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Abstract: The emergence of the global pandemic (COVID-19) has directed global attention towards
the importance of hygiene as the primary defense against various infections. In this sense, one of
the frequent recommendations of the World Health Organization (WHO) is regular hand washing
and the use of alcohol-based hand sanitizers. Ethanol is the most widely used alcohol due to its
effectiveness in eliminating pathogens, ease of use, and widespread production. However, artisanal
alcohol, generally used as a spirit drink, could be a viable alternative for developing sanitizing gels. In
this study, the use of alcohol “Puntas”, silver nanoparticles, and saponins from quinoa was evaluated
to produce hand sanitizer gels. The rheological, physicochemical, and antimicrobial properties were
evaluated. In the previous assays, the formulations were adjusted to be similar in visual viscosity to
the control gel. A clear decrease in the apparent viscosity was observed with increasing shear rate,
and an inversely proportional relationship was observed with the amount of ethyl alcohol used in
the formulations. The flow behavior index (n) values reflected a pseudoplastic behavior. Oscillatory
dynamic tests were performed to analyze the viscoelastic behavior of gels. A decrease in storage
modulus (G′) and an increase in loss modulus (G′′) as a function of the angular velocity (ω) was
observed. The evaluation of pH showed that the gels complied with the requirements to be in contact
with the skin of the people, and the textural parameters showed that the control gel was the hardest.
The use of artisan alcohol could be an excellent alternative to produce sanitizer gel and contribute to
the requirements of the population.

Keywords: pandemic; sanitizers; artisan alcohol; silver nanoparticles; saponins

1. Introduction

The COVID-19 pandemic generated several requirements for healthcare people; using
antibacterial gels for application on the hands was one of the most significant items that
healthcare industries generated [1,2]. In this sense, effective materials to prevent the
spread of diseases have been evaluated [3,4]. Nano-structured materials have been used
recurrently [5]. Silver nanoparticles are one of the most used nano-structured materials and
have gained popularity due to their excellent bioactive properties [5,6]. Silver nanoparticles
represent a significant advancement in nanotechnology, with their distinct physicochemical
properties and potent antimicrobial characteristics rendering them suitable for a wide array
of applications [7,8]. The production of antibacterial products has been focused on new
materials with a reduced effect on environmental contamination; the use of materials from
agricultural waste [6,9], phytochemicals from plants [10,11], anti-nutritional components
of food [12,13], and microalgae from wastewater [14,15] has been evaluated. The use of
antimicrobial materials from more environmentally friendly sources as functional agents
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for cosmetic and medical products is based on the high antimicrobial activities and their
relative eco-compatibility [16,17]. Gels are semi-solid pharmaceutical forms formed by
a solvent thickened by the addition of substances of a colloidal nature [18,19]. These
colloids are gelling polymers that constitute the dispersed phase, and the liquid solvent is
the phase that keeps going [20,21]. The most common occurrence is that the continuous
phase comprises water or hydroalcoholic solutions (hydrogels) [22]. The World Health
Organization mentions that a sanitizing hand rub is “An alcohol-containing preparation
(liquid, gel or foam) designed for application to the hands to inactivate microorganisms
and temporarily suppress their growth [23]. Such preparations may contain one or more
types of alcohol, other active ingredients with excipients, and humectants” [24–26].

The most used alcohol for gel development is medicinal; however, the use of other
alcohol types could be a suitable variant [27]; in this sense, ethyl alcohol, which in many
countries is produced using an artisan method named “trapiche”, could be used for devel-
oping new and effective products [28,29]. The alcohol produced by the trapiches method is
named “puntas”, which is a traditional name for this type of alcohol in Ecuador, whereas in
Colombia, it is called “aguardiente” [30,31] or “cachaza” in Brazil [32,33]. Ethyl alcohol is
destined for human consumption; however, the procedure that is used may not be safe for
human consumption [34,35]. Sanitary organisms always seize this beverage and destroy
it by incineration or throwing it into the sewers, producing contamination and other col-
lateral effects. In many countries, bioethanol is produced as an ingredient for beauty and
cosmetics products, pharmaceuticals, beverages, food, and as an oxygenated additive of
gasoline [36,37]. Based on the requirements for health care, the use of this type of alcohol
will be a viable alternative in different pharmaceutical applications, such as hydrogels or
creams for sanitization [24,38].

