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Abstract: Silk sericin (SS) produced by Bombyx mori is normally discarded as waste in manufacturing
processes, which causes environmental pollution. Therefore, investigating the use of silk sericin has
economic and environmental benefits. As a three-dimensional structure, the sericin-derived hydrogel
was explored in different applications. However, many developed gelation procedures raise concerns
regarding safety, cost, and duration of gelation time. In this work, “thiol-ene” click chemistry was
used to quickly and controllably prepare an SS-derived hydrogel to resolve these early concerns.
Then, berberine was loaded and used as a model for investigating the drug-release profiles of the
prepared hydrogel. The experimental results revealed that this hydrogel is eligible for a long-term
release of berberine. Throughout the antibacterial experiments, the released berberine maintained
its antibacterial activity. Our work expands the application of SS in biomedical industries in an
eco-friendly way. Furthermore, the discussed strategy could provide a reference for the subsequent
development of SS-derived materials.

Keywords: silk sericin; thiol-ene; hydrogel; drug delivery

1. Introduction

Silk fiber produced by Bombyx mori consists of fibroin fiber and silk sericin (SS) [1]. SS,
contributing 15–30% of the total weight of a cocoon, envelops the fibroin fibers together and
acts as the protective layer [2]. Most SS is separated from the fibroin fiber and discarded
as waste along with water during the silk reeling process. It is estimated that more than
50,000 tons of SS wastewater are released into the environment in silk processing each
year [3]. That SS contaminates environmental water because of its high chemical and
biological oxygen demand [4]. Therefore, in addition to its positive effect on the economy,
the use of SS would play an important role in the prevention of pollution.

As a natural polymer, silk sericin is biocompatible [5] and biodegradable [6]. It has
been explored in different medical applications [7–9], especially in the form of hydro-
gel [10–12]. However, SS molecules are difficult to crosslink into a form of hydrogel
because of their low molecular weights [13]. Therefore, a variety of techniques have been
developed to facilitate the gelation process. Wang et al. reported a sericin hydrogel pre-
pared within 60 s, but glutaraldehyde was used as the crosslinking agent. In addition to
the cytotoxicity [14], proteins crosslinked with glutaraldehyde are known to often form
substantial precipitation due to polymerization [15]. Olivier et al. presented a method for
preparing SS-derived hydrogel through enzymatic crosslinking [16]. Because enzymes are
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expensive, this method increased the preparation cost. In another work, Park et al. stored
an SS aqueous solution at 4 ◦C for gelation, but the gelation time ranged from 1 day to
10 days [17].

“Thiol-ene” click chemistry is a green and eco-friendly strategy for achieving mod-
ification and functionalization of materials. It can crosslink the thiol group and alkene
group through photoinitiation quickly and inexpensively [18–21]. The reaction can proceed
through a simple mechanism and is insensitive to the presence of water and oxygen. There-
fore, “thiol-ene” click chemistry is easy to scale up under mild conditions [22,23]. In this
work, reduced glutathione (GSH), which includes a thiol group, was grafted onto the SS
molecule via a carbodiimide coupling reaction. Subsequently, “thiol-ene” click chemistry
was used for crosslinking the thiolated SS and poly(ethylene glycol) diacrylate (PEGDA),
a biologically inert polymer with a particular use in drug delivery [24], for generating a
porous SS-derived hydrogel. This hydrogel exhibits a capability for loading molecular
drugs and may be applied as a drug delivery system. Although the preparation of an SS
and PEGDA composite hydrogel was first reported by Kunyanee et al. [25], their method
requires a 70 min gelation time, and the ammonium persulfate used as the redox agent can
irritate the skin and eyes and may cause difficulty in breathing [26].

The aim of this work is to develop a new strategy that can resolve early concerns about
SS-derived hydrogels preparation and explore its application as a carrier for drug release,
expanding the applications of SS, especially in the biomedical field. As thiol-ene click
chemistry is a multifaceted toolbox for small molecule and polymer involved reactions [27],
our work could provide a reference for the development of SS-derived material in its
many forms.

