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Abstract: Slide-ring (SR) gels, a new type of gels that have cross-links moving along the chains, are
known to have unique mechanical characteristics. In the case of biaxial deformations, it has been
experimentally shown that the stress–strain (S–S) relationships of SR gels can be well described by the
neo-Hookean (NH) model. This behavior is quite different from that of conventional chemical gels,
where the S–S curves deviate from the NH model. To understand the molecular mechanism of such
peculiar elastic properties of SR gels, we studied the effects of movable cross-links by using molecular
simulations and theoretical analysis. We calculate the S–S relationships in biaxial deformation for
two types of models: slip model, where the cross-links can slide along chains representing SR gels,
and non-slip model, which corresponds to conventional chemical gels. In the theoretical analysis, we
calculate the S–S relationships by using the models with the Gaussian and the Langevin chains to
investigate the nonlinear stretching effect of the chain in the slip and non-slip models. As a result, we
found that the peculiar elastic behaviors of SR gels in biaxial deformations are well explained by the
effect of movable cross-links suppressing the nonlinear stretching of the chain.

Keywords: slide-ring gels; biaxial deformation; molecular simulation; slip-link model; theory

1. Introduction

Gels are, traditionally, classified into two types: chemical gels and physical gels,
depending on the strength of the bond energy of cross-links. The cross-links of chemical
gels are formed by chemical covalent bonds, which can not be broken by thermal motion
of molecules. In physical gels, the network is cross-linked by non-covalent bonds such as
hydrogen bonds or ionic interaction. However, a novel type of gels, called slide-ring (SR)
gels, belonging to neither of such types, were developed by Ito’s group [1]. SR gels
are prepared by cross-linking polyrotaxane (PR) consisting of many cyclic molecules
(cyclodextrin: CD) threaded on a main chain end-capped with bulky groups [2,3]. The
figure-of-eight cross-links in SR gel can slide along the chains and act like pulleys to vary
the network structure in response to imposed deformation. By this so-called pulley effect,
the stress on the network under deformation can be effectively relaxed [4]. The mechanical
properties of SR gels are drastically different from those of the conventional chemical gels;
thus, a great deal of attention has been given to SR gels from not only scientific but also
engineering fields.

The elastic properties of SR gels have been studied extensively by experiments [5–11],
theories [12–14] and molecular simulations [15,16]. The unique elastic features of SR gels
have been studied in the measurement of stretching-driven swelling [5]. It was shown
that the equilibrium Poisson’s ratio in the stretching-driven swelling is dependent of the
strain in SR gels, whereas that of conventional chemical gels does not depend on the strain.
This behavior can be explained by the relaxation of the orientational anisotropy of the
network induced by the movement of cross-links. It was also reported that SR gels exhibit
characteristic relaxation time in viscoelastic measurements [6–8].
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From the theoretical viewpoint, cross-links which can slide along the chain were
originally introduced as slip-links to describe the mechanical effect of chain entanglements
in chemical gels [12,13]. This theory, known as slip-link theory, successfully explains
the nonlinearity of the S–S relationship of the network with chain entanglements. The
network with slip-links has also been theoretically studied with different models [14].
One of the authors of this paper has studied the mechanical properties and structure of
the network with tri-functional sliding junctions under uniaxial deformations, by using
Brownian dynamics simulations [15].

Recently, biaxial deformations that have two independent stretching axes, have been
used to investigate the elastic properties of gels [17–22]. In uniaxial deformations, the
stress is measured along only one direction. As a result, theoretical models for rubber
elasticity can easily fit the experimental data in uniaxial deformation, which makes it
difficult to assess the model validity. In biaxial deformations, two independent stretching
ratios: the stretch ratio in the x-direction and y-direction, cover all possible deformations.
This gives us more information about the S–S relationships to assess the validity of the
theoretical models comprehensively [18]. For example, the S–S relationships of chemical
gels in uniaxial deformation are described well by the neo-Hookean (NH) model [23],
while, in the case of biaxial deformation, the S–S curves deviate upward from those of NH
model.

