
Citation: Karakuş, N.R.; Türk, S.;

Guney Eskiler, G.; Syzdykbayev, M.;

Appazov, N.O.; Özacar, M.

Investigation of Tannic Acid

Crosslinked PVA/PEI-Based

Hydrogels as Potential Wound

Dressings with Self-Healing and High

Antibacterial Properties. Gels 2024, 10,

682. https://doi.org/10.3390/

gels10110682

Academic Editor: Jieyu Zhang

Received: 9 September 2024

Revised: 11 October 2024

Accepted: 18 October 2024

Published: 23 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Investigation of Tannic Acid Crosslinked PVA/PEI-Based
Hydrogels as Potential Wound Dressings with Self-Healing and
High Antibacterial Properties
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Abstract: This study developed hydrogels containing different ratios of TA using polyvinyl alcohol
(PVA) and polyethyleneimine (PEI) polymers crosslinked with tannic acid (TA) for the treatment of
burn wounds. Various tests, such as scanning electron microscopy (SEM), Fourier transform infrared
spectroscopy (FTIR), swelling, moisture retention, contact angle, tensile strength, the scratch test,
antibacterial activity and the in vitro drug-release test, were applied to characterize the developed
hydrogels. Additionally, the hydrogels were examined for cytotoxic properties and cell viability
with the WST-1 test. TA improved both the self-healing properties of the hydrogels and showed
antibacterial activity, while the added gentamicin (GEN) further increased the antibacterial activities
of the hydrogels. The hydrogels exhibited good hydrophilic properties and high swelling capacity,
moisture retention, and excellent antibacterial activity, especially to S. aureus. In addition, the swelling
and drug-release kinetics of hydrogels were investigated, and while swelling of hydrogels obeyed the
pseudo-second-order modeling, the drug release occurred in a diffusion-controlled manner according
to the Higuchi and Korsmeyer–Peppas models. These results show that PVA/PEI-based hydrogels
have promising potential for wound dressings with increased mechanical strength, swelling, moisture
retention, self-healing, and antibacterial properties.

Keywords: hydrogel; tannic acid; anti-freezing; drug release; self-healing; antibacterial properties

1. Introduction

The skin, the body’s greatest organ, behaves as a protective barrier against pathogens
and provides defense. Open wound surfaces are highly susceptible to infection by bacte-
ria [1,2]. In biomedical applications, reducing infection risks, promoting wound healing,
and supporting tissue repair are crucial challenges. Hydrogel wound dressings are consid-
ered to be an easier and more effective method for wound treatments [3]. Consequently,
hydrogel wound dressings with crosslinked polymeric chain networks and hydrophilic
functional groups are being developed [4]. These three-dimensional polymeric chain net-
works allow the hydrogel to sorb and hold high quantities of water without dissolving [5].
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Desired properties include gas permeability, maintaining a moist medium in the
wound region, flexibility, capability to absorb excess exudates, protection against bacteria
by reducing the possibility of wound infection due to its antibacterial properties, ease of
removal and replacement without damaging the wound area, good mechanical strength,
and biocompatibility [6,7].

The process of wound healing is a complex and coordinated sequence of events that ini-
tiates as soon as a tissue is damaged by various causes [7]. It encompasses four interrelated
phases, namely hemostasis, inflammation, proliferation, and remodeling (maturation) [8,9].
The inceptive phase, known as hemostasis, involves the formation of a platelet plug by
platelets and fibrins to achieve coagulation and stop bleeding if present in the wound
area [10,11]. This phase is followed immediately by the inflammatory stage, which is
influenced by numerous internal and external factors [12]. Concurrent with hemostasis,
the inflammatory phase involves the participation of situated and newly formed cells of
the inborn and acquired immune system. Its primary role is to mitigate the risk of infection
by eliminating residual and pathogenic substances from the wound area, with chemokines
playing a central role in this process [13,14]. Additionally, inflammatory cells serve as a
crucial source of growth factors and cytokines that initiate the proliferative phase [15].

