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Abstract: Adhesive processes in aqueous media play a crucial role in nature and are important for 
many technological processes. However, direct quantification of adhesion still requires expensive 
instrumentation while their sample throughput is rather small. Here we present a fast, and easily 
applicable method on quantifying adhesion energy in water based on interferometric measurement 
of polymer microgel contact areas with functionalized glass slides and evaluation via the Johnson–
Kendall–Roberts (JKR) model. The advantage of the method is that the microgel matrix can be easily 
adapted to reconstruct various biological or technological adhesion processes. Here we study the 
suitability of the new adhesion method with two relevant examples: (1) antibody detection and (2) 
soil release polymers. The measurement of adhesion energy provides direct insights on the presence 
of antibodies showing that the method can be generally used for biomolecule detection. As a 
relevant example of adhesion in technology, the antiadhesive properties of soil release polymers 
used in today’s laundry products are investigated. Here the measurement of adhesion energy 
provides direct insights into the relation between polymer composition and soil release activity. 
Overall, the work shows that polymer hydrogel particles can be used as versatile adhesion sensors 
to investigate a broad range of adhesion processes in aqueous media. 

Keywords: biomimetic hydrogel; biointerface; elastic solids; contact mechanics; poly(ethylene 
glycol) (PEG); soft colloidal probe; reflection interference contrast microscopy (RICM) 

 

1. Introduction 

Adhesive processes in aqueous environment are of great importance, e.g., in biology where 
crucial cellular functions are controlled by biological interfaces decorated with carbohydrates, 
proteins or lipids. Controlling adhesive interaction under water is also very important in technology, 
e.g., mussel adhesion on surfaces of ships as well as for cleaning processes or controlling the haptic 
sensation of surfaces [1,2]. On the molecular level, adhesion phenomena are typically indirectly 
studied using methods like quartz crystal microbalance, surface plasmon resonance or fluorescence 
microscopy [3,4]. These methods simply relate adhesion to the adsorbed amount of the molecules of 
interest. However, without direct measurement of adhesive interactions these methods provide only 
limited insight into the underlying mechanisms. Alternatively, direct force measurements by atomic 
force microscopy (AFM), surface force apparatus are suitable to directly study adhesion phenomena 
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between material surfaces [5–7]. In addition, such adhesion assays offer information on the nature of 
the interaction; for example, discrimination between specific and non-specific binding. However, 
these methods are often expensive, not easy to operate and slow when compared to other analytic 
techniques. Therefore, we have developed a fast, easy-to-use method that can be adapted to 
investigate and quantify a broad range of adhesion phenomena in aqueous environment. The method 
uses soft hydrogel microparticles (soft colloidal probes, SCPs) as adhesion sensors on glass surfaces 
functionalized with a suitable binding partner. The working principle of adhesion measurements 
based on hydrogel SCPs is schematically explained in Figure 1. When adhering to a functionalized 
glass coverslip surface, the SCPs undergo mechanical deformation due to their soft, gel-like structure 
[8,9]. The mechanical deformation can be related to the adhesion energy of the SCP with the surface 
by means of the Johnson–Kendall–Roberts (JKR) model of adhesion [10]:  

௔ܹௗ௛ = ௘௙௙ܧ ܽଷ6π ܴଶ  (1) 

where a is the radius of contact, R radius of the SCP and Eeff = [4E/3(1 − ν2)] its effective elastic modulus, 
with ν the Poisson ratio and E the elastic modulus of the SCP. Technically, the read-out of adhesion 
energies is straightforward and fast. First, E can be determined batch-wise for a large amount of SCPs 
by force-indentation measurements using an atomic force microscope. Assuming volume 
conservation ν can be taken as 0.5 in order to determine Wadh. SCPs of well-known mechanical 
properties are then subject to adhesion on various sample surfaces where a and R can be directly 
measured by an interferometric technique (reflection interference contrast microscopy, RICM) [11]. 
An additional advantage of this method is that PEG hydrogel particles as adhesion sensors show 
reduced non-specific binding to material surfaces and impurities due to the strong hydration of the 
PEG matrix. In addition, by functionalizing the PEG matrix with various molecules, including 
proteins [12], peptides [13] or carbohydrates [14], the assay can be adapted in a straightforward 
fashion to study adhesion phenomena in different contexts and application areas. Due to their 
biomimetic properties, SCPs have recently been successfully used as AFM probes to investigate 
interactions of cells [15] and biomaterial surfaces [16,17]. 