Contrary to such previous results, a recent study [20] shows that the S–S relationships
of SR gels in both uniaxial and biaxial deformations are very close to those of NH model.
This result is interesting since the NH model which has been used to describe the elasticity
of conventional chemical gels, failed to fit the S–S curves of chemical gels in biaxial defor-
mation. On the other hand, the NH model successfully fits the S–S curves of SR gels whose
network structure is drastically different from chemical gels, in both uniaxial and biaxial
deformations. The molecular mechanism of this peculiar nonlinear elasticity of SR gels
has not been elucidated. The purpose of this paper is to reveal the molecular mechanism
which characterizes the S–S relationship of the network with slip-links by using Brownian
dynamics simulations and theoretical analysis.

First, we calculate the S–S relationships of the network with slip-links (slip model)
and the network with fixed cross-links (non-slip model) in two step biaxial deformation
by using molecular simulations, in order to confirm that the results by the simulation are
consistent with those of experiments. Next, we calculate the S–S relationships of slip model
and non-slip model based on the Flory–Rehner tetrahedral model to analyze the properties
of the slip model in more detail. Furthermore, in the theoretical models, we compare two
types of chains, the Gaussian chain and the Langevin chain, to investigate the effect by the
nonlinear stretching of the chain.

2. Results and Discussion
2.1. Molecular Simulations

We employed the bead-spring model in our coarse-grained molecular dynamics
simulations to calculate the S–S relationship of the slip and the non-slip models [24]. In our
previous work, one of the authors has introduced tri-functional slip-links in which both
ends of the polymer chain slide along the different chain backbone [15]. Here, we introduce
the tetra-functional slip-links corresponding to the figure-of-eight cross-links. If one wants
to model the slip-link imitating the actual structure of CD molecules, a slip-link needs to be
represented by a ring consisting of several beads. However, to study many chain problems
efficiently, we replaced the rings by pseudo beads representing the positions of slip-links
along the primitive path of the chain.

2.1.1. Model

First, we modeled the polyrotaxane by using the bead-spring model (Figure 1). A
main chain is composed of successive nPEG polymer beads connected by the nonlinear
springs. Next, we introduced nCD pseudo beads to represent the position of CD molecules.
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We used the parameters: nPEG = 20 and nCD = 6. The pseudo beads are bonded to the
nearest point on the primitive path by the nonlinear spring, i.e., it can slide along the chain.
Repulsive excluded volume interaction acts between pseudo beads to prevent them from
passing through each other, whereas no interaction acts between a pseudo bead and a
polymer bead. In our model, the pseudo beads are not allowed to leave the chain to model
the actual polyrotaxane end-capped with bulky groups to confine CD molecules on the
chain. By connecting the pseudo beads on different chains with the nonlinear spring, we
introduced cross-links corresponding to the figure-of-eight cross-links in the SR gels. SR
gels are prepared as follows in the experiments. PR is dissolved with the cross-linker in a
solution. The gelation is conducted by covalently cross-linking cyclodextrins on PR chains
at room temperature for a day. Finally, the gel is washed with water to stop the gelation [20].
In the simulation, we formed a network in the following way. First, we prepared the main
chain with pseudo beads in the simulation box and ran the simulation until the system
is in the thermal equilibrium state. Then, we connected the pseudo beads lying nearby
on different polymer chains to form the network, corresponding to a gelation process in
the experiments. The connection process continues until the reaction ratio becomes 0.9.
The correspondence of the slip model of the simulation and the actual SR gels is shown in
Figure 1 (bottom). We did not introduce unreacted CDs in the simulation as much as the
experiments, for sake of simplicity. In the case of the non-slip model, we fixed the spring of
the pseudo beads to the randomly selected beads on the main chain.

NO2

O2N NH NO2HN

O2N

O O O O
O

pseudo beadspolymer beads

primitive path

polyrotaxane

slide ring gel

Figure 1. Schematic figures of the models for polyrotaxe and SR gels used in the simulation. The
polymer beads are represented by outlined beads. The pseudo beads which represent the position of
CD molecules are shown as filled beads.

