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Abstract: Ointments have been widely used as an efficient means of transdermal drug application
for centuries. In order to create ointments suitable for various new medicinal drugs, the creation of
ointment base materials, such as gels, has attracted much research attention in this decade. On the
other hand, the chemical tuning of low-molecular-weight gelators (LMWGs) has been increasingly
studied for two decades because LMWGs can be tailored for different purposes by molecular design
and modification. In this review, several series of studies related to the creation of ointment base
materials with enhanced properties using existing and newly-created LMWGs are summarized.
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1. Introduction

Ointments are used as a method for delivering medicinal agents by direct application to the
affected area of the skin or by application to the surface of the skin near the affected area, depending
upon whether the wound or condition is internal or external. This is termed transdermal drug delivery
(Figure 1) [1,2]. It is interesting that many medicinal drugs are delivered to an affected area of the skin
or to the vascular system through the skin by simple application of an ointment. Treatments using
ointments do not require surgical excision and do not cause the external wound associated with, for
example, injections. Consequently, the use of ointments is regarded as a relatively mild, non-invasive
treatment method. On the other hand, although ointments can sometimes cause side effects, such as
inflammation or irritation of the skin, these side effects are usually less severe than those associated
with other treatment methods and are usually caused by the drug being applied and not the method of
application. At present, ointments, which have been used since a long time, have become generalized
not only as mild drugs and remedies but also as commodities, such as cosmetic creams and sunscreens
in our daily life.

An ointment is composed of a medicinal agent and a base material that together form and maintain
the structure of an ointment jelly. Thus, a base material must exhibit chemical stability and consistency
of appearance in the presence of the formulated medicinal agent [3]. It must also cause low skin
irritation and hypersensitivity and no discomfort to the patient [3]. Gels satisfy these requirements and
are easy to prepare and formulate. Furthermore, they are suitable for use as ointment base materials
because lipophilic medicinal agents easily dissolve in gels composed of oil; gels are flexible, spreadable,
and not sticky; they can be applied to hair-covered areas; and they exhibit good adhesion to the skin,
promoting effective delivery of medicinal agents to the affected area [4].
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Figure 1. Photo of an ointment.

While the use of polymer gels is well-known and thoroughly investigated, molecular gels, which
are constructed by the self-assembly of low-molecular-weight gelators (LMWGs), have attracted much
attention as a new soft materials in the past two decades [5-18]. As discussed below, many old and
well-known ointment base materials are now recognized as molecular oil gels. However, the properties
of molecular gels can be molecularly designed and tuned, and these advantages make molecular gels
historically proven and advanced soft materials.

In this review, the author presents a summary of studies on the application of molecular gels
(mainly organogels for oil gels) used as base materials for ointments. These gels exhibit unique
properties because they are composed of LMWGs; however, they exhibit some similar properties to
polymer gels because of the formation of networks of fibers composed of LMWGs. First, ordinary
ointments and molecular gels with thixotropy, which is a required property for ointment applications,
are discussed. Then, recent studies on several organogelators for ointments are summarized. Finally,
recent developments of new low-molecular-weight organogelators for ointments are described with
respect to their required mechanical properties, including thixotropy.

It should be noted that application studies of molecular hydrogels and organogels for drug
delivery have been summarized in the literature [19-22]. On the other hand, while studies on injectable
molecular hydrogels are useful for understanding the design and tuning of the rheometric properties
of molecular gels in an ointment, these studies are not covered in this review. The studies of injectable
molecular hydrogels have been well summarized in a review by Bing Xu [23].

2. Ointments

There are many representative medicinal drugs applied as an ointment to the skin as topical
agents, such as anti-inflammatory agents (e.g., methyl salicylate), local anesthetics (e.g., lidocaine),
immunosuppressive agents (e.g., glucocorticoids), and vasodilators (e.g., isosorbide mononitrate) [1,2].
Low toxicity and high stability to the drugs contained are required in case of effective ointment
base materials.