On the other hand, researches refer to skin toxicity due to high alcohol content [39,40];
in this sense, the use of materials to increase microbiological activity will be the best strategy
to reduce the amount of alcohol [2,41]. Some plant extracts have been used to increase
microbial activity; for example, a gel developed with extract of coriander (Coriandrum
Sativum L.) seeds against Staphylococcus Aureus showed a moderate inhibition category [1];
formulations prepared from natural ingredients that include Aloe vera, vitamin E, glycerin,
and different essential oils showed an excellent effect on Gram-positive and Gram-negative
bacteria, as well as an opportunistic pathogenic yeast (C. albicans) [42]; and the use of
Calendula officinalis and Aloe vera was well tolerated by the skin, increasing the hydration
of the stratum corneum [43]. Using waste material from agricultural or food production
is a good strategy; in this sense, the saponins prevenient from quinoa preparation are a
viable alternative. The quinoa saponins showed different anti-bactericidal effects against six
types of bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Salmonella
enteritidis, Pseudomonas aeruginosa, and Listeria ivanovii [44]. In this study, ethyl alcohol
(artisan alcohol, “puntas”) with silver nanoparticles and quinoa saponins were mixed to
produce a sanitizing hand rub gel; the rheological, physical, and antimicrobial properties
of the gel were evaluated.

2. Results and Discussion
2.1. Gel Formulations Based on Visual Consistency

The study aimed to develop a gel with the same appearance as a commercial gel.
In this sense, several formulations were developed that fit the visual parameter of the
consistency of the product. The standardized alcohol content (70% w/v) and the silver
nanoparticles and saponins were varied to obtain the consistency closest to the control gel.
Table 1 shows the formulations developed for subsequent evaluation.
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Table 1. Formulations of the gel developed with artisan alcohol.

Components Samples

(%) GAA1 GAA2 GAA3 GAA4 GAA5 GAA6 GAA7 GAA8

Ethyl alcohol 93.2 91.6 90.2 88.8 92.6 91.0 89.6 88.2

Carbopol 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Triethanolamine 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Propanediol 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Silver nanoparticles - - - - 0.6 0.6 0.6 0.6

Quinoa saponins 1.5 3.1 4.5 5.9 1.5 3.1 4.5 5.9

2.2. pH and Organoleptic Evaluation

The pH test results of the gels are shown in Table 2. The results showed that there
was a significant difference in all samples. It is recommended that the pH of the gels be
proximate to the pH of the skin, which is 4.5–6.5 [45,46]. The results showed that most
of the gels are close to this range, similar to those reported by Setiawan et al. [47]; the
pH values could be influenced by the effect of the materials used for the preparation,
according to Villa and Russo [24]. The pH of the gel with a high concentration of saponins
and silver nanoparticles was higher in contrast with the other samples. Pérez Zamora
et al. [48] reported that the pH values in gels with plant extracts and carbopol are close to
neutrality (pH 6.4–6.9). The pH values of the gels developed in this study are in this range.
Also, all values are higher than the control gel (commercial gel), probably attributable
to the composition of the gel. The organoleptic evaluation was developed to establish if
the use of artisan alcohol (puntas smell) presents a notable characteristic and to evaluate if
the addition of silver nanoparticles and saponins affects the appearance of the gels. The
visual appearance showed no differences in the appreciation of gel; it showed a clear gel
with some bubbles and a fluid visual viscosity, similar to the control gel. On the other
hand, the smell has a shallow level of persistence of the puntas, which is normal for this
alcohol. Likewise, when the lumpiness was evaluated, there was no presence associated
with the different formulations; lump presence was assessed as (++): high, (+): moderate,
and (-) none.

Table 2. pH and organoleptically results of the gel.

