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Abstract: Oil-based drilling fluids (OBDFs) are widely used, but there are common problems as-
sociated with them, such as low yield point and poor cutting–carrying and hole cleaning ability.
In this paper, a polyamide wax (TQ-1) was synthesized from dimeric acid and 1,6-hexanediamine
to improve the weak gel structure of OBDFs. The TQ-1 was characterized by Fourier transform
infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Then the effect of the TQ-1 on
the stability of the water-in-oil emulsion was studied by sedimentation observation, stability analysis,
an electrical stability test, and particle size measurement. The effect of the TQ-1 on the rheologi-
cal properties of the water-in-oil emulsion was analyzed by viscosity vs. shear rate test and the
three-interval thixotropic test. Finally, the performance of the TQ-1 in OBDFs was comprehensively
evaluated. The experimental results showed that the initial thermal decomposition temperature of
the TQ-1 was 195 ◦C, indicating that the TQ-1 had good thermal stability. After adding the TQ-1,
the emulsion became more stable since the emulsion stability index (TSI) value decreased when
the emulsions were placed for a period of time and the demulsification voltage was increased. The
TQ-1 could form a weak gel structure in the water-in-oil emulsions, which made the emulsions show
excellent shear thinning and thixotropy. TQ-1 can improve the demulsification voltage of OBDFs,
greatly improve the yield point and gel strength, and largely reduce the sedimentation factor (SF).
In addition, TQ-1 has good compatibility with OBDFs, and in our study the high-temperature and
high-pressure (HTHP) filtration decreased slightly after adding the TQ-1. According to theoretical
analysis, the mechanism of TQ-1 of improving the weak gel structure of OBDFs is that the polar
amide group can form a spatial network structure in nonpolar solvents through hydrogen bonding.

Keywords: rheology modifier; oil-based drilling fluid; polyamide wax; weak gel

1. Introduction

Drilling fluids are facing increasing technical challenges as the development of oil
and gas resources extends from conventional to unconventional and deep oil and gas [1].
Oil-based drilling fluids (OBDFs, the lists of abbreviations are provided in Appendix A
Table A1) have favorable lubrication, high-temperature resistance, anti-collapse, and con-
tamination resistance performance [2,3], playing a vital role in the development of shale oil
and gas and in deep reservoirs [4]. Although OBDFs have unique advantages in horizontal
and deep wells [5], the low yield point and gel strength of high-density OBDFs under
high-temperature conditions affect the ability to carry cuttings and suspend weighting
materials [6].

Drilling fluids are expected to have a weak gel structure [7–10]. At a low shear
rate, the viscosity is high, which is beneficial to suspend drill cuttings; at a high shear
rate, the viscosity is low, which is conducive to fast drilling. At present, organoclay [11]
is the predominant method used worldwide to improve the rheology of OBDFs [12,13].
Although organoclay can improve the rheology of drilling fluid, it reduces the solid phase
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capacity of the fluid and affects the rheology of high-density drilling fluid in particular,
resulting in a negative impact on the rate of penetration [14,15]. Organoclay cannot fully
meet the rheology requirements of OBDFs under high-density conditions [6]. Therefore,
worldwide research has been conducted on rheology modifiers for OBDFs. Currently,
rheology modifiers for OBDFs include oil-soluble polymers [16,17], modified fatty acids [18],
and nanocomposites [19,20]. Ma et al. [16] synthesized a new oil-soluble polymer by
suspension polymerization using methyl styrene, methyl methacrylate, stearyl acrylate,
and dimethyl 2,2 azobis isobutyrate as raw materials, which effectively improved the
yield point of OBDFs under 180 ◦C conditions. Shi et al. [7] synthesized a dendritic
polymer with dodecyl dibasic acid and trientine as the raw materials, which effectively
improved the rheology of the OBDFs and the dispersion of organoclay in the oil. However,
polymer-based rheology modifiers have a significant influence on the viscosity of drilling
fluids, and this situation is not conducive to the regulation of rheology under high-density
conditions. In our previous study [18], the reaction product of ethylene glycol amine
with dimer acid was used as a rheology modifier, which greatly enhanced the zero-shear-
rate viscosity of the water-in-oil emulsion. Noah et al. [20] prepared a nanocomposite
rheology modifier by adding nano-zinc oxide (ZnO-NPs) and nano-calcium carbonate
(nano-CaCO3) to a polystyrene-butadiene rubber (PSBR) copolymer, which effectively
improved the yield point (YP), apparent viscosity (AV), and plastic viscosity (PV) of the
OBDFs. Madkour et al. [21] enhanced the suspension performance of drilling fluids by
synthesizing a biodegradable nanocomposite as a rheology modifier using solution casting
techniques. Since rheology modifiers for OBDFs have the effect of improving the yield point
and suspension stability, at present the performance is limited under high-temperature and
high-density conditions.