The subsequent phase is proliferation, during which secretory factors increase vascular
permeability, and cytokines and growth factors contribute to the recruiting of endothelial,
epidermal, and dermal cells to the wound site [16]. This phase also involves fibroblasts
and collagen synthesis, initiating angiogenesis by promoting the generation of granulation
tissue and facilitating the progression to the final phase, namely tissue remodeling [17,18].
Approximately 1–3 weeks after the injury, fibroblasts differentiate into myoblasts, and the
synthesis of type I collagen increases, providing the healing of the extracellular matrix
(ECM) and the initiation of tissue remodeling [12,19]. The newly formed network of blood
vessels evolves into a ripe tissue structure with restricted structural strength, ultimately
forming scar tissue [20]. This intricate process relies on the body’s utilization of complex
biochemical and cellular mechanisms to orchestrate wound healing [21], culminating in the
completion of the wound-healing process.

Hydrogel dressings designed to promote the wound-healing process can be prepared
using various methodologies. These approaches fall within three categories, namely physi-
cal, chemical, and UV irradiation [22]. A careful selection of polymers used for hydrogels
that can be synthesized via physical and chemical crosslinking is essential. These poly-
mers, categorized as natural and synthetic, serve as the primary constituents in hydrogel
production [23].

Polyvinyl alcohol (PVA), developed by Hermann and Haehnel in 1924, stands as one
of the earliest synthetic polymers [24]. Its water-soluble nature has garnered significant
attention in the chemical and medical sectors owing to its distinctive attributes, such as
biocompatibility, adhesion to diverse surfaces, non-toxic properties, and biodegradabil-
ity [25]. Meanwhile, polyethylenediamine (PEI), a synthetic polymer categorized under
the polycation class, features flexible polymeric chains and exhibits considerable promise
for biomedical applications due to its high sensitivity, biocompatibility, and durability [26].
Notably, its crosslinking property has made it a preferred choice in the formulation of
hydrogel solutions [27]. The recent focus in bioengineering has been on the advancement
of self-healing hydrogels, which possess unique dynamic responsiveness [7]. This develop-
ment aims to enhance the structural integrity of hydrogels, making them more resistant to
external impacts.

Tannic acid (TA) is a native polyphenol present in various plants, known for its
biocompatible properties and wide prevalence in nature [28]. It serves as an effective
crosslinker in polymer bonding, owing to its ability to induce physical or chemical binding.
Additionally, TA exhibits notable antibacterial properties, making it a valuable component
in the treatment of burn wounds [29].

Due to its non-toxicity, environmental friendliness, and good biocompatibility, PVA has
been widely used in various applications, such as drug delivery systems, tissue engineering,
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and hydrogel wound dressings [30,31]. Despite the advantages mentioned, the poor
mechanical properties and lack of antibacterial properties of PVA hydrogels limit their
further application as wound dressings. To overcome these limitations, researchers have
often prepared PVA-based antibacterial hydrogels using different crosslinkers, as well
as metal nanoparticles or other agents [31]. Many methods, such as formic acid, boric
acid, various crosslinking agents, the wet spinning technique, and freeze–thaw cycles
have been used to crosslink PVA chains while preparing PVA hydrogels [32]. Cells, drugs,
Ag nanoparticles, or plant-based natural components have been used to prepare wound
dressings with effective antibacterial properties [33]. While preparing hydrogels with PVA
and various polymers, TA has been investigated in different studies for the green synthesis
of Ag and other metal particles used to impart antibacterial properties, crosslinking of
hydrogels, and contribute to antibacterial properties [32,34,35]. In this study, TA acid was
used to crosslink polymer chains in hydrogels prepared with PVA and PEI and to exhibit
the antibacterial properties of hydrogels. Unlike similar studies in the literature, gentamicin
(GEN) was used together with TA to increase the antibacterial properties of hydrogels by
showing a synergistic effect in this study.

