positive Poisson’s ratio [37]. Wound
healing applications of auxetic materials require the inclusion of a healing gel, which is an
incompressible viscous liquid (i.e., its Poisson’s ratio approaches 0.5). Therefore, furthering
our knowledge of conventional/auxetic materials is important. These hybrid materials are
supposed to have a specific function. For example, sandwich structures and conventional–
auxetic–conventional layers are presented in the literature as ballistic materials [20]. The
deformation of such materials produces increased tension at the interphase, which may
be advantageous in certain applications because of the interphase absorbing a significant
amount of mechanical energy. Some hybrid auxetic/conventional systems can provide
interesting functionalities; for example, the KinetiX system [38] enables individuals to
produce programmable materials and switch the auxetic function to selected holes in a
targeted manner. The next application of the controlled mechanical response of hybrid
auxetic materials is strain sensing, which is the collection of mechanical energy and trans-
formation to electric energy; it is currently performed with gels that have filler, such as
carbon black [39] or zinc oxide [40]. The auxetic enables the designer to achieve controllable
high sensitivity [41,42].
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This paper deals with the use of solid phase models from classical mechanics. Solid
phase models provide a suitable justification for the reinforcing effect of auxetic particles.
These models allow us to calculate the strain intensity tensor caused by certain types of filler
inclusions. The oldest models of composites are the Voigt and Reuss rules. The Voigt and
Reuss model is described by the Hashin–Shtrikman bounds [43]; it is the simplest model
in the upper and lower boundary of the effective modulus of a composite. The models
are not sufficient for an investigation of the effect of Poisson’s ratio because the bounds
are independent of this particular ratio. In contrast, models based on micromechanics
describe composite structures in terms of general elasticity, including Poisson’s ratio [44].
The analysis of the micromechanics of auxetic materials has been neglected in the literature
to date. Current models based on micromechanics have been intensively studied on
conventional particle composites and are frequently reported in the literature [44,45]. The
basic principle of micromechanics is derived from Eshelby’s inclusion [46,47]. Eshelby
studied the possible stress, strain, and displacement fields in elastic bodies containing
elastic inclusions. The inclusion was subjected to transformation, which was limited by the
surrounding material. In such instances, the inclusion and surrounding material remained
stressed. This theory calculates the strain states of the body. Eshelby found that the strain
and stress field inside a spherical inclusion is uniform and has a closed-form solution
regardless of the material’s properties and initial transformation strain (also called the
eigenstrain). Other approaches have also been based on Eshelby’s approach. The self-
consistent mechanics (SCM) approach calculates the strain concentration tensor [48,49],
which expresses the inclusion’s strain in terms of the dilute system’s externally applied
strain. A homogeneous medium with the properties of the composite was assumed to
surround the inclusion. The Mori–Tanaka model was used to calculate the average internal
stress in a matrix of a material containing inclusions using eigenstrains from Eshelby’s
theory [50,51]. This represented the starting point for the determination of the effective
behavior of composites. The SCM and Mori–Tanaka (MT) methods are presented in detail
below. In addition to the analytical methods of composite materials, there are many
numerical models for conventional solid particle composite materials. The most widely
used methods are based on the finite element method (FEM). A small computer limited the
initial analyses, and the structure of the cell was significantly simplified into single-cell and
multi-cell models. The quarter-cell approach modeled a smooth particle, and the structure
of the composite was simplified to one quadrant. The FEM was applied to analyze the
distribution of strain and stress in the composite material [52].

2. Results

Two material models are proposed in this article. An overview of the methods em-
ployed in this article is provided to further indicate the orientation of the research. All
analyses describe a comparison of standard composites with rigid particles and with auxetic
particles under otherwise equal conditions.

Three materials were compared (E: Young’s modulus; υ: Poisson’s ratio):

• Matrix: fully conventional sample (Em, υm);
• Composite gel: conventional matrix filled with rigid particles (Em � Ep, υm = υp);
• Auxetic gel: conventional matrix filled with auxetic particles (Em = Ep, υm > 0, υp < 0).