From an in-depth study of the mechanisms involved in regulating rheology in OBDFs,
Sun et al. [15] and Ma et al. [16] discovered that the strong polar groups of the rheology
modifiers formed a network structure by interacting with other molecular groups through
hydrogen bonds or electrostatic forces. This structure further enhanced the weak gel
structure in the drilling fluid, thereby improving the yield point and suspension stability of
the drilling fluid.

To improve the rheological properties of OBDFs, in this work a polyamide wax (TQ-1)
was developed that could effectively enhance the weak gel structure of the drilling fluids. In
addition, the TQ-1 was characterized by Fourier transform infrared spectroscopy (FTIR) and
thermogravimetry analysis (TGA). The effects of TQ-1 on emulsion stability and rheology
were studied, and the performance of TQ-1 in OBDFs was evaluated. Our results showed
that TQ-1 could increase the yield point and gel strength but had little effect on the plastic
viscosity.

2. Results and Discussion
2.1. FTIR

Figure 1 shows the infrared spectrum of TQ-1, where the absorption peak at 3315 cm−1

was the N-H stretching vibration peak in 1,6 ethylenediamine, the CH2 stretching vibration
peaks for dimeric acid were at 2939 cm−1 and 2870 cm−1, the C=O stretching vibration
peak of dimeric acid was at 1654 cm−1, and the peak at 1581 cm−1 corresponded to the
N-H bending vibration peak of 1,6 ethylenediamine. In addition, the peak at 1269 cm−1

corresponded to the C-N stretching vibration peak of 1,6 ethylenediamine. Evidently, the
synthesized TQ-1 molecules contained amide and long-chain alkyl groups, which indicated
that the molecular structure of TQ-1 conforms to the design.
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Figure 1. Infrared spectra of TQ-1.

2.2. TGA

Figure 2 shows the thermogravimetric curve of TQ-1, which could be roughly divided
into three stages. In the first stage, before 195 ◦C, there was no change in the weight of the
sample. In the second stage, between 195 ◦C and 396 ◦C, the weight of the sample degraded,
slowly at first and then rapidly. The slow weight loss was mainly due to the volatilization
of the partial unreacted monomers and the decomposition of a small number of side chains.
The rapid weight loss after about 257 ◦C was caused by thorough decomposition of both
side and main chains. In the third stage, after 396 ◦C, there was essentially no loss in
the weight of the TQ-1. Overall, the initial decomposition temperature of the TQ-1 was
195 ◦C and the weight loss was only 5% at 257 ◦C, which showed that TQ-1 had favorable
resistance to high temperatures.
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Figure 2. Thermogravimetric curve of TQ-1.

2.3. Emulsion Stability
2.3.1. Sedimentation Observation

The effect of TQ-1 on the stability of the invert emulsions with an oil-to-water ratio of
80:20 was studied by the observation method, and the experimental results are shown in
Figure 3. Severe sedimentation occurred after 24 h and 7 d for emulsions without TQ-1.
With higher concentrations of TQ-1, the volume of the oil that precipitated in the upper
layer gradually decreased and the sedimentation phenomenon weakened (Figure 3a). No
sedimentation was observed for emulsions with 1.0%, 1.5%, and 2.0% TQ-1 concentrations
after 24 h. When the standing time was extended to 7 days, the emulsion with a TQ-1
concentration of 1.0% had slight sedimentation (Figure 3b). However, with increased
TQ-1 concentrations of 1.5% and 2.0%, the stability remained favorable after a standing
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time of 7 days. Therefore, TQ-1 effectively enhanced the sedimentation stability of the
emulsions. Moreover, the ability to stabilize the emulsion became more pronounced as the
concentration of TQ-1 increased.
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2.3.2. Emulsion Stability Index (TSI)