Samples pH Visual Appearance Visual Viscosity Smell Characteristic Lumps

GC 6.30 ± 0.01 e Clear + Bubbles Semi fluid Alcohol -
GAA1 6.58 ± 0.02 c Clear + Bubbles Semi fluid Alcohol + Puntas -
GAA2 6.40 ± 0.02 d Clear + Bubbles Semi fluid Alcohol + Puntas -
GAA3 6.58 ± 0.01 c Clear + Bubbles Semi fluid Alcohol + Puntas -
GAA4 6.69 ± 0.01 b Clear + Bubbles Semi fluid Alcohol + Puntas -
GAA5 6.68 ± 0.02 b Clear + Bubbles Semi fluid Alcohol + Puntas -
GAA6 6.38 ± 0.01 d Clear + Bubbles Semi fluid Alcohol + Puntas -
GAA7 6.58 ± 0.01 c Clear + Bubbles Semi fluid Alcohol + Puntas -
GAA8 6.75 ± 0.01 a Clear + Bubbles Semi fluid Alcohol + Puntas -

The results are the mean ± standard deviation. One-way ANOVA: Different letters (a–e) in the same row indicate
significant differences among samples (p ≤ 0.05).

2.3. Rheological Behavior
2.3.1. Rotational Test

The most important properties of gels used as sanitizers are microbiological and
rheological [42,49]. The viscosity and consistency depend on the network formed by the
ingredients in the gel (use and concentration of different cross-linkers), which is reflected
in the functionality and sensation it produces on the skin during use [50,51]. Efficiency, per-
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formance, and customer perception are linked to gel viscosity values. In the sensory aspect,
the gel will be distributed on the skin for 20 to 30 s and dry entirely afterward [52]. For this
reason, hydrogels can be considered more desirable than liquid forms due to the effortless
application, alcoholic evaporation rate, and increased lethality in microorganisms [53].

A clear decrease in the apparent viscosity was observed with increasing shear rate
(Figure 1). The values of this property ranged between 1.806 and 3.121 Pa × s at 0.1 s−1,
1.377, and 2.352 Pa × s at 10 s−1, and 0.475 and 0.902 Pa × s at 100 s−1. Shukr and
Ghada [54] reported an average of 0.304 Pa × s at the a shear rate and 1.43 Pa × s at a
higher shear rate for similar gels made with 10% propylene glycol, 3% lemongrass oil,
and different percentages of hydroxypropyl methylcellulose and sodium carboxymethyl
cellulose. Meanwhile, samples GAA1 and GAA5 presented the lowest values in all the
shear rate ranges. A more significant amount of ethyl alcohol (93.2 and 92.6%, respectively)
considerably decreases the viscosity of the gels. The GAA6 formulation (ethyl alcohol 91%,
carbopol 0.5%; triethanolamine 0.3%; propanediol 4.5%; silver nanoparticles 0.6%, and
quinoa saponins 3.1%) presents a viscous behavior similar to the commercial gel (GC) used
as a reference (Figure 1). The amount of ethyl alcohol used in the different formulations
influences the viscosity values. In contrast, the amount of silver nanoparticles and quinoa
saponins does not significantly change this physical parameter.
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Figure 1. Relationship between apparent viscosity (Pa × s) and shear rate (s−1).

A study evaluated the influence of natural triterpenoid saponin (from the soapbark
tree Quillaja Saponaria Molina) in emulsion gels. These samples showed a gradual decrease
in apparent viscosity with an increasing shear rate from 0.1 to 100 s−1. Also, a dramatic
reduction in apparent viscosity was observed with increased saponin concentration [55].
However, in this research, the amount of saponin used does not show a clear trend. This
difference may be due to the purity of the saponin used in both studies. A correct gel
viscosity allows the appropriate dose and a complete skin cover [56]. A reasonably high
viscosity is desired to avoid wasting the gel when removing it from the container. The
optimal viscosity values for a good hand sanitizer gel are 47 to 150 Pa × s [57,58]. The
viscosity values presented by the gels in this research are below what was previously
reported; however, in the sensory perception, they have a consistency similar to a typical
commercial gel.