2.1.2. Results

We deformed the network isotropically to determine the equilibrium swelling ratio.
Microscopic stress tensor ταβ is described by the relative position vector and the force
vector as

ταβ = − 1
V ∑

ij
rα

ijF
β
ij −

1
V ∑

ij
mvα

i vβ
j (1)
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where vα
i is a α th component of the velocity vector dri/dt. This stress tensile is the force

per unit deformed cross-sectional area. The stress for the isotropic deformation is obtained
as average force in the principal directions

τ = (τxx + τyy + τzz)/3. (2)

Swelling ratio is defined as q ≡ V/V0 where V is the volume when the network is deformed
and V0 is the initial volume when the network is formed. Equilibrium swelling ratio qeq is
determined as q at τ = 0.

We present the stress τ as a function of the swelling ratio q in Figure 2. The equilibrium
swelling ratios for the non-slip model and the slip model were determined as qnon−slip

eq = 3.1

and qslip
eq = 5.6, respectively. In the experiments, the network is deswelled from the

equilibrium state [20]. Likewise, in our simulations, the S–S relationships are calculated in
the deswelled state (qnon−slip = 1.1 and qslip = 1.2). The number densities of the simulation
for the slip and non-slip model are 0.3σ−3 and 0.33σ−3, respectively.

non-slip
slip-link

Figure 2. Stress τ as a function of the swelling ratio q for the slip model (•) and the non-slip model
(�), calculated by the molecular simulations.

After the swelling ratios are determined, we calculate the stresses under two steps
biaxial deformation. Two steps biaxial deformation is divided into two steps as shown
in Figure 3. In the first step, the network is deformed in the x-direction until λx = λhalf
with λy fixed at 1. In the second step, the network is deformed in the y-direction until
λy = λhalf with λx fixed at λhalf, where λx and λy are the stretch ratios of x and y axes
respectively. The stresses in the x− and y−directions under the biaxial deformation are σx
and σy, respectively.

x

y

z

λhalf

λhalf

x

y

z

λhalf

1x

y

z

1

1

1

Figure 3. Schematic figure of the two steps biaxial deformation.



Gels 2021, 7, 129 5 of 14

Figure 4 shows the stresses σx and σy as a function of the sum of the stretch ratios
λx + λy. For comparison, the stresses of the NH model normalized by the initial modulus
of elasticity are shown as dotted lines in Figure 4. NH model is a simple rubber elasticity
model for ideal chains, and its elastic free energy is written as

F =
G
2

(
λ2

x + λ2
y + λ2

z

)
(3)

where G is an elastic modulus, λi, is a stretch ratio of axis i. The stress tensors of x and y
axes in general biaxial deformations are expressed by

σx = G

(
λx −

1
λ3

xλ2
y

)
, (4)

σy = G

(
λy −

1
λ3

yλ2
x

)
. (5)

The stresses of the non-slip model deviate upward from NH model overall. On the
other hand, the stresses of the slip model are in good agreement with NH model. The
stresses for the non-slip and the slip model obtained by molecular simulations exhibited
qualitatively same behaviors as the experimental results. In the non-slip model, the stress
on the network can not be relaxed because of the fixed cross-links and the stress became
large when the network is largely deformed. In the slip model, the stress is relaxed by
slip-links varying the network structure, hence, the stress is smaller than that of the non-slip
model.

λx+λy

σ

λx+λy

σx

σy

σ

1.0

0.8

0.6

0.4

0.2

0.0
3.02.82.62.42.22.0

neo-Hookean model

non-slip model

0.5

0.4

0.3

0.2

0.1

0.0
3.02.82.62.42.22.0

σx

σy neo-Hookean model

slip model

Figure 4. S–S curves in two-steps biaxial deformation for (a) the non-slip model and (b) the slip
model, calculated by the molecular simulations. The S–S curves of the NH model are shown as
dashed lines.