  
Figure 1. Principle of the Johnson-Kendall-Roberts (JKR) adhesion measurements with colloidal 
probes and typical reflection interference contrast microscopy (RICM) images (bottom) right before 
and after SCP adhesion. The dark area in the middle signifies the soft colloidal probe (SCP) contact 
area with the solid support.  

Here we now focus on testing the applicability of the method in two applied areas, (1) detection 
of antibodies and (2) investigation of soil release processes of polymeric detergent additives. Given 
the commercial importance of these two areas, new ways of studying the underlying molecular 
interaction measurements is important. For instance, antibody detection is of great importance in 
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medical diagnostics. Increased levels of antibodies in blood generally indicate exposure to certain 
antigens. Medical diagnostics routinely quantifies antibody concentrations in blood, which can be 
related to the presence of certain pathogenic antigens such as human immunodeficiency virus (HIV), 
measles or hepatitis [18]. More recent developments in antibody detection are directed towards 
diagnosis of cancer or autoimmune diseases [19,20]. The enzyme linked immunosorbent assay 
(ELISA) is the most commonly used antibody detection method due to its comparatively high 
sensitivity and selectivity. However, extensive cleaning procedures are required in order to achieve 
sufficiently high selectivity, which often hampers routine application of ELISA in medical diagnostics 
due to economic reasons. Therefore, here we aim at antibody detection by measuring the adhesion 
between antigen-coated hydrogel SCPs that capture antibodies and surfaces functionalized with 
protein A, an antibody binding protein. The potential advantage of this approach is that the extensive 
cleaning procedures usually required in ELISA would be significantly reduced. Sensitivity and 
selectivity are shown by determining the detection limit of the method as well as performing the 
assay in presence of interfering protein impurities. In the second application of the SCP adhesion 
assay, we investigate the ‘soil release’ activity of various polymer samples. Soil release polymers are 
often present in modern consumer detergent for fabric cleaning. They are supposed to fulfill two 
basic functions: (1) hindering redeposition of the soil (e.g., fats) from the washing solution to the 
fabric during washing, (2) formation of a protective coating on the fabric right after washing to 
enhance release of acquired hydrophobic soil in the next washing step. For both processes, it could 
be stated that soil release polymers act as antiadhesives. There is a range of polymers that have been 
empirically identified as soil release active. However, the soil release process and the underlying 
working principle of the active polymers so far have not been studied systematically. Therefore, we 
set out to mimic the adhesion of cotton fabrics on oily materials using functionalized SCPs and then 
quantitatively study the antiadhesive properties of various soil release polymers.  

2. Results and Discussion 

2.1. Synthesis and Functionalization of SCPs with Adhesion Molecules 

As outlined in Figure 2, SCPs with a hydrogel matrix were prepared by crosslinking of 
poly(ethylene glycol) (8 kDa) diacrylamide (PEG8kDa-dAAm) macromonomer droplets in 1 M Na2SO4 
in water following previously established protocols [8]. For the two adhesion assays, antibody 
detection and soil release polymer characterization, two types of SCPs were prepared: antigen and 
cellobiose functionalized SCPs. In order to introduce coupling groups for the antigen and cellobiose 
for the adhesion assay, crotonic acid (CA) was grafted in the PEG-dAAm network under UV 
irradiation using benzophenone as active photophore [21,22]. Accordingly, PEG-CA SCPs with a CA 
functionalization degree on the order of 120 µmol CA per 1 g PEG-CA were obtained as measured 
via Toluidine blue O (TBO) titration.  

 
Figure 2. Sythetic route toward bovine serum albumin-fluoresceine isothiocyanate (BSA-FTIC) SCPs 
and cellubiose SCPs based on PEG-dAAm microgels. 