Two analyses were performed:

• Models based on the FEM (R, S);
• Models based on micromechanics (S).

Two structural approaches were applied (S and R):

(S) Solid phase modeling: The particles and matrix were modelled as a continuum, and
the auxetic function was introduced by the prescription of a negative Poisson’s ratio
to the solid object.
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(R) Real material design: A negative Poisson’s ratio was introduced by designing auxetic
cells in the material, and the rigid particle was based on the reinforcement of the cells
in the material.

2.1. Models from Micromechanics
2.1.1. Mori–Tanaka Model

Let us define the material properties, polymer matrix modulus (Em), Poisson’s ratio
of the matrix (υm), particle modulus (Ei), and particle Poisson’s ratio (υi). The particle’s
geometry was simply spherical, and the aspect ratio of the particle was equal to one.

The effective modulus of the material with the undeformable inclusion and auxetic
inclusion was calculated according to the MT theory. The isotropic stiffness tensor for the
inclusion (si) and matrix (Cm) was calculated from the generalized Hooke’s law:

C−1 =



1
E −υ

E −υ
E 0 0 0

−υ
E

1
E −υ

E 0 0 0
−υ

E −υ
E

1
E 0 0 0

0 0 0 1
G 0 0

0 0 0 0 1
G 0

0 0 0 0 0 1
G


(1)

where E is the elastic modulus, υ is the Poisson’s ratio, and G is the shear modulus
G = 0.5E/(1 + υ).

The compliance (s) was calculated as the inverse matrix of C:

s = C−1 (2)

The Eshelby fourth-order tensor was calculated, which related the constrained strain
inside the inclusion of its eigenstrain:

S∗ =



S∗1111 S∗1122 S∗1133 S∗1112 S∗1123 S∗1131
S∗2211 S∗2222 S∗2233 S∗2212 S∗2223 S∗2231
S∗3311 S∗3322 S∗3333 S∗3312 S∗3323 S∗3331
S∗1211 S∗1222 S∗1233 S∗1212 S∗1223 S∗1231
S∗2311 S∗2222 S∗2333 S∗2312 S∗2323 S∗2331
S∗3111 S∗3122 S∗3133 S∗3112 S∗3123 S∗3131

 (3)

For the specific case of spherical inclusion, the elements of the Eshelby tensor were

S∗1111 = S∗2222 = S∗3333 =
7− 5υ

15(1− υ)
(4)

S∗1122 = S∗2233 = S∗3311 = S∗1133 = S∗2211 = S∗3322 =
5υ − 1

15(1− υ)
(5)

S∗1212 = S∗2323 = S∗3131 =
4− 5υ

15(1− υ)
(6)

The next elements of the matrix were equal to zero.
The strain concentration tensor (T) was calculated as

T = [I + S∗m sm(Ci −Cm)]−1 (7)

where I identifies a diagonal identity tensor of size 6 × 6.
The strain concentration tensor (Tc) of the composites with the volume fraction (ϕ) of

the particle is calculated:
TC = I(1−ϕ) + Tϕ (8)
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The elasticity polarization tensor P was calculated from the strain concentration tensor:

PC = ϕ(Ci −Cm)TC (9)

The effective stiffness tensor of the composite was calculated by the formula:

Ceff = Cm + PCT−1
C (10)

2.1.2. The Self-Consistent Mechanics Theory

In the initial step, let us say that the effective stiffness tensor is equal to the matrix tensor:

Ce f f ,0 = Cm (11)

The compliance tensors for the matrix and inclusion Sm and Si were calculated by
Equation (2), and the Eshelby matrices Sm and Si were calculated by Equation (3).