Here we discuss the chain length of the actual gels in the experiments, especially
the subchain length and the corresponding number of beads in the coarse-grained bead-
spring model, which is directly related to the elastic modulus. The subchain length of
SR gels, i.e., the number of monomer units between cross-linked CDs, is calculated as
23 [20]. The corresponding number nsub of beads in the coarse-grained model is about
12 if we take the Kuhn length as a coarse-graining length scale [25]. For the chemical
gels used in the experiments, we estimated the subchain length from the elastic modulus.
Using the relationship G = ρRT/M, where ρ is the density, M is the molecular weight of
subchain, we obtain the average molecular weight of a subchain M ' 5071 g/mol [19],
which corresponds to the number of monomers for a subchain Nsub ' 94 and the number
of beads for a subchain in the coarse-grained model nsub ' 54, respectively.
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Although the estimated value of nsub in both SR and chemical gels, is several times
larger than that in the simulation (nsub ' 4), the effective subchain length for both gels
is expected to be smaller than the estimated ones. In the case of the SR gels used in
the measurements are swollen from the prepared state, the effective subchain length is
expected to be smaller than the estimated value. In the case of chemical gels, there are
many subchains much shorter than average length in networks due to the randomness of
the reaction [26]. In fact, the nonlinear stretching effect observed in the experiment, i.e.,
the deviation of the S–S curves of chemical gels from that of the NH model, is expected to
be caused by such shorter subchains rather than the average-sized subchains. Therefore,
it is expected that the behavior of the non-slip model in Figure 4 is closely related to the
nonlinear stretching effect of the chain. This will be studied in the next section in detail.

It is also noted that the subchain length of our simulation model is shorter than the
entanglement length [24]. This is consistent with the experimental situation where the
entanglement effects are not significant.

2.2. Tetrahedral Model with Gaussian Chain

To investigate the effect of slip-links in biaxial deformation in more detail, we introduce
the theoretical models for the slip model. Pearson and Graessley have introduced the Flory–
Rehner type tetrahedral model which incorporates the slip-link to describe the chain
entanglement effect on rubber elasticity [27]. This model is composed of two chains having
n segments with its both ends fixed at the vertices of the tetrahedron. The chains intersect
at one cross-linking point which can be anywhere in the space and along the chain, i.e.,
the cross-link can slide along the chains (Figure 5a). Since this model can be regarded as a
model of movable cross-links in SR gels, we employed this model to study the elasticity
of SR gels. The correspondence of the SR gels and the tetrahedral slip model is shown
in Figure 6. We extract the local part around the cross-linking point of SR gels as the
tetrahedron. We compared the stress of two types of models: the slip model and the
non-slip model where the two chains intersect at the middle point of the chains (Figure 5b).

rD

rC

rB

rA

r’
rD

rC

rB

rA

r’

(a) (b)

Figure 5. Schematic figures of the tetrahedral model for (a) the slip model and (b) the non-slip model.

Figure 6. The correspondence between the local part of SR gels (left) and the tetrahedral slip model
(right).
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2.2.1. Model

Since the tetrahedral non-slip model is identical to the Flory–Rehner tetrahedral
model, the stress of the non-slip model can be obtained by using this theory [28]. In the
following, we show the calculation of the stress for the tetrahedral slip model under biaxial
deformation.

We calculated the free energy in the deformed state by counting the number of possible
configurations. Instead of considering all possible random orientations of tetrahedron, for
the sake of simplicity, we considered only three orientations along the three principal axes.
It is expected that averaging with only three directions does not lead to unphysical bias
because slightly shifted orientation produces the similar results.

We considered the following three orientations of the tetrahedron (Figure 7).

1. the edge (A, B) and the edge (C, D) are parallel to z and y-axis respectively.
2. the edge (A, B) and the edge (C, D) are parallel to z and x-axis respectively.
3. the edge (A, B) and the edge (C, D) are parallel to x and y-axis respectively.

Each vertex of the tetrahedron is denoted as A, B, C and D, and the edge between
vertex X and vertex Y is written as (X, Y).

x

y

D

B A

C

z

y

D

B A

C

z

x

D

B A

C

Figure 7. Three orientations of the tetrahedron used to calculate the number of states.