The emulsion stability index [22,23] can monitor unstable kinetics in samples over
time and is a Turbiscan®-specific parameter developed for formulators to compare and
characterize the physical stability of various formulations. In this study, the TSI values
for invert emulsions with different concentrations of TQ-1 were obtained by a stability
tester, and the experimental results are shown in Figure 4. For all the emulsion samples, the
TSI values gradually increased over time, indicating that the emulsion has a tendency to
become unstable with time. In the same scan, the TSI values decreased as the concentration
of TQ-1 increased. Therefore, the addition of TQ-1 improved the stability of the emulsion.
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2.3.3. Electrical Stability (ES) Test

The demulsification voltage is a key parameter used to measure the strength of emul-
sion stability. As shown in Figure 5, for the emulsions with different oil-to-water ratios,
the addition of TQ-1 corresponded to an increasing demulsification voltage in the sample.
When the oil-to-water ratio was 90:10, the demulsification voltage of the emulsion ranged
from 407 to 513 V when the TQ-1 concentrations increased from 0% to 3.0%. However,
with the further increase in TQ-1 concentration, the demulsification voltage first increased
then decreased. This was due to the formation of a stable network structure after the TQ-1
was added, which played an auxiliary stabilizing role in electrical stability. When the
concentration of TQ-1 was low, an increase in TQ-1 resulted in the gradual strengthening of
the network structure and electrical stability. However, as the quantity of TQ-1 continued to
increase, the network structure tended toward saturation, and the strongly polarized amide
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groups in the TQ-1 molecule were directly adsorbed on the water surface, thereby destroy-
ing the stability of the invert emulsion and worsening the electrical stability. In summary,
TQ-1 could improve the electrical stability of the invert emulsion at a proper concentration.

Gels 2022, 8, x FOR PEER REVIEW 5 of 13 
 

 

concentration of TQ-1 was low, an increase in TQ-1 resulted in the gradual strengthening 

of the network structure and electrical stability. However, as the quantity of TQ-1 contin-

ued to increase, the network structure tended toward saturation, and the strongly polar-

ized amide groups in the TQ-1 molecule were directly adsorbed on the water surface, 

thereby destroying the stability of the invert emulsion and worsening the electrical stabil-

ity. In summary, TQ-1 could improve the electrical stability of the invert emulsion at a 

proper concentration.  

 

Figure 5. Effect of TQ-1 on the electrical stability of emulsions with different oil-to-water ratios (er-

ror bars represent standard deviation). The standard deviation values range from 9.5 to 32.0 V based 

on the oil-to-water ratio and TQ-1 concentration. 

2.3.4. Particle Size Analysis of the Emulsion 

The prepared samples were set for 8 h, and the particle size of the emulsions was 

determined by a focused beam reflectance measurement (FBRM) instrument. As shown 

in Figure 6, the samples with TQ-1 had a smaller mean particle size compared to those 

without TQ-1. As the concentration of TQ-1 increased, the peak in the particle size distri-

bution of the emulsion gradually shifted left toward smaller particle sizes. This was pos-

sibly due to the fact that the addition of TQ-1 gradually stabilized the network structure, 

thus improving the stability of the entire system and slowing the aggregation of the inter-

nal phases of the emulsion. Therefore, the particle size test also showed that TQ-1 contrib-

uted to the stability of the emulsion. 

 

Figure 6. Effect of different concentrations of TQ-1 on the mean particle size of the emulsion. (a) 

mean particle size (error bars represent standard deviation), with  the standard deviation values 

ranging from 182 to 247 nm based on the TQ-1 concentration; (b) particle size distribution curves. 