For the preparation of antigen functionalized systems, fluoresceinisothiocyanate (FITC) was 
chosen as a model antigen. In order to functionalize SCPs with FITC, we used bovine serum albumin 
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(BSA) as a carrier. First, BSA was coupled to the SCPs by activating the CA groups with ethyl 
dimethylaminopropyl carbodiimide (EDC) and N-hydroxysuccinimide (NHS) before binding the 
protein to the SCPs. Then the SCPs were cleaned and directly reacted with FITC that binds to the 
nucleophilic amino acid side chains of BSA, resulting in BSA-FITC SCPs. Successful functionalization 
of the SCPs could be readily confirmed by fluorescence microscopy detecting the presence of FITC 
on the SCPs (Figure 3). For the preparation of cellobiose-functionalized systems mimicking cotton 
fabrics, PEG-CA SCPs were reacted with the carbodiimide, activating the carboxylic acid groups to 
then form an ester with cellobiose. The degree of cellobiose functionalization was measured by an 
additional titration step with toluidine blue that essentially yielded the reduction of carboxylic acids 
due to esterification upon cellobiose coupling. The conversion was on the order of 90%, i.e., 
functionalization degrees on the order of 100 µmol g−1 were achieved. Taking into account the 
molecular weight of PEG-dAAm chains of 8000 kDa, this means that circa 0.8 cellobiose units per 
macromonomer were bound to the SCPs. Successful functionalization could be additionally 
confirmed by optical microscopy, where the TBO-labeled PEG-CA SCPs show a strong blue color that 
becomes significantly less intense in the case of cellobiose SCPs (Figure 4), indicating cellobiose 
functionalization. The elastic modulus of the final SCPs was determined by AFM force-indentation 
measurements (Figure S1) and evaluation with a recently introduced model [23]. This model 
considers that the SCPs deform at the indenter site and the contact site with the solid substrate. The 
model further assumes linear elasticity, which is justified by the fact that the deformation during 
force indentation measurements does not exceed 0.2% with respect to the particle’s diameter. Both 
the BSA-FITC SCPs and cellobiose SCPs showed an elastic modulus of around 60 kPa.  

  
Figure 3. Fluorescence microscopy of BSA-FITC SCPs without addition of antibodies (left) and after 
addition of antibodies (right). Reduction on fluorescence intensity is due to quenching upon antibody 
binding and signifies specific interaction of the antibody with the SCPs. 

 
Figure 4. Toluidine blue (TBO) stained PEG SCPs before functionalization with crotonic acid (CA) 
(left). After CA functionalization PEG-CA SCPs bind TBO and acquire a dark color (middle). Reduced 
take-up of TBO after functionalization of CA groups with cellobiose (right).  
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2.2. Detection of Antibodies with a Combined SCP Pull-Down and Adhesion Assay 

The FITC represent the model antigen in the adhesion assay with BSA-FITC SCPs. The overall 
concept is to capture the antibody from solution with the SCPs (pull-down assay) and then to detect 
the presence of the antibody by the actual SCP adhesion measurement (Figure 5). The FITC antibody 
used in this work belongs to one of the most important antibody subclasses-IgG (immunglobulin G)-
as most clinic applications with antibodies rely on this subtype. IgG antibodies are composed of two 
identical heavy chains and two identical light chains which form the characteristic Y-shaped 
quaternary structure by intramolecular disulfide bonding. The two antigen binding sites are each 
formed by a light and heavy chain. The third specific binding site is formed only by the heavy chain, 
the so-called Fc-region at the base of the “Y”. The specific affinity to the respective antigens is due to 
the large variability of amino acid sequences of the light chain, whereas the heavy chains are always 
identical for each antibody subtype [18]. Therefore, all antibodies belonging to the IgG subtype can 
be detected by specific binding at the Fc site. Here we use protein A as specifically interacting species 
binding to the Fc region in order to detect the antibody by means of adhesion. Additionally, for a 
preliminary test, the specific binding of the antibody to BSA-FITC SCPs can be visualized by 
fluorescence microscopy. This is due to fluorescence quenching of FITC when binding to an antibody 
[24]. The fluorescence microcopy measurements confirm binding of the antibody to the FITC-BSA 
SCPs, as can be seen by the ~30% reduction in fluorescence intensity (Figure 4). The reduction in 
intensity at the SCPs is lower as compared to experiments with FITC in solution [24], possibly because 
of a dense functionalization of BSA with FTIC. 

  
Figure 5. Procedure of the SCP adhesion assay. First BSA-FITC SCPs are incubated in antibody 
solution. Then they are cleaned by centrifugation and washing (a). Next, the SCPs adhesion is 
measured on protein A slided (b). The micrographs show images of an untreated (left) and antibody 
treated BSA-FITC SCP (right). After measurement of the contact area, the JKR plots reveal the 
adhesion energies of the SCPs (c). Note that drawings in (b) are not to scale and are presenting an 
idealized orientation of the binding partners for clarity. 