The partial strain concentration tensors for the inclusion and matrix were calculated
as follows:

Ti = [I + S∗i si(Ci −Ceff)]
−1 (12)

Tm = [I + S∗m sm(Cm −Ceff)]
−1 (13)

The composite strain concentration tensor was calculated as:

T = ϕ Ti + (1−ϕ) Tm (14)

The elastic polarization tensor was, analogously,

P = ϕCi Ti + (1−ϕ)Cm Tm (15)

The effective stress after the first iteration was

Ceff,1 = P T−1 (16)

The calculation was repeated from Equation (12) after the nth iteration:

∆C = Ceff,n −Ceff,n−1 (17)

The iteration cycles were calculated until the limiting condition was lower:

max(∆C) < tol (18)

where tol is an optional tolerance interval. For the models with a modulus of the matrix of
approximately 2.5 kPa and a Poisson’s ratio of 0.39, the value of tol was selected as 10−6.

For more complex tasks such as anisotropic materials and more types of inclusions,
the authors recommend the MMTensor package for MATLAB (programmed by Maarten
Moesen, University, KU Leuven, Leuven, Belgium, EU) [53].

2.2. Simulations

This article describes a model of materials that contained spherical inclusions from
an auxetic material in a conventional matrix. The models were analogously designed to
the composites, with rigid, non-deformable particles in a soft matrix. The rigid particles
were not deformed; however, their presence significantly affected the behavior of the
matrix. An auxetic material is a material with a negative Poisson’s ratio. In other words,
it is a material that, when stretched in one direction, simultaneously elongates in the
perpendicular direction. When this material is compressed in the direction of one axis, it
also becomes compressed in perpendicular directions.

Auxetic structures exist, and they can be created by the 3D printing technique. The
model shown in Figure 1 is an example of an auxetic system with a simple structure; it
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is a spherical inclusion of a filler in the matrix. The advantage of the material lies in its
material homogeneity; therefore, the load transfer from the matrix to the particle is not
complicated by interphase effects, such as adhesion on the interphase or dissociation of the
matrix and particle.
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Figure 1. Combined auxetic and conventional hexagonal honeycomb structure: (a) 3D model of one
particle; (b) one slice of the 3D model, violet represents the auxetic inclusion, and green represents
the conventional matrix; (c) model of the solid particle composite gel deformed in the z-axis. The
trace of load transfer inside the material is highlighted in light red; (d) auxetic inclusion gel in the
conventional matrix colored axis and z-stress (z component of stress acting on the plane with a
z-normal vector).

The advantage of such a honeycomb system is its superior control of macroscopic
parameters, mainly Poisson’s ratio. Each shape of the honeycomb has its theoretical Pois-
son’s ratio. A regular hexagon honeycomb has a theoretical Poisson’s ratio of one [54]. The
system can be switched from conventional to auxetic by selecting the local parameters of
one cell. The 3D spatial structure of the honeycomb was created (Figure 1a) using this
procedure, which is presented in the Supplementary Materials. A 3D structure is more real-
istic than a 2D structure, as a reentrant 2D honeycomb plate combines the auxetic-normal
response in perpendicular directions, whereas a 3D structure is auxetic in any direction of
the xy plane. A slice from the 3D model is presented in Figure 1b. As mentioned above,
the single-axis projection of a 3D model in either the x- or y-axis is a standard honeycomb
plane. The reentrant cells are depicted in violet in the figure. The reentrant cells box has an
auxetic response, while the box from regular honeycombs has a standard response.

As shown in Figure 1a,b, the model body was materially a continuous structure, and
there was no transition between the material in the matrix and the particle. Only in the
spherical inclusion was the material arranged in an auxetic structure and the matrix in a
conventional honeycomb structure.
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The structure shown in Figure 1 can be transformed into a conventional solid particle
composite gel when setting a high modulus of elasticity for the inclusion material. The
normal z-stress distribution in the specific case of the composite gel is shown in Figure 1c.
This distribution is the stress acting in the direction of the z-axis on the plane with a
z-normal vector.