Ointments can be used as the active ingredient in dermal and transdermal patches. Owing to
the development of many types of patches, ointments will become increasingly applied in this form.
According to the wide range of future uses of ointments and the potential demand for ointment base
materials with improved properties suitable to various types of medicinal drugs, the re-examination
of both traditional and newly-developed base materials has been performed. Generally, ointments
are produced by mixing and dissolving a medicinal agent, a base material, and a non-volatile oil.
Typical non-volatile oils used in ointments are edible fats and oils, such as vegetable oil and animal fat,
and synthetic oils and esters, such as silicones and isopropyl myristate, which are generally used in
cosmetics. These fats and oils must be safe for human use.

Franz-type vertical diffusion cells are generally used to obtain data on the transdermal absorption
of ointments in vitro. In this apparatus, an ointment containing a medicinal drug is placed on an
appropriate membrane, e.g., a cellulose acetate membrane or pig skin as an analog of human skin, and
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a buffer or aqueous solution near body temperature is used as a model for a physiological aqueous
solution for receiving the permeated or diffused medicinal drug from the ointment through the
membrane [24,25]. Controlled drug delivery with sustained release is required for ointments, and
their suitability is evaluated from the transdermal absorption data for the ointment by the use of
theoretically-developed models [26-29].

Liposomes, microgels, and LMWGs have been examined as newly-developed base materials [30].
On the other hand, Dayan classified ointments according to their material forms into four systems:
liposomes, elastic vehicles, particulate systems, and molecular systems (dendrimers) [2]. Taking into
consideration both new and well-known materials, these base materials can be reclassified into the
following categories: liposomes, polymer gels as elastic vehicles (including natural and synthetic
polymer gels), particulate systems, and molecular systems (including dendrimers and molecular gels).
Of the newly-developed base materials, molecular systems have some advantages, such as well-defined
molecular structures (compared with polymeric compounds, which are usually a mixture of polymers
with different chain lengths), the potential for molecular design because of their well-defined molecular
structure, and easy tuning by chemical modification of their well-defined structures. In particular,
LMWGs are newly-understood gel-forming molecular agents; they are already used as base materials
for some traditional ointments, e.g., petroleum jelly and hydrocarbon-based ointments, such as
Vaseline®. Thus, LMWGs are a unique type of base materials for ointments with tunable molecular
properties. There is much of room for improvement in their properties by molecular design.

3. Molecular Gels

Molecular gels are defined as crystalline fiber networks constructed from LMWGs in
self-assembled manner that incorporate solvents within the networks, resulting in a gel-like appearance,
much like that of polymer gels (Figure 2) [5-18]. When an aqueous solution is used as the solvent for
a molecular gel, the gel is termed a molecular hydrogel, and when an organic solvent is used as the
solvent, the gel is termed a molecular organogel. In general, LMWGs can be dissolved in hot organic
solvents or water, and the solutions give molecular gels on cooling to room temperature. The state
of a gel is initially verified with the naked eye by observing its formation and is then quantitatively
evaluated by the use of rheometric equipment.

Molecule of
LMWG

Molecular gel

Figure 2. Schematic illustration of the formation of molecular gel.

Using molecular gels as base materials for ointments is one of the most promising applications of
LMWGs as soft materials. Molecular gels composed of LMWGs for use in ointment usage have several
advantages, such as easy preparation and the possibility of improving their properties compared
with those of polymeric compounds by molecular design. Preparation of LMWGs can be conducted
inexpensively, with commercially available ingredients and a practical synthesis that results in a
product suitable for use as an ointment. In general, LMWGs are easy to synthesize and prepare because
of their low molecular weights and well-defined structures.

Non-toxicity to humans is absolutely necessary. The design of non-toxic LMWGs that retain their
required properties can be attained by tuning their chemical structure precisely using the results of
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toxicity tests. In terms of their molecular properties, molecular gels have poor mechanical strength,
low durability, and poor long-term stability of appearance compared with polymer gels, which contain
polymer networks resulting from multiple interactions between polymer chains. Despite the inferior
properties of molecular gels compared with polymer gels, good stability and thixotropic behavior can
be observed in molecular gels composed of molecularly designed LMWGs.