The rheological measurements can provide information related to the internal struc-
ture of gel components (as homogeneity/heterogeneity) [24]; in this case, the rheological
behavior was measured by a rheometer using coaxial cylinders. The values obtained were
adjusted to three equations describing viscous products’ rheological behavior. Determina-
tion coefficient values between 0.936 and 0.994 were obtained (Table 3). The highest values
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were obtained using power law and Herschel–Bulkley equations. The Herschel–Bulkley
equation obtained extremely low yield stress (σ0) values. The results indicate that the gel
is not a plastic fluid; therefore, it does not require a high initial force to start flowing. The
flow behavior index (n) values reflect a deviation from Newtonian behavior. Values less
than one show the pseudoplastic behavior of the gels.

Table 3. Parameters obtained in the rheological mathematical modeling.

Treatments
Models

Model Constants and
r2 Adjustment

Power Law
σ=k

( .
γ
)n

Herschel–Bulkley
σ=σ0+k

( .
γ
)n

Casson
σ0.5=σ0

0.5+k
( .
γ
)0.5

GC
Model constants k: 2.093

n: 0.894

σ0: 4.472 × 10−4

k: 2.088
n: 0.870

σ0: 0.769
k: 0.933

Adj. r2 0.992 0.992 0.945

GAA1
Model constants k: 1.437

n: 0.893

σ0: 4.789 × 10−5

k: 1.437
n: 0.868

σ0: 0.702
k: 0.771

Adj. r2 0.992 0.992 0.945

GAA2
Model constants k: 1.830

n: 0.889

σ0: 3.975 × 10−4

k: 1.826
n: 0.863

σ0: 0.748
k: 0.862

Adj. r2 0.991 0.991 0.946

GAA3
Model constants k: 2.303

n: 0.909

σ0: 1.387 × 10−4

k: 2.302
n: 0.887

σ0: 0.755
k: 1.029

Adj. r2 0.993 0.993 0.953

GAA4
Model constants k: 2.404

n: 0.906

σ0: 3.734 × 10−4

k: 2.400
n: 0.883

σ0: 0.774
k: 1.038

Adj. r2 0.993 0.993 0.951

GAA5
Model constants k: 1.602

n: 0.877

σ0: 1.839 × 10−4

k: 1.600
n: 0.850

σ0: 0.748
k: 0.773

Adj. r2 0.990 0.990 0.936

GAA6
Model constants k: 2.124

n: 0.898

σ0: 4.992 × 10−4

k: 2.119
n: 0.874

σ0: 0.764
k: 0.952

Adj. r2 0.992 0.992 0.948

GAA7
Model constants k: 2.360

n: 0.913

σ0: 4.803 × 10−4

k: 2.355
n: 0.894

σ0: 0.745
k: 1.061

Adj. r2 0.994 0.994 0.958

GAA8
Model constants k: 2.437

n: 0.886

σ0: 2.194 × 10−4

k: 2.435
n: 0.859

σ0: 0.812
k: 0.982

Adj. r2 0.991 0.991 0.943

σ0: yield stress (Pa); k: consistency index (Pa × sn); n: flow behavior index (dimensionless).

Since the data fit better with the power law (Equation (1)), a statistical analysis was
carried out to analyze the influence of the formulations on the rheological parameter k
(consistency index). Higher values (p < 0.05) of k were observed in samples with lower
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ethyl alcohol concentration (Figure 2). An alcohol concentration above 90% significantly
increased the pseudoplastic behavior of gels. No significant differences were evident
between the samples GAA8, GAA4, GAA7, and GAA3; all these samples had alcohol
concentrations under 90%.
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2.3.2. Oscillatory Test

Oscillatory dynamic tests were performed to analyze the viscoelastic behavior of gels.
The values of the elastic or storage modulus (G′), viscous or loss modulus (G′′), and the
loss tangent tan (δ) for each value of oscillating frequency (ω) are reported in Figure 3 for
all the samples.