The number of states per unit volume in the unswollen state is ρ, and each ρ/3 is
oriented to each direction. In addition, there are three possible chain pairs (AB, CD), (AC,
BD), (AD, BC), where the chain is labeled according to the vertices to which the chain is
attached. Considering all possible orientations and chain pairs, we have nine cases, each of
which is denoted as m.

Next, let us consider the entropy of chain configurations. It is assumed that the chain
has n segments, and the chains intersect at the i-th segment on one of the chains and the
j-th segment on the other chain. The coordinate of the cross-link is r′ = (x′, y′, z′). The
number of configurations for all possible states is

Ω =
n

∑
i=1

n

∑
j=1

∫∫∫ ∞

−∞
pA pB pC pDdr′ (6)

where

pA =

(
3

2πia2

)3/2
exp

(
− 3

2ia2

∣∣r′ − rA
∣∣2),

pB =

(
3

2π(n− i)a2

)3/2
exp

(
− 3

2(n− i)a2

∣∣r′ − rB
∣∣2),

pC =

(
3

2π ja2

)3/2
exp

(
− 3

2ja2

∣∣r′ − rC
∣∣2),

pD =

(
3

2π(n− j)a2

)3/2
exp

(
− 3

2(n− j)a2

∣∣r′ − rD
∣∣2),
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where a is the segment size. The subscript of p denotes the chain between vertices A, B, C, D
to the cross-link. The vectors rA, rB, rC, and rD are the positions of the vertices of the
tetrahedron. The deformation tensor is

E =

λx 0 0
0 λy 0
0 0 λz

. (7)

The condition of incompressible deformation requires λz = 1/λxλy. The number of
configurations Ω is a function of E.

Ω(E) =
n

∑
i=1

n

∑
j=1

(
3

2πna2

)6( n4

i(n− i)j(n− j)

)3/2

×
3

∏
k=1

∫ ∞

−∞
exp

−λ2
k β2

Aij

(
r′k −

Bkij

2Aij

)2

−
B2

kij

4Aij
+ Ckij

dr′k, (8)

where β2 ≡ 3/2
〈
r2〉

0,
〈
r2〉

0 is the mean squared end-to-end distance of a free strand, and

Aij =

(
n
i
+

n
n− i

+
n
j
+

n
n− j

)
, (9)

Bkij =

(
n
i

rAk +
n

n− i
rBk +

n
j

rCk +
n

n− j
rDk

)
, (10)

Ckij =

(
n
i

r2
Ak +

n
n− i

r2
Bk +

n
j

r2
Ck +

n
n− j

r2
Dk

)
. (11)

Here, λ1, λ2, and λ3 are just the aliases of λx, λy and λz, respectively. Applying the Gaussian
integral to the Equation (8) leads to

Ω(E) = Γ0

3

∏
k=1

n

∑
i=1

n

∑
j=1

A−1/2
ij exp

(
−λ2

k β2

(
−

B2
kij

4Aij
+ Ckij

))
, (12)

where Γ0 is the normalization constant given by

Γ0 = π3/2
(

3
2πna2

)6
. (13)

The edge length of the tetrahedron is assumed to be 2l, and it is equivalent to the root-
mean-squared end-to-end distance of the chain

√
〈r2〉0, which leads to the relationship

β2l2 = 3
8 q2/3 where q is the swelling ratio. Then, Ω is rewritten as

Ω(E) = Γ0

3

∏
k=1

n

∑
i=1

n

∑
j=1

A−1/2
ij ψkij (14)

where

ψkij = exp
(
− 3

8 q2/3λ2
k

(
−

B2
kij

4Aij
+ Ckij

)
/l2
)

. (15)
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Since there are ρ/q independent tetrahedra per unit volume, we have (ρ/q)/9 tetrahedra
for each orientation and the pair of the strands. Then, the number of configurations for all
possible states is

ΩT =

(
9

∏
m=1

Ωm

)ρ/9q

, (16)

where Ωm is the number of configurations for case m. We obtained the entropy by the
Boltzmann equation

S = kB lnΩT (17)

where kB is the Boltzmann constant. We differentiated the free energy change with respect
to the stretch ratio, to obtain the stress as