Having confirmed the specific interactions of the IgG antibody with the BSA-FTIC SCPs, the 
adhesion energies of SCPs were measured on a protein A slide as a means to detect the antibodies 
(Figure 5b). In a first study, the BSA-FITC SCPs were incubated for two hours in a 0.1 mg mL−1 
solution of the antibody in phosphate buffered saline (PBS). Next, the SCPs were centrifuged and 
washed with PBS three times to remove unbound antibodies. The protein A surface was prepared 
simply by allowing physisorption of protein A on the cleaned hydrophilic glass coverslips followed 
by physisorption of BSA on the coverslip to reduce non-specific binding sites. Next, the actual 
adhesion measurement was conducted by adding the SCPs to the coverslips in PBS. As expected, the 
contact areas of the SCPs with the protein A surface were significantly larger for SCPs treated with 
the antibody as compared to the negative control without antibodies due to the binding of the Fc-
region with the protein A slides (Figure 5b). The contact areas versus SCP radius data could be fitted 
by equation 1 in order to obtain the adhesion energies of the SCPs (Figure 5c). 
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The adhesion energy of antibody-treated SCPs was roughly 20 times larger as compared to SCPs 
without antibody (Figure 6a) Next, the antibody detection limit was studied by charging the SCPs in 
solutions with antibody at concentrations ranging from 1 ng to 1 mg (Figure 6b). For antibody 
concentrations below 1 µg mL−1, the adhesion energies did not increase compared to the negative 
control. Therefore, for the SCPs system established here, the detection limit is approximately 1 µg 
mL−1. For comparison, the majority of commercial ELISA kits for protein analysis claim detection 
limits in the sub ng mL−1 range. Advanced ELISA methods may even reach detection limits in the 
lower pg mL−1 regime [25–27]. In unfavorable cases of low affinity between antibody and antigen in 
the micromolar range, the ELISA detection limit is increased up to 100 ng mL−1 [28]. Nevertheless, 
with a detection limit of 1 µg mL−1, the SCP assay proved to be inferior to typical ELISA assays. The 
main reason could be the requirement of having both the protein A and the antibody at the glass 
surface and the SCP orientated in the right direction, so that they face each other in order to bind the 
antibodies Fc site. In case of the protein A surface, optimizing the orientation should be less 
important. The protein possesses five homologous binding sites for the FC-region of which a 
sufficient number is always likely to be accessible even if protein A is bound to a surface. However, 
the antibody is firmly bound to the crosslinked SCP network presenting the antigens, which means 
that the orientation of the Fc site is fixed, such that only a fraction of antibodies is able to bind to the 
protein A surface. Such hindrance is not present in classic ELISA assays where the analyte antibody 
is bound to a planar antigen surface from a freely dissolved state and then detected by reporter 
antibodies from solution. Therefore, in order to improve the detection limit of the SCP-antibody 
assays the elastic modulus of the SCPs should be decreased, e.g., by reducing crosslinking. This 
would allow larger (thermal) fluctuations of the network, and the SCP-bound antibodies would have 
more degrees of freedom and spatial reach to “find” protein A binding sites. Both protein A and 
antibodies have hydrodynamic diameters on the order of 10 nm. Thermal fluctuations of the PEG 
network should be of similar magnitude in order to allow sufficient probability that the orientation 
of the binding sites match. According to theory [29], this could be realized by polymer networks with 
an elastic modulus below 10 kPa, whereas the PEG-SCPs network used in this work had an elastic 
modulus of 60 kPa providing only fluctuations on the order of 3 nm. Another advantage of using 
softer PEG networks would be that the SCPs contact areas with the glass slide increase upon 
adhesion, thereby improving the sensitivity and detection limit of the method.  

 
Figure 6. Results for SCPs adhesion assays for antibody detection. (a) Adhesion energies of BSA-FITC 
SCPs after incubation with antibodies (AB) on protein A slides. Measurements without antibody 
treatment were conducted as negative control. Measurements in presence and absence of 50 mg mL−1 
BSA were conducted to investigate the selectivity of the method. (b) Measurement of BSA-FITC SCPs 
treated in different concentrations of antibody solution show that the detection limit is on the order 
of 1 µg mL−1 antibody. 

In another assay, the SCPs were charged with antibodies in presence of 50 mg mL−1 BSA to test 
the feasibility of SCP-based antibody detection from impure solutions (selectivity). The applied 
amount of BSA reflects typical concentrations of serum albumin in blood. Evaluation of the contact 
areas showed that the overall adhesion of antibody-containing SCPs was drastically reduced (factor 
of ten) as compared to SCPs charged with pure antibody solution. Nevertheless, the adhesion 
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energies of SCPs prepared from antibody-containing solutions were still larger by a factor of two as 
compared to the negative control, SCPs treated with 50 mg mL−1 BSA solution containing no 
antibodies (Figure 6a). The significant reduction in adhesion when incubating the SCPs in presence 
of BSA is most likely due to non-specific binding of BSA to the SCPs, which then interferes with the 
specific antibody binding. Unfortunately, the mere use of PEG as carrier material for antigens is not 
sufficient in order to significantly reduce non-specific protein interaction, although PEG hydrogels 
are widely believed to be protein-repellent materials. Our finding is in line with recent studies 
showing that the protein-repellent properties attributed to PEG are in fact due to a protein corona 
that forms around PEG in blood [3]. This means that PEG does interact non-specifically with serum 
albumin. Therefore, in order to reduce non-specific interactions, treating the antigen/antibody surface 
with detergents like Tween® is still required as is also the case for classic affinity assays including 
ELISA and the like.  