The value of the storage modulus (G′), loss modulus (G′′) in Pa × s, and phase angle (γ)
in grades (◦) versus angular velocity (ω) in rad/s is graphed for all the samples (Figure 3).
Note a decrease in G′ and an increase in G′′ as a function of the rise in ω, indicating that the
gel structure presents an increasingly viscous behavior with the execution of the experiment.
Furthermore, the cut-off point between the module curves G′ (red line) and G′′ (blue line)
is observed. This point is known as crossover and indicates the point at which the gel has
a phase angle equal to 45◦ [59]. At this point, the complete transition of the gel structure
towards a downright viscous fluid occurs, completely losing its elastic component [60].
From a practical point of view, the consumer will perceive a more viscous sensation upon
first contact with the gel, which will be lost in the distribution process on the skin. This loss
of elasticity will enable better distribution and, therefore, better evaporation and adsorption.
Most of the samples show the presence of crossover; however, in the sample GAA1, there
is no evidence of crossover in the range of angular velocity (ω) worked.
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Figure 3. Storage modulus (G′), loss modulus (G′′) in Pa × s. and phase angle (γ) in ◦ versus angular velocity (ω) in rad/s for the gels. (A) GC; (B) GAA1; (C) GAA2;
(D) GAA3; (E) GAA4; (F) GAA5; (G) GAA6; (H) GAA7; (I) GAA8.
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The value of the phase angle (γ) in grades (◦) is graphed as a function of the angular
velocity (ω) in rad/s for all the formulations. Values of γ close to 0◦ represent more elastic
than viscous behavior (typical behavior of solid materials). In comparison, values close
to 90◦ represent more viscous than elastic behavior (typical behavior of liquid materials).
The increasing trend observed in Figure 4 shows that the rheometer’s stress on the gels
causes an internal deconfiguration, reflected in an increasingly viscous behavior. Also,
results observed in Figure 4 shows higher phase angle (γ) values in sample GAA1 and
lower values in sample GAA8. Once again, the influence of the alcohol percentage on the
viscoelastic behavior of the gels is observed. Samples GAA2, GAA3, and GAA6 show a
behavior similar to the commercial gel (GC) used as a reference. On the other hand, the
storage modulus (G′) and the loss modulus (G′′) did not show clear trends when plotted
against the angular velocity (ω) in all the formulations.
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2.4. Texture Profile Analysis

The gels were characterized concerning their hardness and elasticity (Table 4). Both
properties showed significant differences (p < 0.05); the hardest gel was the control gel,
and the gel produced with 40 mL of saponins and silver nanoparticles (GAA8) was the
softest. A clear trend is not observed in all samples regarding the incorporation of saponins
and silver particles; however, in the group of gels developed with artisan alcohol, it is
observed that when the silver nanoparticles are included, and the concentration of saponins
increases, the gel tends to be soft, similar to results reported by Martyasari et al. [61] in gels
with Tekelan leaves extract. Although the results show a difference, it can be noted that
the difference in hardness ranges around ~15% between the gels. This behavior could be
attributed to the presence of electrolytes or an extreme pH, which could affect the texture
of the gel. According to what was mentioned by Pérez Zamora, Michaluk, Torres, Mouriño,
Chiappetta, and Nuñez [48], no specific behavior is observed regarding adding saponins
as extracts. Concerning elasticity, defined as the ability of the deformed gel to recover its
initial shape or length after the force has impacted it, it is observed that the control gel is
less elastic in concordance with its high hardness. No specific trend is observed in all gels;
however, in gels developed with artisanal alcohol, the least elastic samples correspond to
the high concentration of saponins without silver nanoparticles added. The variation in
terms of elasticity between the gels corresponds to ~20% of the gels produced in this study.
This variation is significant and could be attributed to the nature of the artisan alcohol since
the components present in the artisan alcohol, such as fermentation products, acids, or
other components, reduce the elasticity of the gel [62].
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A comparison between Figure 3 and Table 4 allows us to observe a relationship
between the crossover values and elasticity. GAA1 is identified as the sample with the
highest elasticity, and at the same time, it is the sample with no evidence of crossover in
the range of angular velocity (ω) worked. From this, it can be inferred that the GAA1 gel
has a higher water retention and lower retrogradation degree [63]. Contrary to this, the
GAA8 sample shows the lowest elasticity, which shows the crossover at a lower value of ω
(360 rad/s). This gel could show a lower structure ability to adapt to large strains, which
results in more structural deformation and the appearance of viscous-like behavior [64].

Table 4. Textural parameters of the gels.