2. Results and Discussion
2.1. Gelation Exploration

A 10% SS solution was mixed with PEGDA solution in a volume ratio of 1:1, referred to
10% SS-PEGDA, and then the mixture was illuminated under a 405 nm light-emitting diode
(LED), as described in Section Materials and Methods. The duration of LED illumination
has a significant influence on the gelation process. Figure 1 suggests that the gelation
occurs once the mixtures start receiving illumination from the LED and progress toward
a stable, well-defined hydrogel after 6 min of LED illumination. Therefore, 6 min was
selected as the appropriate reaction time for the hydrogel scaffold construction (Figure 1).
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Figure 1. (A) is the mold for hydrogel fabrication. (B–G) representative top view images of a 10% silk sericin (SS)-
poly(ethylene glycol) diacrylate (PEGDA) mixture illuminated under a 405 nm LED for 1 min, 2 min, 3 min, 4 min, 5 min,
and 6 min, respectively; (a–g) corresponding side-view images of (A–G). To generate a stable, well-defined hydrogel, 6 min
of 405 nm light-emitting diode (LED) illumination is required.

In addition, the effect of SS solution concentration on hydrogel formation was evalu-
ated. A 5%, 10%, 20% and 30% thiolated SS solution was mixed with PEGDA in a volume
ratio of 1:1, denoted 5% SS-PEGDA, 10% SS-PEGDA, 20% SS-PEGDA, and 30% SS-PEGDA,
respectively. The samples generated were called 5% SS/PEGDA, 10% SS/PEGDA, 20%
SS/PEGDA, and 30% SS/PEGDA, respectively (Figure 2). The results revealed that 5%
thiolated SS solution cannot result in a stable, well-defined hydrogel scaffold under the
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conditions described in Methods, indicating that 5% thiolated silk sericin is not sufficient
for crosslinking PEGDA.

Gels 2021, 7, 23 3 of 13 
 

 

20% SS/PEGDA, and 30% SS/PEGDA, respectively (Figure 2). The results revealed that 5% 
thiolated SS solution cannot result in a stable, well-defined hydrogel scaffold under the 
conditions described in Methods, indicating that 5% thiolated silk sericin is not sufficient 
for crosslinking PEGDA. 

 
Figure 2. (A–D) representative top view images of samples 5%, 10%, 20%,and 30% SS/PEGDA; (a–
d) corresponding side-view images of (A–D). 

2.2. Investigation of the Gelation Process 
Fourier-transform infrared (FTIR) spectroscopy was used to analyze the differences 

in functional groups of the samples during preparation. Although a weak peak (Figure 
3B) associated with the thiol groups was revealed at 668 cm−1 after SS thiolation [28], its 
change was concealed by the characteristic peak of PEGDA located near 656 cm–1 once the 
thiolated SS was mixed with PEGDA and illuminated under the LED (Figure 3A). There-
fore, the changes in the FTIR spectra during the gelation process are difficult to observe 
in this case. 

 
Figure 3. (A) Infrared spectra of samples SS (a), thiolated SS/reduced glutathione (GSH)–SS (b), 
PEGDA (c), 10% SS/PEGDA (d), 20% SS/PEGDA (e), and 30% SS/PEGDA (f); (B) enlargement of 
the area marked by a dashed line in (A). 

To better understand the crosslinking of SS and PEGDA molecules within the hydro-
gel, the prepared samples were immersed in 1 M urea, 1 M NaCl, 1.5% Tween-20, and 
0.5% sodium dodecyl sulfate (SDS). Urea was used to disrupt the hydrogen bonds; NaCl 
was utilized to adjust the ionic strength to disrupt electrostatic interactions; Tween-20 was 
applied to disrupt hydrophobic interactions; SDS was used as a denaturing detergent to 
induce protein unfolding via the interruption of intramolecular hydrophobic interactions. 
The results (Figure 4) show that the weight of the samples in each group remained almost 
constant over time, indicating that the different non-covalent interactions have a trivial 
effect on the gelation, and the network is covalently crosslinked. 