The advancement of antibacterial hydrogel wound dressings was the focus of this
study, achieved through the crosslinking of PVA and PEI polymers in the presence of TA.
Samples with self-healing properties for controlled drug release were obtained by incor-
porating GEN. Various characterization tests were conducted on the samples, including
Fourier transform infrared (FTIR) analysis, to examine the desired functional groups of
PVA/PEI hydrogels, tests for swelling abilities and moisture retention capacities, and a
contact angle test to determine hydrophilic properties. Tensile tests were performed to
assess mechanical strength, while SEM and FESEM-EDS analyses were conducted to under-
stand surface morphologies and elemental composition. Antibacterial tests against E. coli
and S. aureus bacteria were executed to determine the materials’ antimicrobial capabilities,
with an additional cell viability analysis performed through WST-1 tests. Scratch tests were
performed to evaluate the self-healing abilities, and the swelling and drug-release kinetics
of the hydrogels were studied.

2. Results and Discussion
2.1. FTIR Spectroscopy Analysis

The FTIR analysis was conducted to identify the characteristic absorption bands
belonging to the functional groups of PVA/PEI-based hydrogel samples with and without
drug addition along with TA. This analysis was essential in the elucidation of the bonds and
interactions between the polymers and TA. The large bands observed between 3550 and
3200 cm−1 are related to the stretching O–H from the intermolecular and intramolecular
hydrogen bonds’ PVA forms [36]. While the broad peak in the region of 3550–3100 cm−1 is
characteristic of the –OH stretchings of the phenolic and methylol groups of TA, the small
peaks near 2900 cm−1 are due to aromatic C–H stretching vibrations [37,38]. The broad
peaks, observed between 3200–3600 cm−1 in all hydrogel samples, delineate the absorption
band of the –OH groups of PVA polymer and the phenolic –OH groups of TA, confirming
the presence of TA bonds in PVA/PEI-based hydrogel samples [39]. Additionally, the
absorption bands around 3300 cm−1, ascribed to N-H stretching vibrations, confirm the
existence of the amine groups of the PEI polymer [40]. In addition, the broad bands
in the 3600–3200 cm−1 region of the FTIR spectra are also associated with the water
physically adsorbed by the samples. Furthermore, the peaks around 2960 cm−1 in the
sample analysis were associated with C-H stretching in the CH2 and CH3 groups of PVA
and PEI polymers [41]. The peaks originating from C=O groups and C=C stretching
found in the structure of PVA and PEI polymers and TA molecules are located around
1700–1750 cm−1. The peaks originating from these groups are shifted slightly and appeared
in the 1644–1659 cm−1 regions due to the interactions of the polymer chains and the
crosslinking between the polymer chains’ TA molecule forms. This change is most likely
due to the environmental change of the C=O groups in the hydrogel structures [36,37,42].
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The observed bands around 1650 cm−1 were determined to be related to C=O stretching
vibrations [43], indicating the presence of GEN and C=O stretching. Analysis of the peaks
between 1500 and 1000 cm−1 revealed the presence of C-H stretching at 1390 cm−1 and
a C-O-C bond at 1135 cm−1 [44]. Additionally, the stretching vibrations of the C-O bond
were characterized by peaks around 1070 cm−1 [45]. These results (Figure 1A,B) confirm
that PEI successfully formed a polymeric chain with PVA due to the chemical crosslinking
reaction provided by TA. To assess the influence of the GEN drug in the FTIR analysis, the
peak values from the literature were examined, ultimately indicating that the band shifts in
the peaks signified the presence of GEN [46].
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and (B) with the addition of the drug.

