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Most industrial gels are prepared as apparently isotropic and homogeneous materials
through a preparation process encompassing alterations in temperature, application of
isotropic mechanical stress, exposure to high-energy electromagnetic waves, and mixing
with cross-linkers (gelators). On the other hand, gels featuring spatially resolved structures
and mechanical properties could help functionalize materials with superior performance
across diverse fields. For example, the gel-based micro/nano-patterning of electrical
pathways within gel matrices facilitates the fabrication of sophisticated soft devices [1].
Non-uniform internal stress in gels is frequently a pivotal factor in the development of
self-shaping and actuating materials and is particularly relevant in applications such as
biosensing, micro-robotics, and optics [2]. In tissue engineering, the creation of anisotropic
organs and tissues, such as nerve fibers, relies on degradable gel scaffolds [3]. The distinc-
tive shapes and structures of these gels are achieved through various methods, including
the diffusion of gelators, 3D printing, photopatterning, and surface-mediated approaches.
These methodologies are likewise prevalent in the shaping and structuring of supramolecu-
lar gels [4]. This Special Issue is dedicated to showcasing recent research and advancements
in the shaping and structuring of polymer gels. The collection comprises ten articles eluci-
dating the fabrication of gels with well-defined shapes and spatially controlled structures,
the measurement and analysis of the chemical and rheological properties of anisotropic gels,
and theoretical and experimental insights into anisotropic gelation dynamics. Importantly,
these investigations explore the practical applications of such advancements in biomedical
and food technology.

Collagen, a significant extracellular matrix constituent, has been widely studied for
its utility in tissue engineering applications owing to its inherent biocompatibility and
regulatory roles in modulating cellular morphology and functions. Different forms of
collagen have been prepared to align with the specific requisites of diverse applications.
Furusawa et al. endeavored to formulate a methodology to generate gels that emulate
the structural attributes of skeletal muscle. This was achieved through the cultivation
of chicken embryonic muscle cells in genipin-crosslinked multi-channel collagen gels
(MCCG) [5]. The resultant myotubes exhibited distinct anisotropic elasticity and relaxation
strengths coupled with intriguing contractile responses to periodic electrostimulations
within a frequency window of 0.5–2.0 Hz (Contribution 1). In a complementary scholarly
contribution (Contribution 2), Ishibashi et al. harnessed their one-pot method [6] to fabricate
collagen tube gels, which yielded hollow collagen gels as mimetic models of blood vessels.
Notably, their demonstration showed the feasibility of UV-treated collagen pre-gel solutions
for preparing collagen tubular gels endowed with sufficient hollowness.

Porosity is one of microstructural characteristics of gels for drug delivery systems.
Because of their intricate porous network architecture, hydrogels can be extensively used in
medicine, where they serve as carriers for precisely controlled drug delivery in which drugs
are loaded into the porous framework of hydrogels, allowing for the gradual diffusion of
small polymer or oligomer molecules throughout the gel network, thereby effectuating
controlled release [7]. Micropores formed in gels using micro/nano-bubbles as templates
function as channels that facilitate the retention and efflux of water molecules. Kuroki
et al. demonstrated that employing bubble water as a solvent in the fabrication of the light-
induced volume phase transition of gels accelerates the transition rate by approximately
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100-fold compared with using gels without bubble water. This innovative approach signif-
icantly augments hydrogel response rates without relying on additives (Contribution 3).
The microstructure of hydrogels often exhibits notable divergence that is contingent upon
the polymer source. Zhao et al. studied the physicochemical properties and microstructure
of hybrid hydrogels prepared using sodium alginate (SA) and chondroitin sulfate (CS)
sourced from two animal origins. Their findings elucidate that SA-based hybrid hydrogels
incorporating chicken-derived CS have a more compact porous microstructure and supe-
rior interfacial compatibility in comparison with those incorporating bovine-derived CS
(Contribution 4).

The bacterial fermentation of dairy products such as fresh cheese and yogurt is mim-
icked by glucono-δ-lactone (GDL)-induced acid gel. The elucidation of mesoscopic infor-
mation is imperative for the enhancement of textural and physical attributes in acidified
milk products. Recent advancements in imaging microscopy have made it a powerful tool
in studying mesoscopic dynamics, as demonstrated in the investigation of rennet-induced
gelation [8]. Sekiguchi et al. studied the gelation kinetics of acidified milk using several ad-
vanced image analysis techniques, namely particle image velocimetry, differential variance
analysis, and differential dynamic microscopy, utilizing fat globules as discerning probes.
They successfully revealed that, in the very early process of acidification, microscopic
viscosity develops in two steps (Contribution 5).