Overall, we have successfully shown that the adhesion-based SCP assay allowed the detection 
of antibodies. For a proof-of-principle experiment, sensitivity and selectivity were not expected to 
match the performance of well-established methods that evolved and improved over decades like 
ELISA. Nevertheless, by further reducing non-specific binding and using significantly softer SCPs 
with increased sensitivity, further improvements in terms of sensitivity and specificity seem possible.  

2.3. Characterization of Soil Release Polymers by SCP Adhesion Assays 

As discussed above, adhesion phenomena are ubiquitous in nature and technology. Improved 
understanding of these processes is best obtained by developing assays that allow mimicking and 
quantifying the underlying adhesion phenomena. Therefore, here we adapted the SCP adhesion 
assay to study soil release polymers that are used as antiadhesives and antiredeposition agents in 
laundry processes. The adhesion between cellobiose functionalized SCPs and a hydrophobic surface 
is investigated to mimic a typical laundry situation, i.e., cotton fabrics soiled with oily substances. 
Cellobiose is composed of two glucose units, the same building block that constitutes cellulose and 
used here as soluble cellulose substitute. As a mimic for an oily substance, glass slides were 
functionalized with a hydrophobic trichloro(octadecyl)silane by chemical vapor deposition. The 
contact angle of these surfaces was larger than 90° indicating the high hydrophobicity of the surface 
and successful silanization. Next, we studied the adhesion energy of the cellobiose SCPs on the 
hydrophobic surfaces by RICM contact area measurements and evaluation with the JKR model 
(Figure S3). The adhesion energy of the cellobiose SCP with the hydrophobic surface (Figure 7a) was 
used here as a reference to test the antiadhesive properties of soil release polymers. The adhesive 
energy was on the order of 1700 µJ m−2, which is in the expected range of adhesion energies in water 
for hydrophilic gels on hydrophobic surfaces [30]. The soil release effect was studied with four 
different polymers that are potential candidates as washing additive (Table 1).  

 
Figure 7. Sketches of adhesion experiments with soil release polymers (top) and typical SCP contact 
areas (bottom). (a) adhesion of bare cellobiose SCPs on hydrophobic glass as reference; (b) in presence 
of polymer samples (antiredepostion experiment); (c) after removal of the polymers by centrifugation 
and washing (antiadhesive coating experiment); (d) direct binding of cellobiose SCPs on polymer 
surfaces (direct binding experiment). Scale bars: 2 µm. 
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Table 1. Soil release polymer samples and adhesion energy from the three different assays. a Direct 
binding experiment between cellobiose SCP and hydrophobic surface. b Polymer was physisorbed on 
the glass/glymo slide. 

Polymer 
Adhesion Energies [µJ m−2] 

Antiredeposition Antiadhesive Coating Direct Binding
none/reference  1700 a 

Poly(propylene terephthalate)-co-
Poly(ethylene glycol) (nonionic) PPT-co-PEG 

41 1038 38 b 

Copolymer A: cationic/neutral hydrophilic 
ratio 22:78  

163 480 91 

Copolymer B: cationic/neutral hydrophilic 
ratio 70:30  

306 1020 126 

Poly(acrylamide) 1142 1429 243 

Soil release polymers usually consist of two building blocks. The first one is the driver for the 
adsorption of the polymer on the textile, the second one provides hydrophilicity and prevents 
hydrophobic stains to deeply penetrate the fibers. For example, for polyester fabrics, common soil 
release polymers are polyesters of terephthalic acid, propylene glycol and poly(ethylene glycol). The 
polymer structure mimics the poly(ethylene terephthalate) (PET) garment chemistry while the PEG 
component hydrophilizes the surface [31]. On the other hand, for cotton textiles a copolymer 
consisting of a quaternary ammonium-bearing monomer and a neutral hydrophilic monomer would 
be better suited, where the cationic monomer acts as an anchor group for the slight anionically 
charged cotton fiber while the neutral comonomer provides hydrophilicity to the surface. To test the 
proposed mechanisms, three different experiments were conducted: (1) adhesion of cellobiose SCPs 
on hydrophobic surface in presence of soil release polymers in the solution (antiredeposition 
experiment, Figure 7b); (2) adhesion to the hydrophobic surface with cellobiose SCPs that were pre-
treated and washed with soil release polymers. This experiment reflects the antiadhesive properties 
of soil release polymer coatings post washing (antiadhesive coating experiment, Figure 7c); (3) direct 
binding of cellobiose SCPs on soil release polymer surfaces (direct binding experiment, Figure 7d). A 
selection of the SCP adhesion data and JKR-evaluation is shown in Figure S2. 