The highest local stress was recorded in the cylindrical layer through the sample in the
z-direction, limited by the xy cross-section of the particle. The load path between the upper
and lower side of the sample passed directly through the center of the particle and was
parallel to the direction of elongation. The load transfer through the particle was mostly
observed in the particulate composites. In the case of a stiff particle with a high modulus,
the material in Figure 1c was constituted as a composite gel, and its response was similar
to that of a standard composite gel.

The model in Figure 1d was uniform in terms of materials. All of the elements had the
same stiffness and Poisson’s ratio. The switch of the central domains to auxetic behavior
was caused by pore geometry. The particle behaved in an auxetic way because it was
formed from auxetic reentrant cells.

The local deformation inside the particle was significantly lower than the deformation
of the matrix despite the fact that the stiffness of the matrix and inclusions were similar.
When they formed a homogenous structure, the auxetic inclusion altered the behavior of
the matrix in the composite gel material. The reason for this was the opposing forces acting
at the interface between the particle and the matrix. The matrix tended to compress the
particle in the perpendicular direction, but the particle tended to expand. These forces
canceled each other out, resulting in a relatively low transverse deformation at this interface.

Figure 1d shows the z-stress distribution. The load was transferred from the upper
wall subject through the particle to the lower wall by deformation. The majority of the load
was transferred through the interphase layer, which meant that the most loaded elements
were at the interphase between the particle and the matrix. However, the stress inside the
particle was lower than the stress on the interface.

The section describes a model consisting of only one representative particle in the
material. This model provided detailed information about the deformation and stress
distribution in the matrix, particle, and interphase. The computing power of one PC
workstation was sufficient to describe one particle and the surrounding matrix on the level
of exact cells.

However, more exact data about the load transfer can be found in a model with
multiple particles. In the case of multiple (172) particles, the model must be simplified.
Thus, both the particle and the matrix were modeled as a continuum with a conventional
or auxetic Poisson’s ratio.

The model presented in this article contained monodisperse particles regularly dis-
tributed in an FCC lattice. The FCC lattice was selected because its spatial distribution
enables one of the highest sphere packing densities of monodisperse particles (an alterna-
tive is hexagonal sphere packing [HSP], which has the same packing density). The layer of
a matrix between the two nearest particles is thicker in the cases of FCC and HSP than in
any other case.

This lattice model can be more clearly interpreted than randomly distributed particles.
The nearest particle distance (NPD) is the shortest distance between two neighboring
particles. In an FCC lattice, the NPD can be unambiguously defined and calculated from
analytical geometry. By contrast, the random particle model has a wide distribution of
NPDs [55]. The models with random particle distributions contain close particle clusters.
In these clusters, the stress is increased, and the load is transferred with priority by this
short connection inside the cluster regardless of whether the particle is rigid or auxetic.

Most loads can be transmitted through NPD layers. An analysis of composite behavior
must be based on the behavior of the matrix. A homogeneous matrix model with a Poisson’s
ratio of zero was created as a reference model, and a Poisson’s ratio of zero was set for
the matrix. The matrix material had a prescribed elongation. In this model, the load was
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uniform throughout the system such that all elements were loaded with the same stress.
For 100% deformation, this stress was equal to 0.82 kPa, and it corresponded to the green
color on the color scheme in the color map.

Next, the deformation of composite gels with 5%, 10%, 20%, and 30% volumes of
particles was modeled. The results from the 30% model are presented in the main text,
while the results of the remaining models can be found in the Supplementary Materials.
All models were deformed to the same total stress in the box (σz = 0.82 kPa). The matrix
had a relative deformation of 30%. The same stress was observed at a stretching percentage
of 14.5% for the auxetic material and 9% for the composite.

A conventional composite is a material comprising a matrix combined with nearly
non-deformable spherical particles. The effects of non-deformable particles in a composite
have been extensively described in the literature. Our results were comparable to the results
published in the literature; namely, that the presence of particles affected the deformation
of the matrix, and the highest local stress was observed in the layer of the matrix between
the nearest particles. The highest z-normal stress was observed at the intersection between
the nearest particles (Figure 2a). The distribution of z-normal stress for all volume fractions
are presented in Supplementary material 2. The Animation of evolution of z-stress during
the stretching is in Supplementary material 5.
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The structure of the new combined material based on the composite differed in its
behavior even though the initial spherical spatial configuration was identical to that of the
composite. The matrix and particles were composed of elements of the same modulus. The
different parameter between the particles and the matrix was the sign of Poisson’s ratio. A
particle with a negative Poisson’s ratio was used (Figure 2b).