Thixotropy is defined as mechanically induced reversible sol-to-gel or gel-to-sol changes and
is generally observed in polymeric or inorganic nanosheet solution systems [31-34]. This type of
behavior has been observed in some molecular organogels and hydrogels [35-49]. Thixotropy is an
essential material property for applying, spreading, and expanding the material while retaining its
appearance and form. Consequently, thixotropy has received much attention as a required property of
base materials for ointments. When applied to skin patches, the poor mechanical strength of molecular
gels will be compensated by the supporting patch substrate. However, molecular gels with thixotropy
have a wider range of applications as base materials for medicinal drugs from patches to ointments.
The thixotropic behavior of gels is initially assessed with the naked eye by observing its recovery
from the broken state on applying mechanical force and then quantitatively evaluated by the use of
rheometric equipment [31-35].

Since medicinal drug molecules commonly have lipophilic properties, molecular organogels,
prepared from low-molecular-weight organogelators, are used to retain the medicinal molecules within
a gel network, and molecular hydrogels, prepared from low-molecular-weight hydrogelators, are used
to support micelles containing the medicinal molecules within a gel network. In the case of ointments
composed of molecular gels, there is a tendency to use the latter micelle-dispersed hydrogels owing
to the frequent presence of aromatic rings in organogelators, leading to their use being avoided by
medical personnel [22]. Taking this into account, the author introduces LMWGs without aromatic
rings in their chemical structures for ointment usage. In the following sections, the author summarizes
the studies on existing and newly created LMWGs as new candidates for ointment base materials.

4. Studies Using Existing LMWGs

Glycerol esters, which are compounds commonly found in vegetable oils and animal fats, have
been used as LMWGs for oils. The resulting organogels have similar feeling on skin application as soft
paraffin (petroleum jelly), which is a mixture of hydrocarbons that forms a gel-like material. As an
organogelator for use in ointments, Miglyol 812®(caprylic/capric triglyceride, Sasol Ltd. Johannesburg,
South Africa, Figure 3(1)) has been used by Pénzesa et al. in vitro and in vivo (rats) in the molecular
gel state with the anti-inflammatory drug piroxicam, with white petrolatum and liquid paraffin being
used as references [50]. This study showed that increasing the concentration of piroxicam led to the
inhibition of edema, subject to a power law correlation, and that the molecular organogel could be
used as an ointment base material with medicinal drugs in vitro and in vivo more effectively than the
reference materials.
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Figure 3. Chemical structures of existing low-molecular-weight gelators (LMWGs).

The natural glycerol ester derivative lecithin has also been used as LMWG for oils and is a
candidate for an ointment base material. Pal ef al. showed that a soy lecithin-based organogel with a
sunflower oil-water mixture and the antibiotic metronidazole functioned as an ointment with controlled
release in vitro [51]. In this study, the rheometric properties of the organogels were measured, and their
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thixotropic shear-thinning behavior indicated that they may be easily spreadable and, hence, used for
topical application.

12-Hydroxystearic acid (12-HAS, Figure 3(2)) is a fatty acid derivative well-known for its ability
to form molecular organogels. 12-HSA functions as LMWG for vegetable oils and is often used as an
additive to assist in the disposal of cooking oils. 12-HSA is a candidate for an ointment base material,
and its use in oral controlled-release organogels has been studied. Iwanaga et al. reported that an
organogel composed of 12-HSA, soybean oil, and the lipophilic medicinal drug ibuprofen formed a
controlled drug release material in vitro and in vivo [52]. Remarkably, they also showed that organogels
composed of 12-HSA and soybean oil with a hydrophilic drug such as ofloxacin, which is sparingly
soluble in soybean oil but at a sufficient level for drug efficacy, formed a controlled drug release
material in vitro and in vivo [53]. These results could confirm a potential use of 12-HSA for ointment.

