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Abstract: Wrinkles often emerge on a paint layer when a second coat of paint is applied on an
already-coated substrate. Wrinkle formation occurs when the first layer absorbs organic solvent
from the second layer. We set up experiments to mimic the double-coating process, focusing on the
interaction between a paint layer and an organic solvent. In the experiments, we investigated the
characteristic wavelengths of the wrinkles and the time of wrinkle emergence. We employed a simple
model to explain the wrinkle emergence and performed numerical simulations. The linear stability
analysis of the model provides a relation between the wavelengths and the characteristic timescale
that agrees reasonably well with our experimental data as well as numerical results. Our results
indicate that compression of the layer due to swelling and delamination are both important factors in
the formation of wrinkles.
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1. Introduction

Double coating, in which paint is applied over an already-coated substrate, is often used to avoid
unevenness in the paint layers. In spite of double coating, however, wrinkles sometimes emerge in
the drying process, if (1) the elapsed time between the first and second coatings is too short, or (2)
the coat thickness is too great [1,2]. The formation of wrinkles has been studied in many fields, such
as engineering, material science, chemistry, and physics [3]. The fundamental process of wrinkle
formation, however, is not yet fully understood. Below, we focus on case (1) above and investigate the
formation of wrinkles from the viewpoint of the mechanical stability of the paint layer.

In a double-coating process, two layers of paint are produced by the first and second coatings.
Deformation of the first layer, underlying the second layer, leads to the formation of wrinkles observed
at the surface of the second layer. A resin paint, which includes a polymer and an organic solvent,
is often used in the painting process. The mechanism of wrinkle formation by a resin paint is thought
to be as follows:A polymerization reaction proceeds in the layer after the first application, and the
stiffness of the layer increases as it cures [4]. When a second coating is applied, the organic solvent,
which is an ingredient in the second coating of paint, penetrates into the first layer. Exposure to the
organic solvent causes the polymerized first layer to swell [5]. The first layer is easily swollen when the
elapsed time between the first and second coatings is too short, because of incomplete polymerization
of the first layer [6]. The swelling induced by absorption of the solvent thus causes deformation of the
first layer, and wrinkle formation at the surface of the second layer is due to the resulting deformation
of the underlying first layer. Most previous experiments on double coating have focused on the top
(second) layer rather than the first layer [1,7], and the effect by the deformation of only the first layer
has not been investigated quantitatively.
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In this paper, we propose an experiment in which an organic solvent is applied to the surface
of the first layer to mimic the double-coating process. We can then observe the deformation of
the first layer directly in the experiment, without the complicated effects of the deformation and
polymerization of the second layer. The emergence of wrinkles in this experiment is due solely to the
deformations caused by the instability of the first layer. We investigate the characteristic length scales,
i.e., the wavelengths, of the wrinkles, together with the characteristic timescale that characterizes
wrinkle formation. The characteristic lengths and the timescale depend on the elapsed time T between
the application of the first coating and the application of the organic solvent. In order to investigate
the emergence of wrinkles, we employ a simple model that includes both the effects of buckling due
to the swelling of the layer and delamination of the layer from the substrate. The model provides a
relation between the wavelengths and the characteristic timescale. The relation is demonstrated as
novel types of plots of our experimental and numerical results. The result indicates that the swelling
of the layer and its delamination from the substrate cause the instability of the layer that leads to the
emergence of wrinkles. In the following sections, we discuss experimental and numerical data in detail
and consider the process of wrinkle formation by means of a model.

2. Results and Discussion

2.1. Experimental Results

2.1.1. Buckle Formation

Figure 1 shows the deformations of the paint layer at the following times t after application of the
organic solvent: (a) t = 58 s, (b) 63 s, (c) 90 s, (d) 120 s, (e) 150 s, and (f) 300 s, all for experiments at
the fixed time T = 24 h after the application of the paint layer. The drop of organic solvent spreads
into a circular shape approximately 11 mm in diameter. Short-scale wrinkles first emerge at t = 58 s
(Figure 1a). Shortly after that, at t = 63 s, larger-scale wrinkles appear (Figure 1b), and small bumps
appear randomly at t = 90 s (Figure 1c). The bump amplitudes are much larger than those of wrinkles
observed at earlier times. The amplitude of the bumps increase with t, and delamination of the layer
from the substrate occurs. In the process, some bumps coalesce with other bumps (Figure 1d,e).
The coalescence repeats, and buckles emerge, as shown in Figure 1f. The pattern of buckles does not
change after t = 300 s.