Auxetic particles have also been found to slightly deform in composites; however, the
mechanism underlying that small deformation differs between the matrix and the auxetic
material. A stiff particle composite has limited stretch due to its high modulus. When
part of the matrix is replaced by a high modulus component, the stress is observed at a
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lower deformation than in a matrix. In an auxetic material, the resulting deformation is the
result of two forces acting at the matrix–particle interface. The matrix tends to compress
the particle, and the particle tends to expand in the opposite direction. These forces are
likely to be disrupted. The same mechanism can be observed in Figure 1.

Different mechanisms could be observed in the path of load transmission. In the
composite, the load was transmitted by the nearest line between the particles (Figure 2a).
In the auxetic particles, however, the load was more directly and closely transmitted to the
edge of the particles.

Figure 2a,b show a cross-section of a macroscopic model of a box with 172 particles;
part a shows a solid particle composite, whereas part b shows an auxetic particle composite.
The boxes were deformed to the z-stress of the same average; the average value is high-
lighted on the color map. The green rectangle shows the cross-section of a deformed matrix.
The lines are the traces of the maximum transmission of the load inside the material.

The presence of heterogeneities in composites affects the response of the materials to
external mechanical stress. The reinforcement mechanism is theoretically well-described
in a composite material as dependent on its significantly stiffer particle than the matrix.
The data in this paper (Table 1) were analyzed with the MT (Equations (1)–(10)) and
self-consistent field mechanics (SCF) (Equations (11)–(18)) theories.

Table 1. List of models, Em and Ei modulus of the matrix and inclusions, and υ Poisson’s ratio of
the matrix and inclusions. a The auxetic effect was achieved by the structural configuration of the
material. * Matrix is porous-modulus and Poisson’s ratio are parameters of solid phase 4 Particle is
porous: modulus and Poisson’s ratio are parameters of solid phase.

Model Name Em
[kPa]

Ei
[kPa] υm υi Description

3D-cellular auxetic a inclusion 2.5 * 2.5 4 0.49 * 0.49 4 3D-cellular conventional */reentrant 4

honeycomb structure
3D-cellular undeformable inclusion 2.5 * 100 4 0.49 * 0.49 4 -

Matrix 2.5 - 0.00 - Neat matrix with zero transversal deformation
Auxetic inclusion 2.5 2.5 0.39 –0.9 Material with homogenous rigidity inclusion is auxetic

Composite inclusion 2.5 100 0.39 0.2 Standard composite: soft matrix, rigid particle

The main result was that the strain intensity tensor part of the intensity related to
the particle.

For the rigid particle, Em = 2.5kPa, Ep = 80kPa, and υm = υp = 0.39:

Trigid =



0.0584 –0.0088 –0.0088 0 0 0
–0.0088 0.0584 –0.0088 0 0 0
–0.0088 –0.0088 0.0584 0 0 0

0 0 0 0.0672 0 0
0 0 0 0 0.0672 0
0 0 0 0 0 0.0672

 (19)

and for the auxetic particle, Em = Ep = 2.5kPa, υm = 0.39, and υp = –0.9:

Tauxetic =



1.1265 1.1249 1.1249 0 0 0
1.1249 1.1265 1.1249 0 0 0
1.1249 1.1249 1.1265 0 0 0

0 0 0 0.0016 0 0
0 0 0 0 0.0016 0
0 0 0 0 0 0.0016

 (20)

The stiffness was detected by the first three diagonal elements that were positive: thus,
the particle would increase the modulus both in rigid and auxetic particle composites,
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which was observed in the increased value of the effective modulus with a certain volume
fraction of particles (Figure 3). The value of Poisson’s ratios are presented in Supplementary
material 2.
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the particles.