2.2. Swelling Ratio Test

For effective wound healing, a hydrogel dressing with a high absorption capacity is
needed [47]. A swelling test was conducted on the samples to assess this. The swelling
capacities of hydrogels are contingent on the quantity of TA utilized as a crosslinker. The
crosslinkers bind the polymers, reducing the hydrogels’ pore size. Therefore, it is generally
accepted that the swelling capacity decreases as the crosslinker ratio in the hydrogel
increases [48]. Figure 2 illustrates the results of the swelling test performed on PVA/PEI-
based hydrogel samples. The hydrogel samples reached equilibrium after 24 h. Upon
examination of the graphs, it is evident that the sample demonstrating the best swelling
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capacity is drug-added PVA/PEI/GEN/TA1. Surprisingly, the ionization of TA in the
solution seems to have mitigated the anticipated impact of increased crosslinker density on
the swelling capacity. Notably, the crosslinked sample exhibited a significantly improved
swelling capacity compared to the sample without it. It was observed that the addition
of TA increased the swelling rate compared to the hydrogel without TA. It was evaluated
that further increasing the TA content in the hydrogel provided non-covalent interactions
for the hydrogels by forming more hydrogen bonds between the polymer chains, thus
preventing further swelling of the hydrogels. Since the prepared hydrogels have sufficient
swelling rates to keep the wound surface moist and facilitate exudate absorption, they may
be potential materials for wound dressings. The results found are quite consistent with
previous studies showing that TA provides a certain swelling rate to the hydrogels, that the
swelling rates generally tend to decrease non-linearly with the increase in the amount of
TA, and that the decrease in the swelling rates is not regular with the amount of TA [49,50].
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To understand the swelling mechanism of the prepared hydrogels, the Peppas, pseudo-
first-order, and pseudo-second-order kinetic models were used to evaluate the experimental
swelling data. It is important to understand the diffusion mechanisms of the hydrogels to
be used as drug carriers. Diffusion involves the movement of a water/drug solvent into the
spaces between the hydrogel networks, which leads to expansion between the crosslinked
chains. One of the models used to determine the water absorption of hydrogels and
their swelling ratio at certain time intervals is the Peppas equation, and its mathematical
expression is as follows [51–53]:

St

Seq
= ktn (1)

The linear form of the Peppas equation is

ln
St

Seq
= ln k + nlnt (2)

where St and Seq are the amounts of water taken up by the hydrogel at the swelling time
and at equilibrium, k is the swelling rate constant, and n is the swelling exponent that is an
indicator of the water penetration movement. The values of n and k are obtained from the
slope and intercept of ln St/Seq vs. lnt plot, respectively. The value of n gives an insight
into the water absorption and swelling mechanism of the hydrogel. If the value of n is
between 0.45 and 0.5, it is evaluated that the water absorption follows a diffusion-controlled
Fickian kinetics, while the values of n between 0.5 and 1.0 indicate that the hydrogel shows
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a non-Fickian diffusion mechanism in which chain relaxation also contributes to water
absorption [52,53].

To investigate the swelling kinetics of hydrogels, pseudo-first-order (Fick’s model),
pseudo-second-order (Schott model), and the Peleg equations were used. The pseudo-first-
order, pseudo-second-order, and Peleg equations are given in Equations (3)–(5), respec-
tively [53–56].

dSt

dt
= k1

(
Seq − St

)
(3)

dSt

dt
= k2

(
Seq − St

)2 (4)

dSt

dt
=

k’1
(k’1 + k’2t)2 (5)

When the pseudo-first-order, pseudo-second-order, and Peleg equations are integrated
at the boundary conditions (S = S0, t = t0, and S = St at t = t), the linear pseudo-first-order,
pseudo-second-order, and Peleg equations obtained are Equations (6)–(8), respectively.

ln
(
Seq − St

)
= lnSeq − k1t (6)

t
St

=
1

k2S2
eq

+
1

Seq
t (7)

t
St − S0

= k’1 + k’2t (8)

where Seq, St, and S0 denote the swelling amount at equilibrium, at time t, and t = 0,
respectively. k1 and k2 are the pseudo-first-order and pseudo-second-order kinetic rate
constants, respectively. k’1 and k’2 are the kinetic constant and a characteristic constant of
the Peleg model, respectively.