For the first experiment with the soil release polymers, a cellobiose SCP solution containing 1 
mg mL−1 soil release polymer was allowed to adhere on the hydrophobic surfaces. In this experiment, 
the polymer is present in solution during adhesion and thus allows studying the activity of the soil 
release agents during the washing step (Figure 7b). As expected, in presence of the soil release 
polymers, we observed a reduction of the adhesive energy between cellobiose SCPs and the 
hydrophobic glass slide. The overall trend was that non-ionic hydrophilic copolymer PPT-co-PEG 
achieved the strongest reduction in adhesive energy, whereas copolymers combining cationic groups 
and neutral hydrophilic monomer resulted in slightly increased adhesion (Table 1). This confirms the 
extraordinary antiadhesive properties of the PEG part, which could be attributed to the 
comparatively firm hydration shell around PEG resulting in excluded volume effects [32]. Although 
generally considered as a hydrophilic polymer, polyacrylamide is known to show strong interactions 
with hydrophobic surfaces which was also confirmed in this study [33]. Overall, the significant 
differences in adhesion of the hydrophilic polymers investigated to hydrophobic materials are quite 
intriguing and still not well understood [34,35]. 

In the second experiment, the adhesion measurement was performed with polymer-treated 
SCPs but in absence of polymer in the solution during adhesion (antiadhesive coating experiment, 
Figure 7c). Therefore, the polymer-treated SCPs were centrifuged and washed with water to remove 
the polymers from the solution. As expected, the overall adhesion energies increased compared to 
experiments with polymers present in solution. Interestingly, most polymer samples showed 
comparatively large adhesion energies in the range of 1000 µJ m−2 close to the results for SCPs without 
polymers. The exception is the weakly cationic copolymer A that showed a strong reduction in 
adhesion energy. Interestingly, the comparative copolymer B with a higher content of cationic groups 
did not achieve strong reduction in adhesion energy. It could be argued that, due to its strong 
polyelectrolyte character this highly charged polymer shows lateral repulsion and therefore reduced 
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binding to the SCPs. The fact that the PEG-containing polymer did not achieve a strong reduction in 
adhesion energy, as was the case for the first assay, could be explained by its low tendency to form a 
stable antiadhesive layer on the cellobiose SCPs. As a result, it was removed from the SCPs during 
the centrifugation and washing steps, which then resulted in adhesion energies that were comparable 
to the pure cellobiose on the hydrophobic glass.  

Finally, the adhesion energy of cellobiose SCPs on polymer surfaces was directly measured 
(direct binding experiment, Figure 7d). This experiment reflects the interaction of cotton fabrics 
directly with the soil release polymers. Here the cationic samples showed significant binding that 
increased with the number of cationic groups. This could be explained by the attractive interactions 
of polycations with cellulose [36], which also makes them potent flocculation and retention aids for 
cellulose in the paper industry. The interaction was lowest in the case of the non-ionic copolymer 
PPT-co-PEG. This is expected, as PPT-co-PEG does not present groups that would specifically interact 
with cellulose. This explains the absence of an antiadhesive coating and the large adhesion energies 
observed in the second experiment (Figure 7c) for this polymer. Interestingly, polyacrylamide 
showed the largest direct binding to cellobiose SCPs, indicating that the polymer forms a stable layer 
on the cellobiose SCPs. However, this coating still shows strong interactions with hydrophobic 
materials as confirmed by the first two experiments (Figure 7b,c). 

Overall, the adhesion assay with cellobiose SCPs treated with various soil release polymers 
indicate that nonionic poly(ethylene glycol)-containing polymer provides high antiredeposition 
activity when used in the aqueous phase during the washing step. Here cationic copolymers show 
reduced activity; however, these polymers are more likely to form a stable film on cotton fabrics in 
order to form an antiadhesive layer against hydrophobic materials post washing. This confirms the 
generally believed mechanism of polymeric soil release: for cellulose-specialized soil release 
polymers, cationic groups of copolymers can bind to the slightly negatively charged cellulose, 
whereas the neutral part provides hydrophilicity and steric repulsion to the surface in order to reduce 
adhesive interactions. 

