
 gels

Editorial

Cryogelation and Cryogels

Zachary J. Rogers 1 and Sidi A. Bencherif 1,2,3,4,*
1 Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;

rogers.z@husky.neu.edu
2 Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
3 Laboratory of Biomechanics & Bioengineering (BMBI), Sorbonne University,

University of Technology of Compiègne (UTC), 60200 Compiègne, France
4 Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University,

Cambridge, MA 02138, USA
* Correspondence: s.bencherif@northeastern.edu

Received: 20 November 2019; Accepted: 27 November 2019; Published: 3 December 2019 ����������
�������

Cryogenic processes are increasingly being utilized to create unique polymeric materials that
tackle challenges mainly in the biomedical arena, environmental science, and field of food technology.
Cryogelation is a process in which gelation occurs under semi-frozen conditions, leading to a polymer
network cross-linked around ice crystals [1,2]. Subsequent thawing of ice crystals leaves behind
a polymeric material with an interconnected, macroporous network surrounded by a highly dense
polymer wall. This material is commonly called a cryogel. In a biomedical setting, unlike conventional
nanoporous hydrogels, cryogels allow unhindered diffusion of solutes of practically any size and
promote infiltration, trafficking, and survival of mammalian cells [1,2]. When used as matrices for
bioseparations, cryogels enable faster flow rates and subsequently faster separations when compared
to conventional solid adsorbent materials [2]. Furthermore, the interconnected macropores and densely
cross-linked polymer walls confer cryogels with exceptional elasticity and shape-memory properties,
allowing them to be syringe injected through hypodermic needles [1,3]. Altogether, due to their unique
properties, cryogels have been used for cell delivery, drug delivery, cancer immunotherapy, tissue
engineering, bioseparations, biosensors, and cell culture in three dimensions [1]. On the other hand,
cryostructurates, another type of cryotreated gels, are formed by a process in which gel formation
occurs either before or after freezing [2]. As cryostructurates have not been studied as extensively as
cryogels, more research is critically needed to expand their use.

In this Special Issue, “Cryogelation and Cryogels”, recent advances in the development,
characterization, and application of cryogels and cryostructurates are described. In several studies,
the impact of gel formation parameters on mechanical and physical properties were investigated.
Bauldron and colleagues investigated the difference between freeze-drying and supercritical drying on
the physical properties of amylomaize starch gels [4]. It was determined that freeze-drying resulted in
macroporous gels with 20–100 µm pores, whereas supercritical drying led to gels with 1 µm pores.
In another study, Muslomova and colleagues fabricated butyl rubber cryogels while varying the type
of solvent, cryogelation temperature, and several other parameters [5]. Switching the type of solvent
from benzene to cyclohexane decreased the pore size, whereas increasing the freezing temperature
led to gels with more ordered and aligned pores. These types of studies allow for the fine-tuning of
material properties to fit specific applications. Other studies looked in depth at specific parameters
to understand their effects. For instance, Lozinsky and coworkers discovered that two chaotropic
agents, which typically weaken the mechanical properties of cryogels when added to an aqueous
cryogelation process, have the opposite effect on polyvinyl alcohol cryogels fabricated in DMSO (called
“kosmotropic-like”) [6]. Focused more on applications, Hixon and colleagues compared electrospun
scaffolds, hydrogels, and cryogels for their potential to be used as wound-healing, antimicrobial
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tissue-engineering scaffolds. However, based on their work, it appears clear that more in-depth studies
are needed to determine which biomaterial is superior to achieve the best outcome [7].

Several review articles are included in this Special Issue to bring readers up to speed on the
latest advances in the field. Saylan and Denizli review the biomedical applications of cryogels,
with an emphasis on composite cryogels [8]. Distinctively, Kudaibergenov provides a deep dive
into polyampholyte cryogels (i.e., cryogels made up of positively and negatively charged subunits),
and their properties and applications as stimuli-responsive materials [9]. Lastly, Lozinsky distinguishes
the difference between cryogels and cryostructurates, a much needed exercise as the field is growing
rapidly [10].

Since the process of cryogelation was first implemented in the 1970s, scientists have made immense
progress in the synthesis, characterization, and application of cryogels and cryostructurates. However,
there is still room for improvement. Studies like that of Hixon and colleagues, in which multiple
biomaterials are compared to determine the best fit for a specific application, are essential to advance the
field [7]. For instance, in the biomedical field, there are several challenges that cryogels face, preventing
their lab-to-clinic translatability, including sterility, degradability, and controlled encapsulation and
release of drugs and/or biomolecules. Moving forward, the emphasis of future research should focus
on in vivo studies that accurately recapitulate their real-world applications. We are excited as Gels
publishes more research and applications that advance the state-of-the-art in the field, bringing us
closer to cryogels’ use in everyday life.
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