Figure 2. (A–D) representative top view images of samples 5%, 10%, 20%,and 30% SS/PEGDA; (a–d) corresponding
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2.2. Investigation of the Gelation Process

Fourier-transform infrared (FTIR) spectroscopy was used to analyze the differences in
functional groups of the samples during preparation. Although a weak peak (Figure 3B)
associated with the thiol groups was revealed at 668 cm−1 after SS thiolation [28], its
change was concealed by the characteristic peak of PEGDA located near 656 cm−1 once
the thiolated SS was mixed with PEGDA and illuminated under the LED (Figure 3A).
Therefore, the changes in the FTIR spectra during the gelation process are difficult to
observe in this case.
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To better understand the crosslinking of SS and PEGDA molecules within the hydrogel,
the prepared samples were immersed in 1 M urea, 1 M NaCl, 1.5% Tween-20, and 0.5%
sodium dodecyl sulfate (SDS). Urea was used to disrupt the hydrogen bonds; NaCl was
utilized to adjust the ionic strength to disrupt electrostatic interactions; Tween-20 was
applied to disrupt hydrophobic interactions; SDS was used as a denaturing detergent to
induce protein unfolding via the interruption of intramolecular hydrophobic interactions.
The results (Figure 4) show that the weight of the samples in each group remained almost
constant over time, indicating that the different non-covalent interactions have a trivial
effect on the gelation, and the network is covalently crosslinked.
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Figure 4. Effects of (A) urea, (B) NaCl, (C) Tween-20, and (D) sodium dodecyl sulfate (SDS) on the gelation. Wt % of
samples measured at various time intervals in different solutions are not significantly different. The statistical analyses were
performed using an unpaired, two-tailed t-test.

2.3. Microstructural Characterization of SS/PEGDA Scaffolds

The micromorphological structures of the prepared scaffolds are depicted by scanning
electron microscopy (SEM) in Figure 5. These SEM images reveal that the porosity of the
scaffold structure changed from macroporous to mesoporous with increasing silk sericin
content. As the freeze-dried PEGDA hydrogel scaffold (Figure S1) exhibits a pin-hole-free
structure under SEM observation (Figure S2), we believe it is the blending of SS that results
in a porous structure. On the other hand, the continued addition of SS could lead to a
higher crosslinking density; therefore, reduce the pore size and minimize the number of
pores, which can be observed in Figure 5C.

Table 1 lists the results of the Brunauer–Emmett–Teller (BET) analysis of the SS/PEGDA
scaffolds regarding the specific surface area. Notably, the specific surface area of the scaf-
folds increased with the increase in SS content from 10% to 20%, then decreased as the SS
content increased to 30%. We believe the decreased specific surface area of sample 30%
SS/PEGDA is due to the reduced pore size and pore number caused by the increased
crosslinking density, which complies with the SEM observations.
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Table 1. The specific surface area of the prepared hydrogel scaffolds.

Scheme. Specific Surface Area (m2/g)

10% SS/PEGDA 0.1230
20% SS/PEGDA 0.2811
30% SS/PEGDA 0.1411

2.4. Mechanical Behavior of SS/PEGDA Scaffolds

To extract additional structural properties, the compression test was used to provide
indirect information of the scaffold network (Figure 6). The compressive strength of the
SS/PEGDA scaffold increased with the increased silk sericin content. The 30% SS/PEGDA
scaffolds showed significantly higher compressive strength than the 10% SS/PEGDA
scaffold. In contrast, the increased content of silk sericin reduced the strain% of the
scaffold. The increased SS content led to a higher crosslinking density, thereby improving
the compressive strength of the SS/PEGDA scaffolds. On the other hand, the higher
crosslinking density limited the deformation of the SS/PEGDA scaffold under a load and
reduced the strain% [29].