3. Conclusions  

In summary, a novel adhesion assay based on soft PEG hydrogel particles was established to 
investigate specific interactions of antibodies and antigens as well as cellobiose on hydrophobic 
surfaces in presence of soil release polymers. We tested the applicability of these assays in two 
commercially relevant areas, medical diagnostics of antibodies and detergent additives. In both cases, 
the adhesion assay could provide statistically significant amount of data in a short timescale 
compared to classic adhesion assay by means of AFM or surface force apparatus. It should be taken 
into account, however, that the adhesion method still requires the synthesis of the soft hydrogel 
particles for sensing, whereas in the case of more established methods like AFM the basic sensors 
(e.g., silicon cantilevers) are already available. In addition, regarding antibody detection, the SCP 
adhesion-based assay is still inferior in terms of sensitivity compared to established methods like 
ELISA. The sensitivity of antibody detection via adhesion of hydrogels sensors could be principally 
hampered due to the requirement of having the biomolecules properly oriented on the adhering 
surfaces. One of the strengths of the adhesion assays with soft, gel-like sensor particles is that it can 
mimic adhesive processes in nature and technology. This was in particular useful for the analysis of 
the soil release polymers, where several types of adhesion experiments could be established to 
decipher the mode of action of soil release polymers. It was found that the nonionic PEG-containing 
polymer is very active in antiredeposition of fats in aqueous media, whereas polymers containing 
cationic groups are more suited as antiadhesive coating on cellulose. The work shows that the 
presented SCP-RICM technique is well suited to study a large range of adhesion phenomena in 
nature and technology.  
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4. Experimental Section 

4.1. Materials 

Soil release polymer samples were provided by Henkel AG & Co KGaA and used without 
further purification (purity > 95%) The fluorescein antibody (polyclonal, type IgG) was produced by 
Rockland Immunochemicals (Limerick, PA, USA) and obtained from Biomol GmbH (Hamburg, 
Germany). All other chemicals were obtained from Sigma-Aldrich (Darmstadt, Germany). All water 
used here was produced by purification system with a resistivity higher than 18.2 MΩ∙cm at 25 °C 
and UV treatment to break down organic impurities. 

4.2. Soft Colloidal Probe Preparation 

PEG SCPs were synthesized by crosslinking a dispersion of PEG-dAAm macromonomer 
droplets in a similar manner as described previously [8,14]. PEG-dAAm (Mn = 8000 Da) (50 mg, 6.3 
µmol) was dispersed in a 1 M sodium sulfate/PBS solution (10 mL). Crotonic acid (400 µmol) were 
added to adjust the elastic modulus of the SCPs to about 30 kPa. Then the UV photoinitiator Irgacure 
2959 (1 mg, 4.5 µmol) was added to the dispersion and vigorously shaken and photopolymerized 
under UV light. The PEG SCPs were washed with water and stored in water. The resulting particles 
were 10–70 µm in diameter. Next, the PEG SCPs were grafted with crotonic acid (CA) [21]. Briefly, 
water was exchanged by ethanol and benzophenone (250 mg, 1.4 mmol) and CA (1.5 g, 17.4 mmol) 
were added. Then the mixture was flushed with nitrogen for 30 s and irradiated with UV light for 
900 s. The PEG-CA SCPs were washed with ethanol. FITC functionalized SCPs were prepared by first 
reacting the PEG-CA SCPs in 0.1 M 2-(N-morpholino)ethanesulfonic acid (MES) buffer pH 5.5 
containing 0.1 M N-Hydroxysuccinimide and 0.1 M N-Ethyl-N’-(3-
dimethylaminopropyl)carbodiimide (EDC). Next, the activated PEG-CA SCPs were centrifuged, 
washed and added to a 0.5 mg L−1 BSA solution in 0.1 M phosphate buffer (pH 8.0). Finally, 30 µL of 
a 0.5 mg m1−1 solution of FITC in DMSO were added to 2 mL of BSA-SCPs to form FITC-BSA SCPs 
followed by centrifugation and washing. Cellobiose functionalized SCPs were prepared by 
incubating the PEG-CA SCPs in 0.1 M MES buffer (pH 4.5) containing 0.1 M EDC and 1 mg mL−1 
cellobiose for 2 h followed by washing and washing. 

4.3. SCP Characterization 

AFM force spectroscopy with a NanoWizard 3 system (JPK instruments AG, Berlin, Germany) 
was performed to determine the elastic modulus of the microparticles. As AFM probe a glass bead 
with a diameter 4.75 µm (cellobiose SCPs) or 10 µm (FITC-BSA SCPs) was glued with an epoxy glue 
onto a tipless, non-coated cantilever (spring constant 0.32 N m−1; CSC12, NanoAndMore GmbH, 
Wetzlar, Germany). Several force curves were recorded for different SCPs and analyzed with an 
appropriate contact model developed by Glaubitz et al. [23]. 