To better understand the swelling kinetics, the results obtained by applying different
kinetic models to the experimental swelling data are shown in Figure S1. The kinetic
parameters and correlation coefficients (r2) found for different kinetic equations are given
in Table 1. The best-fitting kinetic equation for the experimental swelling kinetic data
was evaluated with the correlation coefficient values. When the r2 values in Table 1 are
examined, the highest r2 values were obtained for the pseudo-second-order equation and
followed the r2 values of the Peleg equation. It is seen that the pseudo-second-order kinetic
model provides the best correlation for the swelling process, whereas the Peleg model
also fits the experimental data well. Therefore, the model that best obeys the experimental
swelling data is the pseudo-second-order equation.

Table 1. Swelling kinetic parameters for TA-doped PVA/PEI-based hydrogels.

Sample
Peppas Model Peleg Model Pseudo-First Order Pseudo-Second Order

n kP r2 k1 k2 r2 k1 r2 k2 r2

PVA/PEI/GEN/TA0 0.1013 1.495 0.9841 0.1881 0.0495 0.9985 0.0650 0.8575 7.652 0.9994
PVA/PEI/GEN/TA1 0.1054 1.515 0.9761 0.0617 0.0249 0.9985 0.0616 0.8328 4.569 0.9994
PVA/PEI/GEN/TA2 0.0837 1.403 0.9869 0.0611 0.0293 0.9982 0.0566 0.7759 6.188 0.9994
PVA/PEI/GEN/TA3 0.0861 1.412 0.9798 0.1538 0.0495 0.9980 0.0612 0.8081 8.147 0.9995
PVA/PEI/GEN/TA4 0.0782 1.380 0.9936 0.0763 0.0342 0.9977 0.0569 0.7868 6.942 0.9993

2.3. Water Retention Rate Test

The capacity of hydrogels to preserve a dewy medium and absorb wound exudates,
known as water retention, is a crucial property [57]. A water retention test was conducted
on the samples by weighing them at predetermined time intervals after drying at room
temperature using a precision scale. The results, as depicted in Figure 3, indicated that the
water retention capacities of the samples decreased over time until reaching an equilibrium
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profile. Comparing the water retention capacities of samples with and without the addition
of GEN revealed that the PVA/PEI/GEN/TA1 and PVA/PEI/GEN/TA2 samples exhibited
the highest increase in water retention capacity. Although PVA/PEI/GEN/TA4 appeared
to have the highest water retention capacity based on the graph, the notable improvement
in the moisture retention capacity of the PVA/PEI/GEN/TA2 sample after drug addition
is noteworthy.
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The PVA/PEI/GEN/TA2 sample is promising for clinical studies in wound-dressing
applications due to its increased water retention capacity after drug loading. Compared to
the hydrogel samples in the existing literature, it is believed that hydrogel samples with
an equivalent moisture retention capacity have been developed [58]. The ability to retain
moisture provides a significant advantage for hydrogels, allowing them to dry more slowly
and be used for extended periods. To enhance the moisture retention capacity of hydrogels,
materials with superior moisture retention properties, such as hyaluronic acid (HA), can be
incorporated into the solution [59].

It has been reported in the literature that increasing the crosslinking density increases
the water retention capacity of hydrogels [60]. It has also been noted that the water retention
of hydrogels can be also affected by the existence of van der Waals forces and H-bonds
between the hydrogel and water molecules [61,62]. The presence of the –COO– group in the
polymer chains of hydrogels, which provides low water loss, contributes to an exceptional
water retention capacity by enhancing the polymer network’s affinity for water molecules.
Therefore, incorporating TA molecules containing the –COO– group into the solution can
enhance its moisture retention capability.

2.4. Contact Angle Results

In contact angle measurement, the reference degree accepted for the angle is 90◦ [63].
The angle between DW and the hydrogel samples allows for determining the hydrogel’s
water absorption ability. A contact angle smaller than 90◦ (23–33◦) indicates hydrophilic
properties (Figure 4). Analysis of GEN drug-added PVA/PEI samples revealed excellent
hydrophilic properties. Similarly, drug-free hydrogel samples exhibited good hydrophilic
properties, with contact angle values of 17–28◦. These findings suggest that both the
drug-added and drug-free samples possess favorable hydrophilic properties.
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2.5. Mechanical Test