Because the 20% SS/PEGDA hydrogel scaffold exhibits the largest specific surface
area and appropriate mechanical properties among the samples, it was selected for the
follow-up experiments of this study.
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2.5. Swelling of SS/PEGDA Scaffolds

The swelling ratio has been considered a measurement of the free water within a
hydrogel matrix [30]. The lyophilized 20% SS/PEGDA scaffolds underwent swelling
instead of dissolution when the samples were placed in PBS buffer. As shown in Figure 7,
the swelling ratio of the 20% SS-PEGDA scaffold seemed to reach an equilibrium over
80 h in PBS solution (Figure 7). The swelling behavior indicates that the porous structure
within the hydrogels allows for solvent uptake. This swelling property might be useful for
drug release.
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Figure 7. Swelling ratio curve for 20% SS/PEGDA scaffolds in PBS solution. No significant change
in the swelling ratio occurs at 72 h, 120 h, and 168 h. The statistical analyses were performed using
an unpaired, two-tailed t-test.

2.6. Kinetics of Drug Release

Berberine was selected as the model for investigating the practical use of SS/PEGDA
in drug delivery, as it has been reported to possess a broad-spectrum antibacterial activity
and has anti-inflammatory properties. The kinetics of berberine released from the 20%
SS/PEGDA scaffold was examined (Figure 8). The experiment was conducted for a 120 h
period, and the release profile demonstrates an initial burst phase followed by a near-zero-
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order phase (the points after 24 h show a plateau). The initial burst release may result from
the rapid release of surface-associated drug molecules [31]. The berberine release data were
fit to the Ritger–Peppas equation (Figure 8), and the results indicate the berberine transport
mechanism is primarily in agreement with Fickian diffusion [32].
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Figure 8. Ritger–Peppas equation fitting (the red line) was applied to the release profile (the black
line) using Origin software. The n value of the Ritger–Peppas equation is less than 0.45, which
indicates that Fickian diffusion is the mechanism of berberine release. No statistically significant
differences at 24 h, 48 h, 72 h, 96 h and 120 h were detected. The statistical analyses were performed
using an unpaired, two-tailed t-test.

2.7. Antibacterial Property

The antibacterial property of the berberine-loaded SS/PEGDA scaffolds was evaluated
via the zone of inhibition using the agar disk diffusion method. The scaffolds produced
an extensive zone of inhibition against Staphylococcus aureus (S. aureus, Figure 9A) but
demonstrated a limited zone of inhibition when they were placed on Escherichia coli (E. coli,
Figure 9B) spread agar plates. These results are reasonable, as S. aureus is more sensitive
to berberine than E. coli [33]. The zone of inhibition indicates that the antibacterial agent
released from SS/PEGDA scaffolds can prevent the formation of bacterial colonies and then
bacterial films on the agar plates. The above results suggest that the prepared SS/PEGDA
scaffolds have the potential to be used for drug delivery applications.
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2.8. In Vitro Cytotoxicity

The MTT assay was applied to evaluate the effects of leaching liquor from 20%
SS/PEGDA hydrogel scaffolds on the proliferation and viability of human embryonic
kidney 293 (HEK-293) cells. The results demonstrate 20% SS/PEGDA hydrogel scaffolds
exhibit non-toxicity and have acceptable biocompatibility and potential for clinical use.
This conclusion can be drawn from the observation that more viable cells are found in
the 20% SS/PEGDA group than in the control group on day 1 and day 3 (Figure 10). The
results are consistent with the previous reports that silk sericin can accelerate cell prolifera-
tion [34,35]. Representative pictures showing the effects of the leaching liquor on cellular
growth can be found in the Supplementary Materials (Figure S3).
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3. Conclusions

In summary, relying on “thiol-ene” click chemistry, we have developed and designed
a strategy for preparing SS-derived hydrogel. Subsequently, the hydrogel scaffold was
prepared using a lyophilization procedure and presented a porous structure. Among all
sample groups, the 20% SS/PEGDA hydrogel scaffold exhibits a large specific surface
area and appropriate mechanical properties. Moreover, results on swelling behavior, drug
release, and in vitro cytotoxicity demonstrate that the 20% SS/PEGDA hydrogel scaffold
is eligible for drug delivery. Furthermore, our study provides a practical pathway and
foundation that could be incorporated into the preparation of SS-derived materials in many
forms. It is our hope to promote the application of silk sericin through this developed
strategy, achieving social and economic benefits.