We focus here on the deformations of the paint layer that occur in experiments for several different
values of the curing time T. Figure 2 shows snapshots for (a) T = 1 h, (b) 24 h, (c) 56 h, and (d) 64 h.
These images were all obtained at t = 10 min. Buckles emerge only in experiments for T = 24 h
(Figure 2b). The paint layer is melted by the organic solvent in experiments for T = 1 h (Figure 2a).
Several bumps appear in experiments for T = 56 h (Figure 2c), but they vanish at t = 30 min, and a
layer with a smooth surface remains. In experiments for T = 64 h, the surface of the layer remains
smooth and does not change with time (Figure 2d). The experiments for T = 56 and 64 h both result
in smooth surfaces, even after the application of the organic solvent, but the processes by which the
smooth surfaces are produced are different. These results show that buckles emerge only for a limited
range of the curing times T. This behavior is similar to the results obtained in previous experiments
with double coatings [1,7].
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Figure 1. Deformations of the paint layer at (a) t = 58 s, (b) 63 s, (c) 90 s, (d) 120 s, (e) 150 s, and
(f) 300 s, where t = 0 is the time when the organic solvent is applied to the layer. The contrast of (a,b)
is modified only for clearer demonstration of wrinkles. These photographs all apply to experiments
for which the curing time T = 24 h. The solid lines in panels (a,b) are 1.0-mm-scale bars, and those in
panels (c–f) are 3.0-mm-scale bars.

(a)

(d)(c)

(b)

Figure 2. Deformations of layers obtained in experiments for (a) T = 1 h, (b) 24 h, (c) 56 h, and (d) 64 h,
where T is the time elapsed between the application of the paint layer and the application of the drop
of organic solvent. These images were taken at t = 600 s after the application of the organic solvent.
Solid lines in the photos are 3.0-mm-scale bars.

2.1.2. Characteristic Spatial Scales and Timescales for the Formation of Wrinkles

Figure 3a shows the short-scale wavelength λs and the wavelength λw of larger-scale wrinkles
obtained from experiments with T = 24 h, which were mentioned in Section 2.1.1. Small structures
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with wavelengths λs appear first, and wrinkles with wavelengths λw appear subsequently. The
quantity λw is the maximum wavelength observed before the wrinkles coalesce. Figure 3b,c shows the
values of λs and λw, respectively, in experiments for several different values of T. We assume that they
can be fitted by the linear functions

λs = cs1T + cs2, (1)

λw = cw1T + cw2 (2)

with the fitting parameters cs1 = 0.41 × 10−2, cs2 = 0.17, cw1 = 0.44 × 10−1, and cw2 = 0.37.
Using Equations (1) and (2), we can determine λs and λw for any value of T.
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Figure 3. (a) Snapshot taken at t = 63 s in the experiment with elapsed time T = 24 h. The short-scale
wavelength λs of the small wrinkles and the wavelength λw of the larger-scale wrinkles are indicated.
The solid line in the photo shows a 1.0-mm-scale bar. Panels (b,c) show the quantities λs and λw

obtained from our experiments for several different values of T. The closed circles are the experimental
data, and the solid lines in (b,c) are the fitted lines given by Equations (1) and (2), respectively.

Next, we investigate the characteristic timescale τex, which turns out to be inversely related to the
growth rate of the wrinkles. We define τex as the time elapsed between the application of the organic
solvent and the appearance of bumps of 0.2 mm in diameter. As shown in Figure 4, τex increases with T.
The timescale τex is larger than the times at which λs and λw are measured. After the initial growth
of patterns with wavelengths λs and λw, the coalescence of wrinkles is caused by nonlinear effects.
Coalescence leads to a change in the characteristic length of pattern deformation. The time when such
a change occurs is proportional to the timescale τex [8].