5. Studies Using New LMWGs

Amino acid derivatives have been studied as a promising family of LMWGs. Using amino
acid derivatives, Leroux et al. studied organogel systems with the ability to be used as implants,
and their results are suggestive and informative for the study of ointment creation using gelators
(Figure 4(3,4a-d)). They studied organogels composed of LMWGs containing a tyrosine unit and
the parasympathomimetic drug rivastigmine and found that the drug was released slower in stiff
organogels with higher Young’s moduli, suggesting the importance of evaluating the mechanical
properties of molecular gels for drug delivery and ointments [54,55]. Leroux et al. reported that the
difference between the results observed in in vivo and in vitro experiments, which were inferior in vitro,
was ascribable to the existence of in vivo enzymes, which led to enzyme-related degradation and
erosion of the gel matrix, thereby affecting the diffusion mechanism of the drug [55]. Consequently,
they created molecular organogels composed of sunflower oil, a lipase (which is often present in
humans as esterase), and the antibiotic ceftiofur sodium. They reported that the lipase-containing
organogels worked as controlled drug-release materials in vitro with the same performance as that
in vivo. This strategy established a methodology for the fast creation of drug delivery materials in vitro
without the need to change the gel formulation responsible for inferior results obtained in vivo. These
results, and the concept developed, are important for the design of ointments using LMWGs because
they show that the effect of biomolecules such as enzymes on the efficacy of ointments needs to
be considered.

1,3:2,4-Dibenzylidene-D-sorbitol (DBS, Figure 4(5)) is an old type of LMWG for organic solvents
that forms molecular organogels known for over 100 years, and it has been used as an additive
in cosmetics and dental materials [56]. In recent years, molecularly designed and modified DBS
derivatives have been created as new LMWGs with improved properties [56]. Smith et al. have created
novel DBS derivatives containing hydrazide units (DBS-CONHNH),, Figure 4(6)) and examined
two-component hybrid molecular hydrogel formations composed of DBS-CONHNH, and medicinal
drugs, such as mesalazine, naproxen, and ibuprofen (Figure 4), which exhibited pH-controlled drug
release in vitro [57]. Furthermore, the stiffness of the hybrid hydrogels revealed that they exhibited
different stiffness depending on the lipophilicity or hydrophilicity of the incorporated drug, with
lipophilic drugs forming a hard gel and hydrophilic drugs forming a soft gel. Although the materials
studied were not ointments, it is interesting to note that the medicinal drug acted not only as a
component of the fibers in the two-component hydrogel but also as a tuning additive to control gel
stiffness. This new concept for creating molecular gels will be useful for the molecular design of
ointment base materials as well as other drug release materials composed of molecular gels.

In recent years, 12-HSA has been considered as one of the most important core chemical structures
for new high-performance organogelators. The relationship between the material properties of
molecular gels composed of 12-HSA derivatives with different chemical structures was thoroughly
studied [58-60]. They performed systematic studies on simple organogelators that may be applicable as
ointment base materials owing to their thixotropic behavior and reported the formation of organogels
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composed of oils (silicone oil [58] and safflower oil high in oleic acid [59]) and a family of modified
12-HSA with an amide (Figure 4(7a—c,8a,b)). Related to this studies, the basic material properties
involving thixotropic behavior of toluene organogel composed of simple gelator with an amide was
also evaluated (Figure 4(9)) [60]. Their results showed the importance of basic research using simple
and the possibility to chemical tuning of gelators to produce improved LMWGs as potential candidates
for ointment base materials [13].
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Figure 4. Chemical structures of new LMWGs.

Recently, the author’s group found that simple alkylhydrazide derivatives (Figure 5(10a—c)),
stearohydrazide (C18HD, 10a), palmitohydrazide (C16HD, 10b), and octanohydrazide (C8HD,
10c), exhibit organogelation abilities with organic solvents having various dielectric constantsfrom
2 (n-hexane) to 66 (propylene carbonate) [61]. Previously, they have not been recognized as
organogelators. Although alkyhydrazide molecular gels have poor mechanical properties, it was
found that mixing alkylhydrazides with different alkyl chains enhance the mechanical properties of
the alkylhydrazide molecular organogels [62]. Furthermore, the gelation ability of mixed gels (such as
the critical gelation concentrations) are improved comparing with those of each single alkylhydrazide
organogelator. In addition, the mixed alkylhydrazide molecular organogels showed thixotropic
behavior, while single alkylhydrazide did not show thixotropic behavior [62]. Better thixotropic
behavior become observed for gels containing increased C8HD, such as C18HD/C16HD/C8HD for
1/1/10 (w/w/w) in an organic solvent.
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Figure 5. Chemical structures of LMWGs for mixed molecular gels.