4. Materials and Methods
4.1. Materials

Sericin (99.0%, purified from silk degumming wastewater of the textile industry, Ning-
shan Guosheng Biological Technology Co. Ltd., Ningshan, China), Tris(2-carboxyethyl)
phosphine hydrochloride (TCEP·HCl, 98%, Aladdin Agent Co. Ltd., Shanghai, China),
berberine chloride hydrate (98%, Aladdin Agent Co. Ltd., Shanghai, China), 2-morpholino
ethanesulfonic acid (MES, 99%, Aladdin Agent Co. Ltd., Shanghai, China), Sodium chlo-
ride (≥99.5%, Aladdin Agent Co. Ltd., Shanghai, China), Sodium carbonate (≥99.8%,
KeLong Chemical Reagent Co. Ltd., Chengdu, China), Sodium biphosphate dihydrate
(≥99.0%, KeLong Chemical Reagent Co. Ltd. Chengdu, China), Sodium dihydrogen phos-
phate (≥99.0%, Fangzheng reagent Co. Ltd., Tianjin, China), N-hydroxysuccinimide (NHS,
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99.0%, Solarbio Co. Ltd., Beijing, China), reduced glutathione (GSH, 98%, Solarbio Co.
Ltd., Beijing, China), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC,
≥97%, Adamas-beta, Shanghai, China), poly(ethylene glycol) diacrylate (PEGDA, 99.9%,
n = approximately 4, Tokyo Chemical Industry Co. Ltd., Tokyo, Japan), potassium bromide
(>99.0%, Sangon Biotech Co. Ltd., Shanghai, China), Dulbecco’s modified Eagle’s medium
(DMEM, high glucose, HyClone, Logan, UT, USA), phosphate-buffered saline (PBS, 1×,
HyClone, Logan, UT, USA), 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT, 98%, BioFroxx., Einhausen, Germany), dimethyl sulfoxide (DMSO, 100%, BioFroxx.,
Einhausen, Germany), fetal bovine serum (FBS, Zhejiang Tianhang Biotechnology Co. Ltd.,
Huzhou, China).

4.2. Silk Sericin Molecule Thiolation

A 30 g of silk sericin was dissolved in 200 mL of deionized water (diH2O) and
dialyzed against 2-morpholinoethanesulfonic acid monohydrate (MES) solution (contain-
ing 0.1 mol/L MES and 0.5 mol/L NaCl) at a pH of 6.0 for 24 h. Then, 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) were mixed
with the resulting solution for the carboxyl group activation and maintained a final con-
centration of 0.5 mg/mL and 0.7 mg/mL, respectively, followed by the addition of 10.95 g
of GSH. The reaction was conducted at 4 ◦C for 15 min. The GSH-modified silk sericin
(GSH-SS) was dialyzed against diH2O for 24 h to remove all reaction residue. The obtained
solution was lyophilized (LGJ-10, Shanghai Yuming Automation and Technology Co. Ltd.,
Shanghai, China) and stored under vacuum for later usage.

4.3. Silk Sericin-Derived Hydrogel Scaffold Preparation

Lyophilized GSH-SS powder was dissolved in diH2O to prepare 5%, 10%, 20%, and
30% GSH-SS solution. Then, TCEP•HCl was added to the above solutions to obtain the
final concentration of 5 mmol/L, 10 mmol/L, 20 mmol/L, and 30 mmol/L, respectively, to
break the disulfide bonds possibly formed to release free thiol groups. A 1 mL aliquot of
PEGDA solution was then thoroughly mixed with 1 mL of TCEP•HCl-reduced GSH-SS
solution and placed 3 cm below a LED light source (405 nm, Shenzhen YuXianDe Science
and Technology Ltd., Shenzhen, China) for illumination of various duration. The PEGDA
molecules crosslinked thiolated SS molecules to generate SS-derived hydrogels, which
were then lyophilized for SS/PEGDA scaffold preparation.