In this article, we selected the convergence criterion from Equation (18) (i.e., tol = 10−6).
The solution of SCF converged after approximately 2500 iterations. The solutions of the
MT and SCF methods were found to be nearly identical. The solution of the MT model
corresponded to the solution of the SCF model after the first iteration. After the first few
iterations, SCF significantly approached the final solution. The next iterations were small
corrections with minimal intervals.

The effective stiffness tensor was calculated from the matrix using Equations (8)–(10)
(MT model) or Equations (14)–(18) (self-consistent mechanics model). The effective stiffness
tensor (C) was applied to calculate the material constants E or υ.

The symmetric part of matrix C was calculated as:

CSYM = 0.5
(
C + C′

)
(21)

where C′ is the transpose matrix of the stiffness tensor. The compliance matrix (S) was
calculated as an inverse matrix of the normal part of CSYM, 1:3, 1:3. The value CSYM,1:3, 1:3
refers to a symmetric matrix, which was related to normal deformation and was a submatrix
of the first three columns and rows of the symmetric matrix:

S = inv (CSYM, 1:3, 1:3) (22)

In the case of the isotropic material, the moduli were equivalent in all directions:

Ex = Ey = Ez = 1/S1,1 = 1/S2,2 = 1/S3,3 (23)

The shear moduli were calculated as:

Exy = Exz = Eyz = 0.5 × C4,4 = 0.5 × C5,5 = 0.5 × C6,6 (24)

Poisson’s ratio was calculated from the diagonal matrix:

ED =

Ex 0 0
0 Ey 0
0 0 Ez

 (25)
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The matrix of Poisson’s ratios was calculated from the diagonal matrix and compliance:

υmatrix = −ED . . . S (26)

In the case of the isotropic materials, all of the Poisson’s ratios were equivalent:

υ = υmatrix,1,2 = υmatrix,1,3 = υmatrix,2,1 = υmatrix,2,3 = υmatrix,3,1 = υmatrix,3,1 (27)

The Poisson’s ratios are presented in the Supplementary Materials.
The first index is the main loading direction, and the second index is the perpendicular

direction shrinking.
In this article, we provided a model for the isotropic material with a simple spherical

inclusion and unity aspect ratio of particles. It is possible to model other materials, in which
case the values in Equations (23), (24) and (27) are not equivalent.

In the case of the isotropic material with ϕp = 30% volume, the MT or SCF models’
solutions comprised two values: the modulus and Poisson’s ratio. The results from the
solid particle composites were E = 4.8 kPa and υ = 0.36.

The data from the MT models could be applied to the projection of the expected
tensile curve; the curve was calculated from the deformation of the homogenized box with
the aforementioned elastic modulus and Poisson’s ratio calculated from the MT model
(Figure 4a). The tensile curves for all volume fractions are presented in Supplementary
material 2. At the same time, the tensile curve was calculated for the heterogeneous FEM
model from Figure 2a. As expected, both the MT and FEM models presumed that the
material had a more reinforcing effect than the matrix. The curves were not aligned because
the MT and SCF models constituted the stress on the boundary of the infinite box with
the inclusion of specific volume fractions, whereas the FEM tensile curve was the average
stress in the volume of the box.
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Figure 4. The tensile curve of the matrix, Mori–Tanaka model (thin), and FEM model of the heteroge-
neous material (thick). The macroscopic box consists of 172 particles in a cubic box distributed to
face-centered cubic: (a) solid particle composite and (b) auxetic particle composite. Points: stretching
ratio of the model cross-section in reference to Figure 2.

The same calculations were performed for the materials with auxetic particles with
ϕp = 30% volume (Figure 4b). The model from Figure 2 was macroscopically isotropic and,
in the case of the solid particle composites, the results were E = 3.9 kPa and υ = 0.18. In this
case, the presence of auxetic particles reinforced the material as a result of both the MT and
FEM models, although the curves did not overlap for the same reason as in the composites.

