Supplementary information:

Local structure of Ca^{2+} alginate hydrogels gelled via competitive ligand exchange and measured by small angle X-ray scattering.

Kyoko Yamamoto, Yoshiaki Yuguchi, Bjørn Torger Stokke, Pawel Sikorski and David C. Bassett

Fig S1 shows the time-resolved SAXS result from a slow gelation system driven by the hydrolysis of GDL to acidify a solution of 30 mM CaEDTA and 1% alginate. Here the SAXS profile was traced for 1 hour with 10 s exposure and 5 min interval. From rheological measurements, gelation occurs in this system after approximately one hour from mixing gel components. Changes in local structure were observed after only 30 min , however over the first hour these scattering data did not reveal a clear peak in Kratky plots similar to that observed for the CLEX procedure. However, the SAXS from the equilibrium state 10 h after introducing GDL to start the reduction of the pH had a clear peak similar to that observed for the CLEX system crosslinked at pH 7.0 . This suggests that the structure of the final gel achieved with GDL-CaEDTA was similar to cross-linking zone of CLEX system; occurring, albeit, over a much longer timeframe.

The scattering profiles were also analysed by application of a broken-rod model in same way as the CLEX samples. According to the evaluated values shown in Fig S2, during the initial stage of reaction ($0-30 \mathrm{~min}$), a single rod component present in solution that does not develop sufficiently to induce a connectivity transition required for gel formation. After approximately 30 minutes, a second larger rod component appeared indicating the start of chain association.

Figure S1. Kratky plots obtained for time-resolved SAXS during slow gelation by addition of GDL to 1% alginate containing Ca-EDTA at $\mathrm{Ca}^{2+}=30 \mathrm{mM}$. The profiles show data recorded every 300 s and the total trace time is 3600 s . Solid line indicates SAXS obtained from fully gelled samples following 10 h reaction time.

Figure. S2 Time course of the calculated radii of the two rod components, $R_{\mathrm{c} 1}$ and $R_{\mathrm{c} 2}$ (a) and the corresponding weight fractions of the two components (b) determined by evaluation of the data presented in figure S1 using a broken rod model.