4.4. FTIR Analysis

The freeze-dried hydrogel scaffolds were ground to powder, which was mixed with
KBr in a mass percentage concentration (w/w) of 100:1. The mixture was pressed into a fine
disc, which was scanned at a resolution of 4 cm−1 over a wavenumber of 400–4000 cm−1

for 24 scans by Fourier-transform infrared spectroscopy (Nicolet iN10, Thermo Scientific,
Waltham, MA, USA).

4.5. Effect of Tween-20, PBS, NaCl and Urea on the Gelation

PBS solutions (pH = 7.4) containing the indicated concentration of Tween-20, SDS,
NaCl, and urea were prepared. The weights of the SS/PEGDA hydrogels were measured
with an analytical balance and recorded as mi. Next, the samples were immersed in 6 mL
of the above solutions for different durations. At certain time points, the samples were
removed from the solutions, and the extra solution on their surface was gently wiped with
Kimwipes. Then, the measurement of sample weight was recorded as mf. The change in
weight can be reflected by using the following equation:

Wt % =
m f

mi
× 100% (1)
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4.6. Microstructural Morphology Characterization

The sample was cut through and coated with a thin layer of gold via a sputter coater
(GSL-1100×-SPC-16 M, MTI Corporation, Richmond, VA, USA). The morphology and
pores of the scaffold were then analyzed using a scanning electron microscope (SEM,
Phenom Pro, Phenom-World, Eindhoven, The Netherland).

4.7. BET Analysis

The specific surface area of the freeze-dried hydrogel scaffolds was investigated. The
analysis was done at 50 ◦C on a surface area and porosity measurement system (ASAP 2460,
Micromeritics Instruments Corporation, Richmon, VA, USA). Additionally, the specific
surface area was calculated using the Brunauer–Emmett–Teller (BET) method.

4.8. Compression Test of the SS/PEGDA Scaffold

The compression test was performed at a compressive rate of 2 mm/min at 25 ◦C. The
universal testing machine (GTM-2100, Shanghai Xieqiang Instrument Technology Co. Ltd.,
Shanghai, China) was stopped when the strain of the SS/PEGDA scaffold reached 50%.

4.9. Study of Swelling Behavior

Each SS/PEGDA scaffold prepared under different conditions was weighed first,
and then the samples were immersed in 6 mL of PBS solution (pH = 7.4) for a different
duration. Subsequently, the samples were taken out, and their surface was blotted with
a tissue to remove excess solution. The swelling ratio (SR) can be determined using the
following equation:

SR =
(Wt − Wd)

Wd
(2)

where Wt is the weight of the hydrogel scaffold after immersion in PBS, and Wd is the
weight of the sample after lyophilization.

4.10. Berberine-Loaded SS/PEGDA Hydrogel Scaffold Preparation

First, berberine was dissolved in diH2O to obtain a solution with a concentration
of 3 mg/mL. The berberine-loaded SS/PEGDA scaffolds were obtained by placing each
prepared SS/PEGDA scaffold in 10 mL of 3 mg/mL berberine solution under vacuum for
90 min. The samples were then freeze-dried for later usage.

The initial amount of berberine loaded in the SS/PEGDA scaffold can be calculated
using the following equation:

m0 =
(

c f v f − civi

)
× M (3)

where cf and ci are the concentration of berberine in the solution before and after drug
loading, respectively, determined using a UV-vis method and calculated in accordance
with the standard curve of berberine in diH2O (Figure S4). vf and vi are the volume of
berberine solution before and after drug loading, respectively. M represents the molecular
weight of berberine.