500

400

300

200

100

0
6050403020100

T (h)

τ
 
(s
)

ex

Figure 4. Relationship between T and τex, where τex is the time elapsed between the application of the
organic solvent and the appearance of bumps of 0.2 mm diameter.
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2.2. Model

We next introduce a simple model for the buckling that is observed in our experiments.
Consider the coating of paint to be an elastic thin film that is attached adhesively to a solid substrate
(Figure 5). Because of the absorption of the organic solvent, the elastic film swells, producing
compression stress. Suppose that the elastic film exists on a flat substrate, whose surface corresponds
to the x1-x2 plane, and let the x3 axis be normal to the surface of the substrate. The total energy Ftot of
this system consists of the elastic strain energy in the film and the interfacial traction energy between
the film and substrate:

Ftot =
∫∫

( ffilm + fint) dx1dx2, (3)

where ffilm and fint are the energies per unit area of the film and the interface, respectively.

Figure 5. Schematic of a thin film on a substrate. The thickness of film is h. The mid-plane displacement
and the distance between the substrate and film are denoted by w and ζ, respectively.

According to the Föppl–von Kármán plate theory, the elastic energy per unit area in a film of
thickness h is given by [8–12]

ffilm =
∫ h/2

−h/2

1
2

σel
αβεel

αβ dx3, (4)

σel
αβ =

2µ

1− ν

[
(1− ν)εel

αβ + νεel
γγδαβ

]
, (5)

εel
αβ = eαβ − x3

∂2w
∂xα∂xβ

. (6)

Greek subscripts refer to in-plane coordinates x1 or x2, and repeated Greek subscripts indicate
summation over indices 1 and 2. The parameters µ and ν are the shear modulus and Poisson ratio
of the film, respectively. Mid-plane displacements in the in-plane and x3 directions are denoted by
uα and w, respectively. Supposing the film to be under equibiaxial stress, we take the initial in-plane
strain to be ε0δαβ. Then,

eαβ =
1
2

(
∂uα

∂xβ
+

∂uβ

∂xα

)
+

1
2

∂w
∂xα

∂w
∂xβ
− ε0δαβ. (7)

To express the interfacial traction energy between the film and substrate, we use the cohesive
zone model [13–15]. The interfacial energy per unit area is then

fint =
∫ ζ

0
Tn(z) dz, (8)

where ζ is the distance between the substrate and film, and Tn is the normal traction. When the film
thickness is constant, ζ = w. We represent the normal traction as

Tn(ζ) = Γnζ exp
(
− ζ

δn

)
, (9)
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where Γn ≡ γn/δ2
n. The parameters γn and δn are the normal interfacial toughness and the characteristic

length of a normal displacement jump, respectively.
The total energy Ftot is thus expressed in terms of the displacements uα and w. Equilibrium states

must satisfy δFtot/δw = 0 and δFtot/δuα = 0. However, instead of solving δFtot/δw = 0, we employ
the time-dependent Ginzburg–Landau equation, which is often used in dynamical systems,

∂w
∂t

= −η
δFtot

δw
, (10)

where η is a constant related to the characteristic relaxation time. Scaling all lengths by h, times by
h/(µη), the nondimensional equation and γn by hµ in Equation (10), we obtain

∂w
∂t

= − 1
6(1− ν)

∇2∇2w +
∂Nβ

∂xβ
− T′n, (11)

where the variables are dimensionless, T′n is the nondimensional form of Equation (9), and

Nβ = σαβ
∂w
∂xα

, (12)

σαβ =
2

1− ν

[
(1− ν)eαβ + νeγγδαβ

]
. (13)

The in-plane displacements uα included in eαβ are obtained from the equation δFtot/δuα = 0.

2.3. Linear Stability Analysis

A linear stability analysis of Equation (11) provides some insight into the condition of buckling.
Linearizing Equation (11) around w = 0, and taking the Fourier transform of the linearized equation,
we obtain

∂w̃(k)
∂t

= g(k)w̃(k), (14)

where w̃ is the Fourier transform of w, and k is the wavenumber. The linear growth rate g is given by

g(k) = − 1
6(1− ν)

[k2 − 6(1 + ν)ε0]
2 +

6(1 + ν)2

1− ν
ε2

0 − Γn. (15)

Unstable modes, which cause deformations in the layer, appear when g(k) > 0; in other words,

Γn <
6(1 + ν)2

1− ν
ε2

0. (16)

This equation shows that wrinkles emerge above a certain threshold of stress. The existence of the
threshold is consistent with the experimental results shown in Figure 2, which indicate that buckles
emerge under an upper limit of T, since Γn and ε0 depend on T. Equation (15) shows that the
wavenumber of the fastest-growing mode is

kf =
√

6(1 + ν)ε0. (17)