Supramolecular gels are one of essential materials in modern technology with appli-
cations in substance separation within chemical processes, technology for environmental
cleanup, biotechnology, drug development, and regenerative medicine [9]. Broadband
dielectric spectroscopy is a potent investigative tool to elucidate the formation of hydrogels’
molecular structures. Shimizu et al. applied this technique to study the formation of
fibrous supramolecular gels using a low-molecular-weight gelator. Their results suggested
a structure formation of rod micelles appearing as precursors before cross-linking into
the three-dimensional network of the supramolecular gels and substantiated the validity
of their effective relaxation parameter analysis for understanding details of the gelation
mechanism (Contribution 6). While dielectric spectroscopy captures relaxation phenomena
reflecting the dynamic aspects and time correlations of physical quantities, spatial structural
information remains conspicuously absent. In Contribution 7, Yagihara et al. employed the
ergodic hypothesis in relaxation theory. Their success lay in the utilization of τ–β diagrams
to analyze spatial information, where τ and β are the relaxation time and distribution
parameter, respectively [10]. Particularly noteworthy are their revelations concerning the
spatial distribution of water molecules within the diverse systems encompassing polymer
gels, supramolecular gels composed of surfactant micelles, and cement gels.

Gelation occasionally exhibits concomitantly with pattern formation. Haraguchi et al.
discerned unique concentric and radial macroscopic spatial patterns during the deposition
of a calcium nitrate solution onto the center of a sodium alginate solution in a Petri dish.
The concentric patterns had the same spatial rules as the well-established Liesegang pat-
tern [11]. The radial pattern manifested as surface cracks in the hydrogel. The required
situation and the tendency toward equal spacing resembled the horizontal banding formed
in the drying process to monitor crack propagation. These patterns were expected due
to the competition between gelation and phase separation in the aqueous solution of a
polysaccharide–metal ion system, driven by the diffusion of metal ions into the polysaccha-
ride solution (Contribution 8).

When gelation initiates at a point or a surface in a solution, a distinct gel region
evolves, and the extent of gelation is quantified by the resultant gel volume. The theoretical
framework governing such gelation markedly diverges from that for isotropic gelation.
Yamamoto et al. directed their focus to the emergence of a discernible sol–gel interface
during the gelation process. They expounded the motion of this interface, denoted as the
moving boundary (MB), rooted in the principles of non-equilibrium thermodynamics. The
main conclusion of the theory is that the dynamics are expressed by scaled equations that
are categorized into several types depending on the gelation mechanism and geometrical
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condition [12]. In Contribution 9, Kakinoki et al. studied a novel genre of gelation in-
duced by the diffusion of enzyme molecules recurrently employed for cross-linking. Their
investigation revealed that upon the application of an enzyme solution onto a physical
isotropic gelatin gel, an ensuing isotropic chemical gelation transpires, succeeded by gel
polymer orientation following a significant lag time. The gelation dynamics of the system
were elucidated through a combination of diffusion-limited gelation followed by the free-
energy-limited orientation of polymer molecules. Contribution 10, authored by Yamamoto,
extended the theoretical paradigm to encompass scenarios wherein the state of polymer
solutions undergoes transformation due to the influx of gelators, rendering the sol phase
metastable and the gel phase stable. Notably, in the dynamics of gel growth, a deviation
from scaling law was observed in the early stage, only to conform in the late stage. The
article dissects the crossover phenomenon within the context of scaling, shedding light on
the rate-limiting processes inherent in liquid–liquid contact-induced gelation.

In conclusion, the scholarly domain of Shaping and Structuring of Polymer Gels is
growing remarkably with a continuous influx of novel methodologies for the preparation
and characterization of gels. This extends particularly to the mesoscale spatial order and a
broad spectrum of temporal scales, with a discerning focus on the theoretical underpin-
nings of anisotropic gelation. These advancements underscore the potential for diverse
applications across various scientific and technological realms. The thematic fabric of nearly
all contributions is interwoven with biomaterials, aligning their objectives with biological
and biomedical applications. It is notable that the anisotropy inherent in gels mirrors the
natural intricacies of certain physiological components in our bodies. The exploration of
the role of diffusion, based on “gradients” focused in a pioneering book by Child [13], as
posited by Crick, traces back to 1970 [14]. Contemporary insights into anisotropic mor-
phogenesis in developmental biology have been comprehensively summarized in review
articles [15,16]. While the detailed mechanisms governing biosynthesis remain complex,
there is anticipation that certain facets of this process can be artificially recreated.
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