Sample Hardness
(g)

Elasticity
(mm)

GC 113.02 ± 0.03 a 7.47 ± 0.05 f

GAA1 101.00 ± 0.04 b 8.07 ± 0.04 e

GAA2 89.00 ± 0.01 e 9.74 ± 0.05 a

GAA3 96.00 ± 0.04 c 7.86 ± 0.03 g

GAA4 89.00 ± 0.03 e 9.22 ± 0.02 b

GAA5 93.00 ± 0.04 d 9.32 ± 0.03 b

GAA6 88.00 ± 0.03 f 9.81 ± 0.03 a

GAA7 87.00 ± 0.02 g 8.29 ± 0.04 d

GAA8 86.00 ± 0.02 h 8.96 ± 0.02 c

The results are the mean ± standard deviation. One-way ANOVA: Different letters (a–h) in the same row indicate
significant differences among samples (p ≤ 0.05).

2.5. Fourier-Transform Infrared Spectra of Gels

The IR spectrum of the gels is shown in Figure 5. The first dominant band from 3100 to
3500 cm−1 can be assigned to the extension of free and molecularly bound hydroxyl groups.
Bands at 3000 and 2800 cm−1 were also observed, indicating extensions of the CH2 groups
and the presence of lipids [65,66]. The band at 1650 cm−1 could correspond to the stretching
of the C=O bond (C=O stretching) from the Amide I and to –OH, alkane groups (–CH,
–CH2, –CH3) [67]. A band at 1417 cm−1 associated with the symmetric extension of the
carboxyl group (–COO) was also observed [68]. The peak observed from 1000 to 1100 cm−1

corresponded to the ethereal crosslinking, representing a stretching vibration in the C–O–C
group [69]. The peak of 878.23 cm−1 could be associated with C=CH compounds. The
spectra do not indicate evidence of a difference in the presence of silver nanoparticles and
saponins; the spectra show the strong signal attributed to a narrow peak corresponding
to alcohol as a functional group that is located between 3230 and 3550 cm−1; the reduced
concentration of saponins and silver nanoparticles probably do not generate a significant
change that would allow any significant effect to be observed. These observations are
similar to those reported in the literature [70,71].

2.6. Morphology by Scanning Electron Microscope (SEM)

Images of saponins, silver nanoparticles, and the gel AA5 are shown in Figure 6. Based
on the observation that saponins have an irregular shape, the SEM photograph shows that
the saponin’s size lies between 3.73 and 18.90 µm, while the silver nanoparticles’ size lies
between 3.48 and 4.86 µm. The topography shows that saponins are irregular and have a
rough external surface [72]. The saponins can create complexes that exhibit diverse shapes,
including spherical, oblate, rod-shaped, lamellar, and worm-like structures [73]. In the case
of silver nanoparticles, an external appearance with a smooth surface was observed, and a
triangular and also quadrilateral shape were observed; the results of this study were similar
to those reported by Thiruvengadam and Bansod [74], who reported a spherical shape
in nature with some triangular morphology in silver nanoparticles synthesized using the
chemical method. Finally, in the gel, it is possible to observe different particles associated
with the saponins and silver nanoparticles, which are diffused in the gel matrix.
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2.7. Antimicrobial Activity

The testing of the antimicrobial activity of formulations was developed according
to the disk diffusion method [75]. The broad-spectrum antibacterial activity of gels was
evaluated against Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli.
The zones of inhibition (mm) around the disk containing gels with silver nanoparticles
and saponins are shown in Table 5. The antibacterial control media vancomycin (CV)
and gentamicin (CG), which act as antimicrobials against Gram-negative bacteria (E. coli)
and Gram-positive bacteria (S. aureus), respectively, showed their antibacterial effect by
generating more giant halos [76,77] (Figure 7).
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Table 5. Inhibition halos of studied formulations.

Samples S. aureus
(mm)

E. coli
(mm)

GC 9.75 ± 0.02 b 11.50 ± 0.02 b

GAA1 7.50 ± 0.03 g 8.75 ± 0.03 g

GAA2 9.00 ± 0.01 d 9.00 ± 0.01 f

GAA3 9.75 ± 0.03 b 8.00 ± 0.03 h

GAA4 8.75 ± 0.04 e 10.75 ± 0.04 c

GAA5 11.50 ± 0.02 a 12.12 ± 0.02 a

GAA6 8.75 ± 0.04 e 9.00 ± 0.04 f

GAA7 8.00 ± 0.02 f 9.25 ± 0.02 e

GAA8 9.62 ± 0.03 c 10.62 ± 0.03 d

The results are the mean ± standard deviation. One-way ANOVA: Different letters (a–h) in the same row indicate
significant differences among samples (p ≤ 0.05).