The mechanical features of hydrogels were analyzed via a tensile test [64], and the
results, calculated in MPa, are presented in Table 2. Figure S2 illustrates that the PVA/PEI-
based hydrogel samples with a low concentration of TA exhibited good mechanical strength
under the applied tensile force. However, an increase in TA resulted in decreased me-
chanical strength. Samples PVA/PEI/TA4 and PVA/PEI/GEN/TA4 were not tested, as
they fractured during manual handling before the test. The PVA/PEI/GEN/TA3 sample
ruptured at the beginning of the tensile process. Notably, samples without TA addition
demonstrated the highest mechanical strength.

Table 2. Mechanical strength of TA-doped PVA/PEI-based hydrogels.

Samples MPa Samples MPa

PVA/PEI/TA0 0.125 PVA/PEI/GEN/TA0 0.71
PVA/PEI/TA1 0.730 PVA/PEI/GEN/TA1 0.764
PVA/PEI/TA2 0.046 PVA/PEI/GEN/TA2 0.076
PVA/PEI/TA3 0.0373 PVA/PEI/GEN/TA3 -
PVA/PEI/TA4 - PVA/PEI/GEN/TA4 -

It is believed that the ionization of the TA crosslinker in the solution adversely af-
fected the mechanical strength, making the samples more brittle than anticipated. Effective
hydrogel wound dressings require not only increased mechanical strength but also flexi-
bility. Considering the results, the PVA/PEI/TA0 and PVA/PEI/TA1 samples, both with
and without the addition of drugs, are deemed suitable for hydrogel wound dressings.
Modification is necessary to enhance the mechanical strength of the remaining samples for
potential use in wound dressings.

2.6. SEM Results

The study examined the morphological structures of freeze-dried hydrogel sam-
ples [65]. The porous nature of hydrogel dressings offers advantages in terms of absorbing
wound exudate, retaining water, preventing wound infection, and promoting wound heal-
ing by maintaining a moist environment [66]. The concentration of crosslinking agents, such
as PEI and TA, influences the porous structure, with higher concentrations leading to fewer
pores due to increased intermolecular bonding [27]. Notably, SEM micrographs of hydrogel
samples in Figure 5 revealed that the porous structure did not consistently follow an ex-
pected trend [67]. Specifically, the PVA/PEI/TA1, PVA/PEI/TA3, and PVA/PEI/GEN/TA2
samples exhibited a porous structure, while the others displayed nonporous and irregu-
lar morphologies. The variations in the surface properties of TA-added PVA/PEI-based
hydrogels may be attributed to the strong crosslinking capabilities of PEI [68].

2.7. Antibacterial Activity Test

E. coli and S. aureus bacteria near a wound may lead to inflammation and hinder
wound healing [69]. Hence, developing antibacterial wound dressings is crucial to facilitate
the healing process. Upon examination of the samples incubated at 37 ◦C for 24 and 48 h in
cultured media containing E. coli and S. aureus bacteria, it was observed that all exhibited
significant antibacterial properties, as illustrated in Figure 6. The notable zone diameters of
both the drug-free and drug-added hydrogel samples indicated the antibacterial properties
of PEI, a synthetic polymer commonly used in hydrogel synthesis.
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2.8. Self-Healing Properties

Enhancing the self-healing properties of hydrogel wound dressings presents a viable
alternative for mitigating material aging and wear caused by impacts. This attribute is first
ascribed to the existence of electrolytes and covalent, ionic, and polar functional groups,
which facilitate the formation of hydrogen bonds [70]. Evaluation of the self-healing
capability involved creating scratches on the samples using a disinfected razor blade, as
illustrated in Figure 7. The images captured after 5 and 15 min and after self-healing and
storage at −20 ◦C revealed that PVA/PEI/TA0 and PVA/PEI/TA1 exhibited completely
self-healing properties without external stimuli. This observation signifies a promising
advancement in the development of self-healing wound dressings.
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2.9. Drug-Release Profiles