The reinforcing effect in both the solid and auxetic particle composite materials was
due to non-deformable particles; thus, both materials should be more reinforced than the
matrix. The solid particle composites were more loaded than the auxetic particle material,
most likely because the stress in the auxetic material was more evenly distributed than in
the solid particle composites.
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3. Discussion

The subject of this paper is based on materials that have auxetic spherical inclusions
and conventional matrices. The materials can be discussed from two aspects.

3.1. Reinforcing Effect of Auxetic Spherical Inclusion

Reinforcement is the main aspect of such types of gels. The reinforcing effect was
observed in both simulations, i.e., models based on micromechanics (Figure 3) and FEM
simulations (Figure 4). The samples that are presented in this paper are model materials,
which are intended to demonstrate the effect. Those materials will be never used in material
design; however, one can imagine more sophisticated materials based on these principles,
which will be suitable in the design of real materials.

The advantage is the design of a programmable structure, which can be tailored to
the demands of the customer. The material can be designed in order to have the desired
stiffness and shrinking in a lateral direction. The disadvantage is that it is still impossible
to produce microscopic and nanometer-* sized auxetic particles. It is the main limitation of
the construction of optical materials.

In comparison with the standard methods such as additional crosslinking filling by
(nano)particles, auxetic material for the construction of reinforced materials is still not used
in practical applications. This pilot study shows that there can be a potential effect, which
can be suitable for some applications.

3.2. Distribution of Stress

Auxetic particle materials have a specific distribution of internal stress in comparison
with standard rigid particle composites (Figures 1 and 2). A standard composite can
be simplified as a system of two springs: soft and stiff. It is a partly parallel (Maxwell)
and partly serial (Kelvin Voigt) model. According to the simple models, the particles are
mechanically loaded, and the stress is detected inside the particle and is mainly located in
the center of the particle. By contrast, an auxetic phase controls the distribution of stress on
the particle–matrix interface. The external force applied to the hybrid material with the
highest local stress is on the interphase. This enables one to design a material that is highly
resistant to an external force. However, inside the space shielded from external mechanical
stress, the space is ready for a protective function; for example, some capsules of active
compounds which must remain intact during manipulation.

4. Conclusions

The popularity of auxetic materials has grown among the research community despite
the fact that their application remains sporadic. Combining auxetic and conventional mate-
rials into one mechanical unit may be an avenue for future applications. Recently, layered
and sandwiched structures composed of an auxetic layer and one or more conventional
layers have been presented in the literature, but more complex systems are missing. To
date, studies have described the systems intuitively rather than analytically. There are
no publications on stress analysis and its distribution on the interphase. This paper has
provided an analytical description of an auxetic/conventional gel material from the point
of view of stress analysis. The investigated material was a composite with auxetic hetero-
geneities incorporated into a conventional material as spherical particles. The deformation
was analyzed in terms of micromechanics using MT and SCM models. The materials were
structurally similar to composite gels filled with rigid particles, and they had a similar
deformation response. However, in the case of auxetic particles, the stress was also more
equally distributed in the space. Auxetic particles are promising new components for
designing new materials and are capable of reinforcing a material without being affected
by high densities.
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5. Materials, Models, and Methods
5.1. Model-Finite Element Method

The deformation behavior was modeled by a finite element analysis, which was de-
signed using the GIBBON [56] (Kevin M. Moerman, Massachusetts Institute of Technology,
Cambridge, MA, USA) software package; the deformation was applied by the FEBIO
software suite [57,58] (version 2.9.1, Musculoskeletal Biomechanics Laboratory, Columbia
University, New York, NY, USA).

5.2. Detailed Model with Real Auxetic Configuration

The first step was to design a representative material box in which the honeycomb
structure was formed from a representative cube block in the xz projection (see Supplemen-
tary Materials). The same honeycomb pattern was also formed from the vertical direction
(yz plane). The result was a 3D structure with a honeycomb projection in two directions. In
the first step, the structure was composed only of conventional honeycombs.