σx(E) = −kBT
(

∂lnΩT

∂λx

)
= − ρ

9q
kBT

9

∑
m=1

1
Ωm

∂Ωm

∂λx
. (18)

where T is the temperature. The stress is calculated as

σx(E) = −
ρ

9q
kBT

×
9

∑
m=1

n

∑
i=1

n

∑
j=1

Dij

(
−3

4
q2/3

(
λx

(
−

B2
xij

4Axij
+ Cxij

)
/l2 − 1

λ3
xλ2

y

(
−

B2
zij

4Azij
+ Czij

)
/l2

))

×exp

(
−3

8
q2/3

3

∑
k=1

λ2
k

(
−

B2
kij

4Aij
+ Ckij

)
/l2

)

/
n

∑
i=1

n

∑
j=1

Dijexp

(
−3

8
q2/3

3

∑
k=1

λ2
k

(
−

B2
kij

4Aij
+ Ckij

)
/l2

)
(19)

where

Dij =

(
n2

i(n− i) + j(n− j)

)3/2

. (20)

We can obtain σy(E) just by interchanging x and y in Equation (19).

2.2.2. Results

The calculated stresses as a function of the stretch ratio for the slip and non-slip
model in biaxial deformation are shown in Figure 8. The stresses for the non-slip model
coincide with the NH model. This result is trivial because this model is equivalent to the
Flory–Rehner model which produces the same S–S curves as NH models. Similarly, the
stresses of the slip model are in good agreement with those of the NH model. However, the
shape is slightly narrower than the NH model. One can consider that this small difference
is attributed to the effect of the slip-link. In fact, this shape is close to that of the slip-link
theory of Edwards-Vilgis [13] with the slippage parameter η = 0.05. In the tetrahedral
model, only a small difference was observed between the slip model and the non-slip
model, whereas a distinctive difference was observed in the experiments. The upward
deviation from the NH model observed in the simulation and the experiments of chemical
gels is expected to be caused by a nonlinear stretching effect due to the finite extensibility
of chains. In the case of the Gaussian chain, the chain can be elongated infinitely where the
stress is proportional to the stretch ratio, however, in reality we cannot elongate the chain
exceeding the contour length of the chain. The large stress is observed as the elongation
length gets closer to the contour length. The stress of the nonlinear stretching effect is
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modeled by the Langevin chain. Therefore, we analyze the tetrahedral model with the
Langevin chain in the next section.

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

σ

3.02.82.62.42.22.0

λ λ

Neo-Hookean model

σ

σ

slip model

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

σ

3.02.82.62.42.22.0

λ λ

Neo-Hookean model

σ

σ

non-slip model

(a) (b)

Figure 8. S–S curves in two-steps biaxial deformation for (a) the non-slip model and (b) the slip
model with the Gaussian chain in the tetrahedron model. The S–S curves for the NH model are
shown as dashed lines.

2.3. Tetrahedral Model with Langevin Chain
2.3.1. Model

In the previous section, we calculated the S–S relationships of the tetrahedral model
with Gaussian chain. Here, we introduce the Langevin chain to the tetrahedral model to
investigate the effect of nonlinearity of the chain elongation. The S–S relationship of the
Langevin chain is expressed by the inverse Langevin function [23]:

a f
kBT

= L−1
(

R
na

)
, (21)

where a f /kBT is a nondimensional force which is the ratio of a f , an energy required to
elongate the chain by a unit length a, to the unit of energy kBT. Here, L−1 is the inverse
Langevin function. The Langevin function is defined as

L(x) ≡ d
dx

{
ln
[

sinhx
x

]}
= cothx− 1

x
. (22)

The relationship between the change in free energy dF and the change in end-to-end vector
length dR is

dF = −SdT + f · dR. (23)

In the isothermal condition dT = 0, the free energy is obtained by

F/kBT =
∫ R

0
f dR/kBT (24)

=
∫ R

0
L−1

( y
na

)
dy/a. (25)
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Substituting y′ = y/na into the equation above leads to