The antibacterial effect of the gels against S. aureus showed that gel GAA05 presented
the greatest halo of inhibition compared to the other samples and the commercial gel; the
remaining samples showed lower antibacterial effects. The results of the tested bacteria, E.
coli, showed that the gel GAA05 has a higher inhibition zone, similar to those found with
S. aureus. The low antimicrobial activity detected in most gels is presumed to correspond
to a lower percentage of alcohol used in the formulation; as mentioned in previous lines,
the objective of the work sought to establish formulations of visual viscosity similar to the
control. The antimicrobial activity also increases when silver nanoparticles are included, in
contrast with samples with only saponins [78,79].

On the other hand, the method used to extract saponins could be better; in this sense,
it is essential to note that the content of saponins is in low concentration, attributable to the
extraction method from quinoa [80]. The antibacterial activity found in the GAA05 sample
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could be attributed to the large surface area of silver nanoparticles, which could provide a
larger contact surface with microorganisms [81,82]. Secondly, the antibacterial properties
of silver nanoparticles as antibacterial agents [44,83] could increase the antibacterial effect
of the alcohol. Third, a synergistic effect occurs between the silver particles and the added
natural compounds [78].

3. Materials and Methods

Silver nanoparticles were purchased from La Casa del Químico, Quito, Ecuador (TNS
Nanotechnology, Florianópolis, Brazil). Carbopol 940 was purchased from Alitecno (P) Ltd.,
Quito, Ecuador (Lubrizol, Wickliffe, OH, USA). The Mueller–Hinton agar, 0.5 McFarland
standards, was purchased from Environobolab Ltd., Quito, Ecuador. Analytical grade
solvents and chemicals were used in their purest form and were not further purified.

3.1. Gel preparation Process

The preparation of the antibacterial gel was based on a study proposed by Tripathy [18].
The hydrophilic carbopol was sieved and subsequently poured into distilled water and
stirred constantly for approximately 10 min to form a homogeneous mixture, avoiding the
formation of lumps.

Next, 30% of the alcohol (70%) was poured in with constant stirring for 20 min, the
remaining 70% of the alcohol was added, and the same stirring process was repeated;
1,2-propanediol was added until gelation. Finally, the silver nanoparticles and saponins
were added. The size of silver nanoparticles was 15 nm, and they were stabilized with
organic molecules. To stabilize the pH range of 6 to 7, triethanolamine (TEA) was added.

3.2. pH and Organoleptical Determinations

A visual organoleptic test was conducted to observe the shape and color, and the smell
of the gel preparations was developed. The pH of the gels was determined following the
methodology described by Alqarni et al. [84]. The tests were carried out in triplicate.

3.3. Rheological Behavior
3.3.1. Rotational Test

The flow curves of gels were determined using an Anton Paar MCR 302 rheometer
(Anton Paar GmbH, Graz, Austria) with a coaxial cylinder geometry. The system’s tem-
perature was set and maintained at 20 ◦C through a circulator water bath (DC30, Haake,
Karlsruhe, Germany). The flow curves of the gels were determined using a shear rate
from 0.01 to 100 s−1—first ascending, then descending, and finally ascending again—to
eliminate possible thixotropy in the sample. The rheological properties were fitted to the
Power law, Herschel–Bulkley, and Casson models (Table 6). The average and standard
deviation of six repetitions are presented.

Table 6. Equations used for modeling the rheological behavior.

Model Equation Equation Number References

Power law σ = k
( .
γ
)n (1) [85]

Herschel–Bulkley σ = σ0 + k
( .
γ
)n (2) [86]

Casson σ0.5 = σ0
0.5 + k

( .
γ
)0.5 (3) [87]

where σ is the shear stress (Pa), σ0 is the yield stress,
.
γ is the shear rate (s−1), k is the consistency index (Pa × sn),

and n is the flow behavior index (dimensionless).