Figure 5. Effect of TQ-1 on the electrical stability of emulsions with different oil-to-water ratios (error
bars represent standard deviation). The standard deviation values range from 9.5 to 32.0 V based on
the oil-to-water ratio and TQ-1 concentration.

2.3.4. Particle Size Analysis of the Emulsion

The prepared samples were set for 8 h, and the particle size of the emulsions was
determined by a focused beam reflectance measurement (FBRM) instrument. As shown in
Figure 6, the samples with TQ-1 had a smaller mean particle size compared to those without
TQ-1. As the concentration of TQ-1 increased, the peak in the particle size distribution
of the emulsion gradually shifted left toward smaller particle sizes. This was possibly
due to the fact that the addition of TQ-1 gradually stabilized the network structure, thus
improving the stability of the entire system and slowing the aggregation of the internal
phases of the emulsion. Therefore, the particle size test also showed that TQ-1 contributed
to the stability of the emulsion.
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2.4. Rheological Performance
2.4.1. The Effect of TQ-1 on the Viscosity of the Emulsion

Figure 7 shows the effect of TQ-1 on the rheology of the invert emulsion. When the
shear rate was low, the viscosity of the emulsion increased substantially compared with the
blank sample without TQ-1. At a shear rate of 0.1 s−1, the viscosity increased from 15.75 to
918 mPa·s when the concentration of TQ-1 increased from 0% to 2.5%. As the shear rate
increased, the viscosity of the emulsion gradually decreased. When the shear rate increased
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from 0.1 to 100 s−1, there was little difference in the viscosity of the emulsion with and
without TQ-1. This was due to the fact that a weak gel structure, which had a network
structure with a stronger intensity at lower shear rates, formed in the emulsion after the
TQ-1 was added. During the drilling process, this structure would facilitate a good carrying
capacity for drill cuttings and the suspension of weighting materials when the circulation
of the drilling fluid was stopped. When the shear rate was high, the weak gel structure was
easily broken, which was conducive to reduction in drilling fluid resistance. The results
showed that TQ-1 could effectively improve the rheological properties and enhance the
shear thinning performance of the emulsion.
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2.4.2. The Effect of TQ-1 on the Thixotropy of the Emulsion

As shown in Figure 8, the viscosity of the emulsion was relatively high under condi-
tions of low shear rates. After adjustment to higher shear rates, the viscosity of the emulsion
gradually declined and the differences in the viscosity among emulsions with different
TQ-1 concentrations decreased. After returning to a low shear rate, the viscosity of the
emulsion gradually recovered. This was due to the fact that the shear force affected the
adsorption balance of the TQ-1, and under stronger shear forces, the network structure was
broken and the viscosity was low. When the shear force was low, the network structure
was re-established and the gel structure was restored. The drilling fluids are required to
have good thixotropy [24]. When the drilling fluid circulation is stopped, the drilling fluid
will have a certain yield point to facilitate the suspension of drill cuttings. When the cycle
is resumed, the viscosity of the emulsion will rapidly decrease, and the pump pressure
change will be low, which is not likely to cause pressure surging and complex accidents un-
derground. The experimental results showed that after the addition of TQ-1, the emulsion
had excellent thixotropy, which could meet the engineering needs of drilling fluids.
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2.5. The Effect of TQ-1 on the Performance of OBDFs

Rheological tests, electrical stability, and HTHP filtration loss experiments were used
to evaluate the performance of the three drilling fluids (#1, #2, and #3) with a density of
2.0 g/cm3. The experimental results are shown in Table 1.

Table 1. The effect of TQ-1 on the performance of OBDFs.

Type Density
(g/cm3)

AV
(mPa·s) PV (mPa·s) YP (Pa) YP/PV

(Pa/(mPa·s))
G′/G′′

(Pa/Pa)
FLHTHP

(mL)
ES
(V)

1# 2.0 52.5 52 0.5 0.01 1.5/2.0 5.1 782
2# 2.0 59 53 6.0 0.11 3.5/5.5 4.8 1126
3# 2.0 63 54 9.0 0.16 4.0/6.5 4.7 1347

Aging conditions were 180 ◦C × 16 h; the high-pressure, high-temperature filtration loss experiments were carried
out at 180 ◦C × 3.5 MPa.