F/kBT = n
∫ R/na

0
L−1(y′)dy′ (26)

= n

 R
na

L−1
(

R
na

)
+ ln

L−1
(

R
na

)
sinhL−1

(
R
na

)
+ C. (27)

Now, let us use the Langevin chain in the tetrahedral model. The edge length of the
tetrahedron 2l is equal to the root-mean-squared end-to-end distance of the free Gaussian
chain

√
〈r2〉0. The number of chain segments is n, and the chains intersect at the i-th

segment on one of the chains and the j-th segment on the other chain. The coordinate of
the cross-link is r′ = (x′, y′, z′). The free energy per unit volume in the deformed state is

F(i, j)
kBT

=
3
√

2
4

(FA + FB + FC + FD) (28)

where FA, FB, FC and FD are the free energies of the subchains. The subscript of F denotes
the vertices to which the subchains are attached. The stress σk is obtained as the derivative
of the free energy F(i, j)/kBT with respect to the stretch ratio λk, where k denotes the stretch
direction

σk(i, j, r′) =
∂

∂λk

(
F(i, j)
kBT

)
=

3
√

2
4

(
∂

∂λk
FA +

∂

∂λk
FB +

∂

∂λk
FC +

∂

∂λk
FD

)
. (29)

The stress σk is obtained by averaging σk(i, j, r′) with respect to i, j, and r′, as

σk =
∫∫∫ ∞

−∞

n

∑
i=1

n

∑
j=1

σk(i, j, r′)p
(
i, j, r′

)
dr′. (30)

The normalized probability function p(i, j, r′) is expressed using the partition function Z as

p
(
i, j, r′

)
=

1
Z

exp
(
− F(i, j, r′)

kBT

)
(31)

where Z is given by

Z =
∫∫∫ ∞

−∞

n

∑
i=1

n

∑
j=1

exp
(
− F(i, j, r′)

kBT

)
dr′. (32)

The stress of the non-slip model is obtained by fixing the cross-link at the middle point
of the chain. Since the integral with respect to dr′ cannot be calculated analytically, we
numerically integrate Equation (30).

2.3.2. Results

We calculated the stress of the tetrahedral model with the Langevin chain as a function
of the stretch ratio (Figure 9). In the non-slip model, as the number of segments n decreases,
the nonlinear stretching effect of chain is more pronounced, and the shape of the stress
deviates more upward from the NH model. The S–S curves for n = 8 are close to those of
the NH model since the nonlinear stretching effect of chain is relatively small. In the slip
model, the S–S relationships are in good agreement with those of the NH model regardless
of the number of segments n. This result suggests that the slip-link suppresses the nonlinear
stretching effects by moving.

A distinctive difference between the slip and the non-slip model was observed in
the Langevin chain models, especially when the number of segments n is small, although
a little difference was observed in the Gaussian chain models. The difference between
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chemical gels and SR gels observed in the experiments is explained well by the Langevin
chain model.

The segment length n = 4 seems too small compared with the subchain length of
actual chemical gels. However, as discussed in Section 2.1.2, in the case of chemical
gels, there are many subchains much shorter than average length in networks due to the
randomness of the reaction, and the deviation of the S–S curves of chemical gels from that
of NH model is expected to be caused by the nonlinear stretching effect of such shorter
subchains [26].

Furthermore, the nonlinear stretching effect is more pronounced under biaxial de-
formation than the uniaxial deformation in experiments. This is because, in uniaxial
deformation, only one direction is constrained, and the other directions are not constrained,
whereas in the biaxial deformation, two directions are constrained where the degree of
freedom of the network is significantly suppressed.

On the other hand, in SR gels, the stress is not concentrated on the shortest chain by
the effect of slip-links, even in the biaxial deformation. Therefore, the stress of SR gels
exhibits good agreement with that of the NH model.