Part of the cells inside the spherical inclusion was transformed into a reentrant honey-
comb. A combined structure of an auxetic inclusion and conventional matrix was designed
(Figure 1a). The honeycomb structure was demonstrated in a slice of the box (Figure 1b).
The model of the volume was discretized to the cubic mesh.

The model’s upper boundary had a prescribed displacement of up to 20% relative
elongation in 20 steps. The lower boundary of the sample was fixed, whereas the other
boundaries were free.

5.3. Model of Multiple Particles in a Cubic Box

A 172-sphere model was proposed. The centers of the spheres were arranged in a
face-centered cubic (FCC) mesh, whose basic unit cells were 3 × 3 × 3. The inclusions were
distributed in a cubic box so that the spheres in the box had a certain volume fraction. The
result was a parameterized cubic box with solid spherical particles.

The parameterization of the model was coarser. The inclusions and matrix had
prescribed deformation parameters: elastic modulus, Poisson’s ratio, and density. The
matrix was a conventional material with a positive Poisson’s ratio and a particle with a
negative value. There was absolute adhesion on the interphase between the particles and
the matrix. The model was discretized by a 3D triangular network. The lower boundary
was fixed, and the upper boundary had a prescribed displacement of up to 30% relative
elongation of the box in 20 steps.

5.4. All Simulated Materials Were Modeled as Neo-Hookean Solid Bodies

The adjustable parameters of the neo-Hookean model material were (1) material
density, (2) elastic modulus, and (3) Poisson’s ratio. The density of all materials was set as
1 gcm−1. The moduli and Poisson’s ratios varied depending on the type of model (Table 1).

i. The single-particle model material for the 3D honeycomb structure was monolithic
in the entire sample. There was no projected material interphase. The boundary
between the inclusion and the matrix was only in the structure of the conven-
tional/reentrant honeycombs;

ii. The heterogeneous material with the 3D honeycomb had a soft matrix (Item i.). The
model was heterogeneous, and the modulus of inclusion was 40-fold stiffer than
the matrix modulus. The high modulus led to rigid inclusion;

iii. A neat matrix in a coarse model was modeled from the material with Poisson’s ratio
of zero because there was no stress concentration in any material. The zero value
of Poisson’s ratio was more or less similar to the weighted average value of a 30%
composite gel with auxetic inclusion;

iv. The composite material that included auxetic particles had a homogenous modulus
in the entire sample: matrix and inclusion. However, the matrix had a positive
Poisson’s ratio, and the inclusions had a prescribed negative Poisson’s ratio;
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v. In the standard solid particle composite gel, the particle had a 40-fold higher
modulus than the matrix. The particles were nearly undeformable. In case 2,
the Poisson’s ratio of the particle played no role.

FEBIO was the software used to record all data, including the stress of the elements
and displacement of the nodes. The results recorded in the FEBIO output enabled the
reconstruction of the deformation simulation.

We recorded the z-stress (i.e., the stress in the z-direction acting on the upper plane
with a z-normal vector) using FEBIO software. The values of the Cauchy z-stress across the
upper boundary of the sample were the tensile curve of the virtual sample. The stresses in
other directions were significantly smaller than the z-stress.

For the step-by-step constructions of both models, please see Supplementary material 1.
For more details please contact main author. The scan of the modeling box is presented in
animation (Supplementary material 4).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8110698/s1, Pdf document S1: Tutorial for programming
of the models and collection of figures. Pdf document S2: Complete set of output data from all
simulations. Raw data direct from simulations without graphical processing. The graphical process-
ing for the paper was performed to increase the clarity. There were not performed changes in the
data. Pdf document S3 [59,60]: Analogy of the function of mechanical and optical metamaterials:
Invisibility cloak vs. Auxetic particles. Animation S4: 3D Scan of modeling box. Animation S5:
Evolution of z-stress during the stretching.
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