4.11. Mathematical Modeling of Drug Release from SS/PEGDA Scaffolds

To assess the in vitro release kinetics of berberine-loaded SS/PEGDA scaffolds, each
sample was placed in 6 mL of PBS (pH = 7.4) solution for 120 h at 37 ◦C, with a rotary speed
of 100 r/min. The cumulative berberine released at different time intervals was determined
from its calibration curve (Figure S5) using a UV-vis spectrophotometer (UV1600, Shanghai
Jinghua Technology Instrument Co. Ltd., Shanghai, China) at the wavelength of 345 nm
according to the following equation:

Cumulative release (%) =
∑n

1 vCt

m0
× 100% (4)
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where v is 6 mL, and Ct is the concentration of berberine in PBS solution at time t. m0
represents the initial amount of berberine loaded. Aliquots of 6 mL were withdrawn
and replaced with the same volume of fresh PBS solution after each measurement at the
indicated time point.

The Ritger–Peppas model, expressed as follows, was used to fit the release profile
using OriginPro 8 software(Originlab Corporation, Northampton, MA, USA):

ln
(

mt

m∞

)
= lnk + nlnt (5)

where mt is the amount of berberine released at time t, m∞ represents the amount of
berberine released at an infinite time, and the value of mt/m∞ indicates the proportion of
berberine released at time t. In addition, k represents the kinetic constant, and the exponent
n is indicative of the drug release mechanism.

4.12. Test for Antimicrobial Activity of Berberine-Loaded SS/PEGDA Scaffolds

A 400 µL aliquot of Staphylococcus aureus (S. aureus, ATCC 25923) or Escherichia coli
(E. coli, ATCC 25922) suspension with a specific concentration of 1 × 107 CFU/mL (by ad-
justing the turbidity of the bacterial suspension to a McFarland standard) was spread over
the surface of prepared agar plates. Then, the freeze-dried berberine-loaded SS/PEGDA
scaffolds were gently placed on the surfaces of agar plates. The agar plates were cultivated
in the dark for 12 h at 37 ◦C, and the zone of inhibition (ZoI) around each scaffold was
recorded by a digital camera and measured with a caliper.

4.13. In Vitro Cytotoxicity Assay

First, the SS/PEGDA scaffolds were incubated with PBS solution (pH = 7.4) thrice,
30 min per incubation, to remove unreacted compounds. The scaffolds were then auto-
claved at 121 ◦C for 20 min and dried in an oven at 60 ◦C. The sterilized samples were
subsequently immersed for 72 h in the complete growth medium with a sample weight to
complete growth medium volume ratio of 0.02 g/mL. Afterward, the obtained leaching
liquor was filtered through a 0.22 µm pore size membrane and used for human embryonic
kidney 293 (HEK-293) cell cultivation. HEK-293 cells were seeded into a 96-well plate at a
density of 2 × 105 cells/well in 100 µL of filtered leaching liquor, complete growth medium
and a 0.64% phenol solution of the complete growth medium, denoted the experimental,
control, and positive groups, respectively. HEK-293 cells were obtained from the American
Type Culture Collection (ATCC, Manassas, VA, USA).

Afterward, 20 µL of MTT solution (5 mg/mL in PBS) was introduced into each well
for 4 h of incubation. The media in the wells were then discarded, followed by the addition
of 150 µL of DMSO to dissolve the precipitate. The optical density (OD) value was recorded
at 570 nm using a microplate reader (Synergy H1, Biotek, Winooski, VT, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/2310-286
1/7/1/23/s1, Figure S1: Representative images of PEGDA hydrogel, Figure S2: Representative SEM
images of the lyophilized PEGDA hydrogel, Figure S3: The morphologies of HEK-293 cells of each
group in MTT assay on day 1 and day 3, Figure S4: Standard calibration curve of curcumin in diH2O,
Figure S5: Standard calibration curve of curcumin in PBS (pH = 7.4).
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