Compared to OBDFs without TQ-1, the drilling fluid with TQ-1 had a higher yield
point and YP/PV ratio after aging. The magnitude of the yield point can be related
to the ability of the drilling fluid to carry drill cuttings. Higher yield points will be
capable of carrying drill cuttings at smaller annular velocities, and gel strength reflects the
strength of the internal network structure of the drilling fluid. After the addition of TQ-1,
the drilling fluid obtained a high yield point and gel strength, which indicated that the
performance of the drilling fluid to carry the drill cuttings and its own settlement stability
were greatly improved.

Drilling fluid with different concentrations of TQ-1 can be applied to different sections
of the well. Formulation #2 met the required low yield point for the small borehole section,
which could effectively avoid the phenomenon of excessive surge pressures. Formulation
#3 met the requirements for horizontal, directional, and large displacement wells with high
yield point and could effectively suspend drill cuttings. In addition, TQ-1 could slightly
reduce the HTHP filtration loss of OBDFs.

By measuring the density values of the upper and lower layers of the drilling fluid,
the sedimentation factors of the three drilling fluids after different standing periods were
calculated and the experimental results are shown in Figure 9. As the standing time
increased, the sedimentation factors of the three drilling fluids gradually increased. For
Formulation #1, without TQ-1, the sedimentation factor was less than 0.52 after standing
for 48 h and > 0.52 after standing for 60 h. Within three days, the sedimentation factors
in Formulations #2 and #3 remained < 0.52, and Formulation #3 with the highest TQ-1
concentration had the smallest sedimentation factor, which after 72 h was only 0.507. The
experimental results showed that TQ-1 could effectively enhance the sedimentation stability
of OBDFs.
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2.6. Mechanism Analysis

The schematic diagram of TQ-1 on improving the weak gel structure of oil-based
drilling fluids is shown in Figure 10. The chemical structure of the polyamide wax TQ-1
was mainly composed of polar amide groups and nonpolar aliphatic hydrocarbons. The
oxygen atoms in the amide groups were electronegative, and hydrogen bonds between
oxygen atoms and hydrogen atoms were easily formed. This type of hydrogen bond could
form between different molecules or within the same molecule. The hydrogen bonds
that formed within the same TQ-1 molecule caused curling in the molecular morphology,
rendering it impossible to establish a spatial structure between the molecules. Different
TQ-1 molecules could form a spatial network structure in a nonpolar solvent through
hydrogen bonds, thus playing a role in improving the weak gel structure.
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Figure 10. The schematic diagram of TQ-1 on improving the weak gel structure of oil-based
drilling fluids.

Under static conditions, a weak gel structure formed by TQ-1 favors suspended barite
and drill cuttings and avoids stuck pipe, and this structure has a certain sensitivity to the
shear rate. Under shear action, the breaking and formation of hydrogen bonds were in
dynamic equilibrium and the hydrogen bonds were in a dynamic self-assembly state. When
the shear rate was low, the spatial network structure of the OBDF was stronger, and when
the shear rate increased, the spatial network structure became weaker and the viscosity of
the drilling fluid decreased, which is beneficial to the rate of penetration. When the shear
rate decreased again, the spatial network structure became stronger. Therefore, the OBDFs
exhibited a certain thixotropy.

3. Conclusions

(1) A polyamide wax TQ-1 for OBDFs was synthesized by dimeric acid and 1,6-
hexanediamine, with an initial decomposition temperature of 195 ◦C and good ther-
mal stability.

(2) After adding TQ-1, both the sedimentation and emulsification stability of the emulsion
are greatly improved. For emulsions with different oil–water ratios, TQ-1 can enhance
the electrical stability of emulsion to different degrees.

(3) TQ-1 could effectively improve the rheological properties and enhance the shear
thinning performance of the emulsion.

(4) TQ-1 increases the demulsification voltage, yield point, and gel strength and reduces
settlement of OBDFs.