Although several molecular gels showed the mixing-induced enhancement of molecular
gel properties [63-65], our results involved simple mixing of gelator homologues containing a
hydrogen-bonding unit and different linear alkyl chains. Consequently, molecular organogels with
enhanced gelation abilities and thixotropic behavior can be obtained by simply mixing commercially
available alkylamide (octadecaneamide: C18Am, hexadecaneamide: C16Am, and octaneamide:
C8Am, Figure 5(11a—c)) [66] and alkylurea organogelators (octadecylurea: C18U and butylurea: C4U,
Figure 5(12a,b)) [67], respectively.

To observe microstructures of mixed xerogels by scanning electron microscopy showed increase
of network density by changes of shape of the network component from sheet-like or tape-like crystals
to fiber-like crystals in increasing the ratio of gelator with shorter alkyl chain [62]. The increase of
network density will have the contribution to the mixed molecular gels with improved mechanical
properties involving thixotropic behavior. In mixed gels, it may be possible to crosslink the finer fibers
composed of mainly C8HD with those of C18HD and C16HD resulting in enhancement of mixed
gel properties. The detail of mechanism for enhancement of mixed molecular gels is currently under
investigation. In addition, these types of gelation ability and thixotropic behavior enhancements were
observed in molecular hydrogel systems by mixing hydrogelators with different alkyl chains [68], as
well as by mixing hydrogelator and nanosheet [69], probably because of the enhancement of network
quality described above.

Furthermore, multicomponent alkylamide organogels composed of C18Am, C16Am, and C8Am
containing non-volatile oils, such as olive oil and squalane, were prepared for examining its properties
of controlled drug release. Even in the presence of these non-volatile oils, a mixed alkylamide
molecular gels showed thixotropic behavior. This organogel showed controlled drug (antipyrine)
release in diffusion kinetics and will become one of candidates of spreadable host material for ointment
base material [70].

Mixed alkylamides with long-chain and short-chain alkyl groups formed thixotropic gels even in
non-volatile oils. However, thixotropic multicomponent alkylamide organogels containing non-volatile
oils showed drug release ability, according to its MSDS data, C8Am will bring about eye and skin
irritation [71]. Therefore, the author’s group used only the long-chain alkylamides behenamide (BAm,
13a) and erucamide (EAm, 13b) as organogelatos in order to create new thixotropic non-volatile oil
gels for controlled drug release (Figure 5). These alkylamides are not known as LMWGs. The mixed oil
gels demonstrated thixotropic behavior, while the corresponding one-component oil gels did not show
such behavior (Figure 6). It was found that the incorporationof a drug (antipyrine) in the mixed olive
oil gel enabled its slow and controlled drug release. While the olive oil solution of the drug released at
60 wt % of the drug after 7 h, 30 wt % of thedrug in a mixed gel (BAm/EAm, 1/1 (w/w)) olive oil gel
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was released in Fickian diffusion kinetics [72]. Efforts to tune the mixed gel properties and open up
the option of incorporated drug for ointment base materials are underway.

(a) Two-component gel (b) One-component gels (BAm, EAm)
(BAm/EAm (1/1) 2 wt% gel) Before shaking After shaking

After 1 min

Recovery Norecovery

Figure 6. Photographs of thixotropic tests. (a) Two-component 2 wt % olive oil gel (BAm/EAm 1/1
(w/w)); and (b) one-component 2 wt % olive oil gels (BAm and EAm) [72]. Reproduced by permission
of The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique
(CNRS) and the RSC.

6. Conclusions

In this review, the author has summarized several studies that aimed to create better molecular
organogels applicable to ointment base materials by chemical approaches using LMWGs. The selection
of suitable molecular gels for combination with new medicinal drugs and other additives needed
to produce an ointment is challenging. Of course, the reexamination of existing molecular gels as
ointment base materials is important; however, new molecular designs and new strategies for creating
LMWSGs that are suitable for ointments are required for the quick development of LMWGs for use
with various medicinal drugs. The development of better treatments through the use of ointments will
enhance our quality of life. Thus, more research in order to accumulate chemical libraries of different
LMWGs with required properties such as thixotropy is required.
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