1.4
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1.0

0.8

0.6

0.4

0.2

0.0
3.02.82.62.42.22.0

(b) slip model

Neo-Hookean model
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σy

λ λx+ y

n=4

5

6

8

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
3.02.82.62.42.22.0
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(a) non-slip model
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σy

n

n=4

5

6

8

Figure 9. S–S curves in two-steps biaxial deformation for (a) the non-slip model and (b) the slip
model which uses the Langevin chain with various number of chain segments n. The S–S curves for
the NH model are shown as dashed lines.

3. Conclusions

In this paper, we explored the influence of sliding cross-links on the elastic properties
of SR gels under biaxial deformation computationally and theoretically. In the simulations,
we compared the S–S relationships between the slip model where the network has movable
cross-links, and the non-slip model where the network is permanently fixed by the cross-
links. We found that the S–S curves of the non-slip model deviate upward from the NH
model, while those of the slip model are close to the NH model. This result qualitatively
agrees with the experimental results. In the theoretical analysis, we examined the effect
of slip-links on the S–S behavior in more detail by using Flory–Rehner type tetrahedral
model. In this model, we considered two types of chains, the Gaussian chain and the
Langevin chain, to examine the nonlinear stretching effect of the chains. We found that
the non-slip model with the Gaussian chain is equivalent to the NH model, while the
slip model with the Gaussian chain exhibits slightly narrower shape, however, almost
agrees with the NH model. The stress of the non-slip model with the Langevin chain
exhibits large deviation from the NH model when the segment length is small. The stress
of the slip model with the Langevin chain is close to the NH model regardless of the
number of segments. This result suggests that the slip-link allows the network to avoid the
largely stressed situation, as a result, the S–S relationships of SR gels are well described
by the NH model. This molecular picture explains the results observed in both molecular
simulations and experiments. To study S–S behaviors of SR gels and chemical gels in more
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detail, we may need to consider other nonlinearities such as the constraint of the thermal
fluctuation of chains and cross-linking junctions. However, the peculiar elastic behaviors
of SR gels observed in the measurements under biaxial deformation are well explained by
suppressing the nonlinear chain-stretching effect by sliding of the cross-links.

The coarse-grained description of the figure-of-eight cross-links using simple
bonds [15] or pseudo beads in the present study is quite effective to study the physi-
cal properties of the SR gels. By using this method, we will study molecular mechanism of
fascinating physical properties of SR gels observed by experiments, e.g., effects of unreacted
cyclodextrins between the figure-of-eight cross-links on elastic properties of SR gels and
peculiar solvent permeability of SR gels [29], in future publications.

4. Methods
Molecular Simulation

In our simulations, the elastic force between connected beads is described by a finitely
extensible nonlinear elastic (FENE) potential:

ub(l) =

− 1
2 kb∆l2

mln
[

1−
(

∆li
∆lm

)2
]

(|∆li| < ∆lm)

∞ (|∆li| ≥ ∆lm)
(33)

where kb is the spring constant, li is the length of bond i, lmax is the maximum bond length,
l0 is the equilibrium bond length, and ∆li ≡ li − l0, ∆lm ≡ lmax − l0. Non-bonded beads
are assumed to interact via the following purely repulsive Lennard–Jones(LJ) potential:

uLJ(r) =

4ε
[(

σ
r
)12 −

(
σ
r
)6

+ 1
4

]
(r ≤ 2

1
6 σ)

0 (r > 2
1
6 σ)

(34)

where σ and ε are the unit length and the unit energy of the LJ potential, respectively. The
parameters are chosen as follows: kb = 1500ε/σ2, lmax = 1.2σ and l0 = 1.0σ. The equation
of motion of the bead i is given by the following Langevin equation:

m
d2ri(t)

dt2 = Fi − ζ
d
dt

ri(t) + Ri(t) (35)

where m being the mass of beads, ri the position vector of the bead i, and ζ the friction
coefficient. The force on the bead i is F = −∂Ui/∂r where Ui is the sum of all potentials
of the bead i. The fluctuation force Ri satisfies the fluctuation-dissipation theorem. We
solved Langevin equation by using the velocity Verlet method [30]. In the simulation,
we calculated the stress for the slip model where the pseudo beads can slip along the
chain and the non-slip model where the pseudo beads are fixed at the specific point on the
polymer chains.
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