4.4. Surface Preparation 

Round glass coverslips (35 mm #1, Menzel Gläser, Braunschweig, Germany) were cleaned in a 
mixture of ammonia hydrogen peroxide (30%) and water (1:1:5, RCA protocol) at 70 °C. Protein A 
coated surface, glass slides were immersed in 0.5 mg mL−1 protein A (PBS pH7.4), flushed with RICM 
measurement solution (PBS pH7.4). For soil release polymer coating, glass slides were immersed in 
a mixture of 182.4 mL ethanol, 9.6 mL water, 192 µL acetic acid, and 1920 µL GLYMO, shaken for 120 
min, flushed with ethanol, followed by annealing for 120 min at 90 °C. Before RICM measurement, 
the GLYMO slides were immersed in measurement solution (PBS pH7.4) containing soil release 
polymers a concentration of 1 mg mL−1, shaken for 60 min, and flushed with RICM measurement 
solution. Hydrophobic surfaces mimicking contact to oily soils were prepared by exposing cleaned 
coverlips to an atmosphere of trichloro(octadecyl)silane; 5 mL of the silane were cast in a glass petri 
dish and placed in a vacuum desiccator with the coverslips. After adjusting a pressure of 20 mbar by 
a vacuum pump, the valves were closed and the coverslips were left overnight in the desiccator. 
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Finally, the surfaces were rinsed with isopropanol and water followed by curing for two hours at 150 
°C in a drying oven. 

4.5. Determination of Functionalization Degree via TBO Titration  

A quantity of 0.5 mL carboxylic group functionalized SCPs dispersion was washed with ethanol 
and dried under vacuum at 50 °C for 5 h until constant weight was reached. 1 mL toluidine blue O 
(TBO) aqueous solution with a concentration of 312.5 µM at pH 10–11 was added to the dry SCPs 
and shaken in the dark overnight to stain the SCPs. The stained SCP dispersion was centrifuged for 
30 min at 4400 rpm. 0.3 mL of the supernatant was diluted to 2 mL with water. The absorbance at 633 
nm of this solution was measured by UV-VIS spectroscopy and compared to the absorbance of a TBO 
standard (312.5 µM TBO in aqueous solution at pH 10–11 and 1.7 mL). The carboxylic group 
functionalization degree of this group of SCPs was calculated with the following equation ܦ஼ீி =ோܰ(1 − ௌܣ ⁄(ோܣ ஽ܹ௥௬⁄ , where DCGF is the carboxylic group functionalization degree, AS and AR is the 
UV-VIS absorbance of sample and reference, WDry is the dry weight of 0.5 mL SCPs, NR is the amount 
of TBO in the reference in units of µmol. For each group of SCPs, the TBO titration experiment was 
repeated three times and the average carboxylic group functionalization degree of the three 
experiments was used as the carboxylic group functionalization degree of this group of SCPs. 

4.6. Reflection Interference Contrast (RICM) Measurements 

RICM on an IX 73 inverted microscope (Olympus, Tokyo, Japan) was used to obtain the contact 
area between the SCPs and the glass coverslip surfaces. For illumination, an Hg-vapor arc lamp was 
used with a green monochromator (546 nm). An UPlanFL N 60×/0.90 dry objective (Olympus 
Corporation, Japan), and uEye CMOS camera (IDS Imaging Development Systems GmbH, Obersulm, 
Germany) were used to image the RICM patterns. To conduct the JKR measurements of the adhesion 
energies, both the contact radius and the particle radius were measured. Images with RICM patterns 
were read out using self-written image analysis software, contact areas and particle profiles were 
evaluated using scripted peak finding algorithms (IgorPro Wavemetrics, Lake Oswego, OR, USA). 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/3/3/31/s1. 
Figure S1: A typical AFM indentation curve for SCP elastic modulus determination. The example shows a FITC-
BSA SCP after functionalization. Red circles represent data points; blue line represents fits according to the 
equation above; Figure S2: Typical JKR plots (contact radii vs. SCP size) for cellobiose SCPs on alkylsilane 
surfaces: direct binding experiment for cellobiose adhering to alkylsilane surface (filled circles), antiadhesive 
coating experiment for copolymer A (cross symbols) and PPT-co-PEG (nonionic). Note the strongly reduced 
contact areas for the cellulose specialized soil release agent copolymer A; Figure S3: Schematic drawing of the 
RICM principle. 
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