The growth rate of the fastest-growing mode is inversely proportional to the timescale,

τf =

[
6(1 + ν)2

1− ν
ε2

0 − Γn

]−1

. (18)
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2.4. Numerical Simulations

Numerical simulation is useful for demonstrating that our simple model does reproduce buckling
of the film. Simulated patterns of the displacement w are shown in Figure 6. In the initial states,
we take w = 0 plus a small amount of noise, and we impose periodic boundary conditions on a
256× 256 grid system. The length of a side corresponds to about 6.8 mm for h = 0.13 mm. The values
of the side length and h are close to experimental ones. In Figure 6, we take ε0 = 1.2, Γn = 1.4.
The other parameters used in the following simulations are ν = 0.3 and δn = 0.5.

Figure 6. Snapshots of numerical simulations at (a) t = 120, (b) 160, (c) 200, and (d) 400. The color
scale illustrates the mid-plane displacement w. Panels (a,b) correspond to (c–f) of Figure 1, respectively.
The length of a side of a snapshot corresponds to 6.8 mm when the film thickness is h = 0.13 mm.

Some characteristics of the snapshots in Figure 6 look similar to those of the experiments in
Figure 1c–f. Small bumps appear at an early stage (Figure 6a). The amplitudes of the bumps grow with
time, and some bumps coalesce with others (Figure 6b,c). However, the amplitudes continue to grow
in the simulations (Figure 6d), which is significantly different from the experiments. This indicates
that our model is not yet adequate to explain the nonlinear effects in the actual experiments.

The phase diagram shown in Figure 7 illustrates the numerical verification of the
wrinkle-emerging condition. The linear stability analysis suggests that wrinkles should appear above
the solid curve, which is given by Equation (16). Numerical data shown as symbols demonstrate that
the analysis is sufficiently valid.

 0

 0.5

 1
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 2

 2.5

 0  5  10  15  20  25

ε
0

Γn

wrinkle
flat

theory

Figure 7. Phase diagram of wrinkle emergence. The horizontal and vertical axes are the parameter
relating to the interfacial toughness and the initial in-plane strain, respectively. The solid curve
corresponds to Equation (16), which is given by the linear stability analysis. Symbols are data of
numerical simulations.
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Figure 8a shows the time evolution of the root-mean-square (RMS) of w,

WRMS =

√∫
w(r)2d2r

L2 , (19)

where L is the system size. The parameter values except for ε0 are taken as the same as Figure 6. This is
also interpreted as the time evolution of the average amplitude A of wrinkles, since WRMS =

√
1/2A,

where we suppose a stripe form of w = A sin(kfx1). The arrows in Figure 8a indicate the initial-growth
time τ which is the transition time from the initial-growth regime to the coarsening one. Let us
here estimate the amplitude at the initial-growth time. In the coarsening regime, we can assume
that the interfacial energy becomes negligible and that the time evolution slows down significantly.
Thus, setting ∂w/∂t = T′n = 0 in Equation (11), we have

σ11 = −
k2

f
6(1− ν)

. (20)

On the other hand, calculating the spacial average of σ11 given by Equation (13) leads to

σ̄11 =
2

1− ν

[
A2

4
k2

f − (1 + ν)ε0

]
=

(3A2 − 2)k2
f

6(1− ν)
. (21)

Equating Equtaions (20) and (21), we have A =
√

1/3. The initial-growth time τ is determined as the
time when A =

√
1/3, and thus, WRMS = 1/

√
6.

The average wavelength of wrinkles is λ = 2π/k̄, where

k̄ =

√∫
k2|w̃(k)|2d2k∫
|w̃(k)|2d2k

. (22)

Here, w̃ is the Fourier transform of w− w̄, where w̄ is the spacial average of w. The time evolution of
the average wavelength is shown in Figure 8b. In the initial-growth regime, the average wavelength is
approximately equal to (or slightly larger than) that of the fastest-growing mode, which is indicated by
the arrows in Figure 8b. The wavelength λf of the fastest-growing mode is estimated from the linear
stability analysis and evaluated as λf = 2π/kf, where kf is given by Equation (17).
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Figure 8. Time evolution of (a) the root mean square of w (related to the amplitude of wrinkles,b) the
average wavelength of wrinkles. The arrows in (a) indicate the time when WRMS = 1/