(5) TQ-1 mainly forms hydrogen bonds through polar amide groups, thus forming a
spatial network structure to enhance the weak gel structure of OBDFs.

4. Materials and Methods
4.1. Materials

The dimeric acid (95 wt%) was purchased from Shanghai Maclean Biochemical Tech-
nology, Shanghai, China, and the 1,6-hexanediamide was purchased from Shanghai Al-
addin Biochemical Technology Co., Ltd., Shanghai, China. The Span80 (98 wt%), calcium
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oxide (96 wt%), and anhydrous calcium chloride (96 wt%) were purchased from Sinopharm
Chemical Reagent Co. Ltd., Shanghai, China, and the #5 white oil was obtained from
Shenzhen ZRT Chemical Industry, Shenzhen, China. The industrial-grade organoclay,
blown asphalt, and barite were obtained from Hubei Hanc New-Technology Co., Ltd.,
Jingzhou, China. The main emulsifier (modified fatty acid) and secondary emulsifier (fatty
acid polyamine) were prepared in the laboratory.

4.2. Preparation of TQ-1

The dimeric acid and 1,6-hexanediamine were successively placed into a round-bottom
four-neck flask equipped with a stirring device, a water separator, and a condensing tube,
where the stirring speed was set to 300 r/min. The oil bath temperature was set to 60 ◦C, and
when the raw materials in the flask were completely dissolved, the oil bath temperature
was adjusted to 195 ◦C. When the liquid temperature in the flask reached 195 ◦C, the
reaction was heated at a constant temperature under a nitrogen environment for 3 h. When
the reaction no longer generated water, the decompression reaction device was replaced
and the reaction was decompressed for 2 h. After the end of the reaction, nitrogen was
continuously passed until the reaction product was cooled to room temperature, completing
the preparation of the polyamide wax TQ-1.

4.3. Characterization
4.3.1. FTIR

TQ-1 was ground with KBr, mixed well, and pressed into sheets. The Fourier trans-
form infrared (FTIR) absorption spectrum of the TQ-1 was measured in the range of
4000–400 cm−1 using an FTIR spectrometer (IRTRacer-100 type, Shimadzu, Japan).

4.3.2. TGA

The thermogravimetric curve of the TQ-1 was tested in the range of 40 ◦C to 500 ◦C
using a thermogravimetric analyzer (TGA2, Mettler Toledo, Greifensee, Switzerland) at a
rate of 15 ◦C/min.

4.4. Emulsion Stability Tests
4.4.1. Preparation of the Emulsion

First, 80 mL of white oil and 3 g of Span80 were added to each of five 150 mL beakers
and stirred at 500 rpm for 2 h until the Span80 was sufficiently dissolved. 0, 0.5, 1.0, 1.5,
and 2.0 g TQ-1 were added to each of the five beakers, respectively, and stirred for another
2 h, after which 20 mL of deionized water was added to each beaker. The emulsions with
different TQ-1 concentrations were obtained using a high-speed shear emulsification mixer
at 2000 rpm.

4.4.2. Emulsion Stability

The effect of TQ-1 on emulsion stability was studied in the following four ways. First,
10 mL of the emulsions containing the different concentrations of TQ-1 were put into
transparent vials and left to stand at room temperature for 1 and 7 days to observe the
sedimentation of the emulsion.

Second, the emulsion stability was analyzed using a TURBISCAN LAB stability an-
alyzer (Formulaction, Paris, France). The scanning time was set to every 10 min for 3 h,
and the test temperature was set to 30 ◦C. The stability index (TSI) was used to analyze the
stability of the emulsion, where the smaller the TSI value over a certain period of time, the
more stable the emulsion.

Third, emulsions with different oil-to-water ratios were prepared. The demulsification
voltages of the emulsion samples of different TQ-1 concentrations were determined using
an electrical stability tester (Model 23C, FANN, Houston, TX, USA). The test temperature
was set to 25 ◦C.
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Fourth, emulsions having an oil-water ratio of 80:20 with TQ-1 concentrations of 0%,
1%, 2%, 3%, and 5% were formulated. The emulsions underwent shear emulsification at
2000 rpm using a high-speed shear emulsification mixer and then left to stand for 8 h. A
focused beam reflectance measurement (FBRM) instrument was used to test the particle
size distribution of each sample.