3.3.2. Oscillatory Test

To analyze the viscoelastic behavior of gels, oscillatory dynamic tests were performed
in an Anton Paar MCR 302 rheometer (Anton Paar GmbH, Austria), with a system of
parallel plates (25 mm diameter) and Peltier temperature control (20 ◦C), according to the
methodology reported by Li, Zhao and Chen [88]. For each value of oscillating frequency



Gels 2024, 10, 234 13 of 17

(ω), values for the elastic or storage modulus (G′), viscous or loss modulus (G′′), and the
loss tangent tan (δ) were obtained.

3.4. Texture Profile Analysis

Texture profile analysis (TPA) was performed following the method proposed by Pérez
Zamora, Michaluk, Torres, Mouriño, Chiappetta, and Nuñez [48]; the measurements were
performed using a Brookfield CT3 texturometer with the TA11/1000 probe. The hardness
and elasticity of the gels were evaluated. The test parameters were the following: load cell
4500 g, activation load 1 g, test speed 1 mm/s, return speed 1 mm/s, cycles: 1. The cylinder
(sample container) was 30 mm high and 38 mm in diameter.

3.5. Fourier-Transform Infrared Spectra of Gels

Infrared spectroscopy is one of the most important analytical methods for detecting
certain functional groups of polymers and drugs; the evaluation method was proposed
by Beć et al. [89]. The infrared spectra of the gels were evaluated using an infrared
spectrophotometer (Perkin–Elmer, model Spectrum Two, Columbus, OH, USA) covering
wave numbers from 4000 to 500 cm−1. The measurements were made in triplicate.

3.6. Scanning Electron Microscope (SEM)

The morphology of the gels was performed in a scanning electron microscope (SEM)
(Vega3, Tescan, Warrendale, PA, USA) with an accelerated voltage of 100 Kv. The samples
were air-dried and then sputter-coated with gold. Finally, each sample was observed at
5 Kv in the microscope, with a field of view of 253 µm and a magnification of 546× g.

3.7. Antimicrobial Activity
3.7.1. Microorganisms

The Gram-positive bacteria (Staphylococcus aureus (S. aureus) ATCC 6538) and Gram-
negative bacteria (Escherichia coli (E. coli) ATCC 8739) used in this study were obtained from
the American Type Culture Collection (ATCC). The bacterial strains were grown at 37 ◦C
and maintained on nutrient agar.

3.7.2. Well-Diffusion Method

The antimicrobial activity of gels was tested in vitro against Gram-positive and Gram-
negative bacteria using the method proposed by Bauer et al. [90]. The medium used was
Mueller–Hinton agar. The bacterial inoculum was prepared in 5 mL of phosphate-buffered
saline (0.5 McFarland standards), where 100 µL of bacterial suspension was inoculated
on fresh Mueller–Hinton agar. Wells were then bored on the Muller–Hinton agar plates
using a sterilized borer. Each well was filled with 30 µL of prepared gels. Vancomycin
(CV) and gentamicin (CG), which act as antimicrobials against Gram-negative (E. coli) and
Gram-positive (S. aureus) bacteria, were considered the control agents. The inoculated
plates with pathogenic bacteria were incubated at 37 ◦C for 18 to 24 h. The test was repeated
twice for each sample.

3.8. Statistical Analysis

The results were analyzed by one-way ANOVA, and means were tested using Tukey’s
multiple comparisons to investigate the statistical significance. All statistical analyses
with a significance level α = 0.05 were performed using Prism-GraphPad v5.03 (GraphPad
Software, Inc., San Diego, CA, USA).

4. Conclusions

The results obtained in this study allowed us to establish that the use of artisanal
alcohol for the development of sanitary gels is a viable alternative. Likewise, including
saponins from quinoa and silver nanoparticles increases the gel’s antimicrobial power. The
antibacterial efficacy observed in sample GAA05 may be due to several factors, such as
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a high alcohol concentration in the formulation and the synergistic effect between silver
particles and saponins. The evaluated properties allowed us to establish that each gel has
a different behavior, mainly associated with the formulation developed, which sought to
simulate the viscosity of the commercial gel.
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