√
6. The arrows

in (b) indicate the wavelength λf = 2π/kf of the fastest mode, which is given by Equation (17).
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2.5. Correspondence between Experimental and Numerical Results

We here rewrite the time scale τf in other forms to examine experimental and numerical results by
means of the linear stability analysis. Suppose that the growth rate of a certain unstable mode k1 is
g(k1) = C, where C is a positive constant. Using Equations (15), (17) and (18), we have

kf
2 − k2

1 =
√

6(1− ν)(τ−1
f − C), (23)

where k1 < kf. Equation (23) leads to

τf =
6(1− ν)

(k2
f − k2

1)
2 + C′

∝

( 1
λ2

f
− 1

λ2
1

)2

+ C′

−1

, (24)

where kf = 2π/λf, k1 = 2π/λ1, and C′ is a constant. For the minimum wavenumber kmin with a
non-negative growing rate, g(kmin) = 0, and thus, C = C′ = 0. Then, Equtaions (23) and (24) turn
to be

τf =
6(1− ν)

(k2
f − k2

min)
2

∝ (k2
f − k2

min)
−2, (25)

where

k2
f − k2

min =

√
6(1− ν)

(
6(1 + ν)2

1− ν
ε2

0 − Γn

)
. (26)

Equations (24) and (25) are useful to examine experimental and numerical results, respectively.
We first examine experimental results, using Equation (24). We assume that λf and λ1 in

Equation (24) correspond to λs and λw in Figure 3, respectively. This assumption implies that structures
with wavelengths λs and λw appear in the linear-instability region and that λs and λw correspond to
unstable modes of pattern formation. We also assume that τex ∝ τf [8].

The closed circles in Figure 9 show experimental data about the relation between
τex and (1/λ2

s)− (1/λ2
w). Values of λs and λw are obtained using Equations (1) and (2).

The experimental data agree reasonably closely with the line given by Equation (24), which is shown
as a solid line. The exponent of the fitted line is −2, and C′ of Equation (24) nearly vanishes for the
fitted line.

Figure 10 shows the numerical counterparts. The initial-growth time τ is plotted as a function of
k2

f − k2
min. The initial-growth time is defined as the time when WRMS reaches 1/

√
2 (See Figure 8), and its

value is obtained from numerical simulations with different combinations of ε0 and Γn. The parameters
used in the simulation gives k2

f − k2
min through Equation (26). Assuming that the initial-growth time

τ is proportional to τf of Equation (25), we fit the line given by Equation (25) to the numerical data.
The fitted line reasonably agrees with the numerical data.
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Figure 9. The relationship between τex and (1/λ2
s ) − (1/λ2

w), where τex is the time between the
application of the organic solvent and the appearance of bumps of 0.2 mm diameter. The quantities
λs and λw are the wavelengths of the small wrinkles that first appear and the maximum wavelength
observed before the wrinkles coalesce, respectively. The closed circles are the experimental results, and
the solid line is the fit from Equation (24).

 0.1

 1

 10

 1  10

τ

kf
2
-kmin

2

simulation
f(x)

Figure 10. Initial-growth time τ as a function of k2
f − k2

min, where kf and kmin denote the wavenumber of
the fastest-growing mode and the minimum wavenumber with a non-negative growth rate, respectively.
Symbols are the numerical results, and the solid line is the fit from Equation (25).

3. Conclusions

The objective of this paper has been to understand the emergence of wrinkles at the surface of
a coating following the application of an organic solvent. The instability at the surface of the layer
leads to the emergence of wrinkles. We investigated the characteristic lengths of the wrinkles and the
characteristic timescale for wrinkle emergence in experiments and numerical simulations. The linear
stability analysis of our simple model supports the experimental and numerical results. Although the
simple model suitably explains the emergence of wrinkles, we will need a more realistic model to
investigate the coarsening of wrinkles and time evolution of wrinkle patterns. For example, the film
thickness, the strain induced by volume expansion and the interfacial traction vary with time in
experiments as the solvent evaporates. Those effects should be included in the model to investigate
wrinkle patterns beyond the linear-stability regime.