4.5. Evaluation of Rheological Performance

Viscosity vs. shear rate test: the viscosity at different shear rates of the emulsions with
different TQ-1 concentrations was measured using a Physica MCR301 rheometer (Anton
Paar, Vienna, Austria). The experiment used a plate rotor with a slit spacing of 0.047 mm.
The shear rate ranged from 0.05 to 400 s−1, and the test temperature was set to 25 ◦C.

Three interval thixotropy test: the Physica MCR301 rheometer was used to simulate
a “stationary-destroying-stationary” three-interval thixotropic test on the emulsions with
different TQ-1 concentrations. The samples were sheared at a low speed at 5 s−1, then the
shear rate was adjusted to 170 s−1. Finally, the shear rate was restored to 5 s−1. For each
interval, the shearing time was 3 min. The test temperature was 25 ◦C.

4.6. Performance of TQ-1 in OBDFs
4.6.1. Preparation of OBDFs

Three different OBDFs were formulated according to Table 2. Formulation #1 is the
conventional OBDF, Formulation #2 contained additional 0.3% TQ-1 in comparison with
Formulation #1, and Formulation #3 contained additional 0.6% TQ-1 in comparison with
Formulation #1.

Table 2. Preparation method of the OBDFs.

Order Additives Formulation
# 1

Formulation
# 2

Formulation
# 3

Stirring Speed
(r/min)

Stirring Time
(min)

1 White oil 255 mL 255 mL 255 mL / /

2 Main emulsifier 10.5 g 10.5 g 10.5 g 5000 10

3 Secondary
emulsifier 4.5 g 4.5 g 4.5 g 5000 10

4 20% CaCl2 45 mL 45 mL 45 mL 5000 20

5 CaO 9 g 9 g 9 g 5000 20

6 Organoclay 6 g 3 g 3 g 5000 20

7 Blown asphalt 12 g 12 g 12 g 5000 20

8 TQ-1 0 g 0.9 g 1.8 g 5000 20

9 Barite 660 g 660 g 660 g 5000 20

4.6.2. Performance Evaluation of the OBDFs

The OBDFs were aged at a high-temperature rolling condition of 180 ◦C for 16 h using
a high-temperature roller heating furnace (GW300-PLC, Qingdao Tongchun, Qingdao,
China). The rheological parameters and demulsification voltages of the different OBDFs
were measured using a six-speed rotary viscometer (ZNN-D6, Qingdao Tongchun, China)
and an electrical stability meter (Model 23C, FANN, USA) at a temperature of 65 ◦C.

A HTHP static fluid loss tester (GGS42-2, Qingdao Tongchun, China) was used to
measure the HTHP filtration losses of the aged OBDFs, where the test conditions were
180 ◦C at 3.5 MPa.

After pouring the drilling fluid into the aging cell and allowing it to stand at room
temperature for a period of time, the density of the upper half of the drilling fluid ρtop



Gels 2022, 8, 631 11 of 12

and the density of the lower half of the drilling fluid ρbottom were measured, and the static
sedimentation factor (SF) of the drilling fluid was calculated as follows:

SF =
ρbottom

ρtop + ρbottom
× 100% (1)

where SF is the sedimentation factor (dimensionless), ρtop is the density of the upper part
of the drilling fluid column (g/cm3), and ρbottom is the bottom density of the drilling fluid
column (g/cm3).
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Appendix A

Table A1. List of abbreviations.

Abbreviations Description

OBDFs oil based drilling fluids
TQ -1 polyamide wax
FTIR fourier transform infrared spectroscopy
TGA thermogravimetric analysis
TSI emulsion stability index
SF sedimentation factor
HTHP high-temperature and high-pressure
ZnO-NPs nano-zinc oxide
nano-CaCO3 nano-calcium carbonate
PSBR polystyrene-butadiene rubber
YP yield point
AV apparent viscosity
PV plastic viscosity
ES electrical stability
FBRM focused beam reflectance measurement
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