Our results indicate that the initial strain ε0 and the interfacial toughness Γn depend on the
curing time T. Although the dependencies have not been specified yet, our results will be useful
especially in engineering. For example, even if T is unknown, we can estimate ε0 and Γn from
Equtaions (17) and (18) by measuring the wavelength of wrinkles and τex. Those parameters are
essential for the control of wrinkle formation.
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We conclude that (1) buckling due to volume expansion of the layer and (2) delamination of the
layer from the substrate are both important for the formation of wrinkles. This conclusion is supported
by the linear stability analysis which states that the emergence of wrinkles depends on both the initial
strain caused by volume expansion and the normal traction. Experimental results as well as numerical
ones show reasonably good agreement with the linear stability analysis.

4. Materials and Methods

4.1. Experimental Method

We used a copper board of 5.0 cm × 5.0 cm square and 1.0 mm thick as the substrate for painting.
To control the thickness of the paint layer, we placed two metallic boards facing each other on opposite
sides of the copper board, as shown in Figure 11a. The metallic boards are of equal thickness and
are slightly thicker than the copper board. We applied a phthalic resin paint (Rubicon1000, No. 837,
ISHIKAWA PAINT) to the copper board using a syringe (SS-20ESZ, TERMO), and we spread the
paint across the copper board using a metallic bar, producing a layer of relatively uniform thickness.
We measured the thickness h of the paint layer using a laser displacement meter (LT9010M, KEYENCE).
As shown in Figure 11b, we found that the layer had a nearly uniform thickness with an average value
h = 130± 6 µm. The coated board was then placed in a constant-temperature oven (NEXAS OFX-70,
ASONE) at 30 ◦C for a time T. After the time T, we applied a 0.02 cm3 drop of xylene, which is the
organic solvent in the paint, on the coated layer. The surface of the layer was photographed with a
digital camera (Canon EOS Kiss X4, EF-S 18-55IS) 10 min after the xylene application. It was easy to
observe the deformations of the paint layer, since xylene is clear and colorless.
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Figure 11. (a) Schematic drawing of the experimental setup for the application of a paint layer. Only the
coated copper board is kept in a constant-temperature oven for several hours after the first coating.
(b) The surface height h measured after painting.

4.2. Numerical Procedure

We employed a spectral method for numerical simulations. The Fourier transform of Equation (11) is

∂w̃
∂t

= −Dk4w̃− ikβÑβ − T̃n, (27)

where D = 1/[6(1− ν)] and Ñβ and T̃n are the Fourier transforms of Equation (12) and of the normal
traction T′n, respectively.
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The nonlinear term Nβ includes derivatives of uα. By using the condition δFtot/δuα = 0,
the Fourier transform of uα can be written as

ũα = G̃αβρ̃β, (28)

where

G̃αβ =
1

1− ν

(
δαβ

k2 −
1 + ν

2
kαkβ

k4

)
, (29)

ρ̃α =
∫∫ [

(1 + ν)
∂w
∂xγ

∂2w
∂xα∂xγ

+ (1− ν)
∂w
∂xα
∇2w

]
eik·rdx1dx2. (30)

Using Equtaions (28)–(30), we can rewrite Equation (7) in the following form [11,12],

eαβ =
1
2

∫
k 6=0

[
−i(kβG̃αγ + kαG̃βγ)ρ̃γ

] e−ik·r

(2π)2 d2k +
1
2

∂w
∂xα

∂w
∂xβ
− ε0δαβ. (31)

In numerical simulations, we used the modified normal traction,

Tn(ζ) =

{
Γnζ exp(−ζ/δn) ζ ≥ 0,

Γ′nζ exp(−ζ/δn) ζ < 0,
(32)

where Γ′n is a parameter that is sufficiently larger than Γn. In the simulations, we set Γ′n = 100 Γn.
Although Equation (9) is convenient for linear stability analysis, it is inconvenient for numerical
simulations; if Equation (9) was used as the normal traction, areas with w < 0 would appear. Since the
substrate is solid, negative values of w are not allowed in realistic situations. The modified traction
given by Equation (32) enables the calculations to avoid such unrealistic solutions.

For the time evolution, we employed a semi-implicit algorithm: we used first-order backward
and forward finite-difference schemes for the linear and nonlinear parts of Equation (27), respectively.
The (n + 1)-th step in the calculation of w̃ is given by

w̃(n+1) =
w̃(n) − (ikβÑ(n)

β + T̃(n)
n )∆t

1 + Dk4∆t
, (33)

where ∆t is the time increment.
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