The amount of drug released from gentamicin-added PVA/PEI-based hydrogel sam-
ples was determined by creating a standard graph (Figure S3) using taken measurements
for different concentrations. The drug-release ratios of TA-containing wound dressings are
with a faster release within the first 6 h between 9.5–11.5%, then reached a slow release equi-
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librium, and after 48 h, the cumulative drug-release rates were approximately 14.30–17%.
In contrast, the drug-release rate of the dressing without TA was 13% in the first 6 h. Then,
the cumulative drug-release ratio in the slow-release equilibrium reached approximately
18.40%. The initial rapid drug release followed by a slow drug release will provide effective
inhibition and clearance for bacteria in treatment by wound dressing. The results, de-
picted in Figure 8, revealed that TA addition in PVA/PEI/GEN/TA1, PVA/PEI/GEN/TA2,
PVA/PEI/GEN/TA3, and PVA/PEI/GEN/TA4 hydrogels facilitated a more controlled
release of GEN compared to the TA-free PVA/PEI/GEN/TA0 hydrogel. This observed
behavior can be ascribed to the existence of the crosslinker, as TA enhances the polymer
bond, leading to a controlled drug release by reducing the pore size [71]. Furthermore, it
was determined that the strong hydrogen bonds generated via the numerous -OH groups
of the TA molecule with the -NH2 groups in the GEN structure significantly contribute to
the controlled drug release. In conclusion, incorporating TA in PVA/PEI-based hydrogel
dressings offers a promising wound healing and repair approach, providing longer and
controlled drug release.
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In order to better evaluate the drug-release mechanisms of hydrogels, experimental
drug-release data can be correlated with drug-release kinetic models. Zero- and first-order,
Higuchi, Korsmeyer–Peppas, and Hixson–Crowell equations have been widely used to
examine the drug-release kinetics. The mathematical expressions of these equations are
given below, respectively [51,72,73].

Zero-order equation Ct = C0 + k0t (9)

First-order equation log Ct =log C0 − (k1/2.303) t (10)

Higuchi equation Ct = kHt1/2 (11)

Korsmeyer–Peppas equation log (Ct/C∞) = log kKP + nlog t (12)

Hixson–Crowell equation W1/3
0 − W1/3

t = kHCt (13)

where Ct is the concentration of the drug released at time t, C0 is the initial concentration of
the drug at time t = 0, C∞ is the concentration of the drug released after time ∞, W0 is the
initial amount of drug in the pharmaceutical dosage form (amount of drug remaining at
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time 0), Wt is the remaining amount of drug in the pharmaceutical dosage form at time t,
and k0 is the zero-order rate constant. k1 is the first-order rate constant, kH is the Higuchi
dissolution constant, n is the drug-release exponent, kKP is the Korsmeyer release rate
constant, kHC is the Hixson–Crowell constant describing the surface volume relation, and t
is the time.

For a better understanding of the drug-release kinetics of hydrogels, the results ob-
tained by applying various kinetic models to the experimental GEN release kinetic data are
shown in Figure S4, and the kinetic parameters and r2 found for each kinetic equation are
given in Table 3. When the r2 values in Table 3 are compared, it is seen that the r2 values of
the Korsmeyer–Peppas and the Higuchi model for GEN release from hydrogels are quite
close to each other and have higher values than that of the other models. It can be inter-
preted that the prime mechanism of GEN release from hydrogels is a diffusion-controlled
release mechanism. Once it has been determined that the prime GEN release mechanism is
diffusion controlled from the Higuchi model, then it gains importance that the drug release
obeys which type of diffusion. The n value in the Korsmeyer–Peppas model can be used to
characterize different diffusion mechanisms in drug release. It is seen that the values of the
drug-release exponent or the diffusion exponent (n) in Table 3 are generally in the range of
0.45–0.5, which means that the GEN release from hydrogels follows diffusion-controlled
Fickian kinetics.

Table 3. Kinetic parameters for GEN releasing of TA-doped PVA/PEI based hydrogels.

Samples
Zero Order First Order Higuchi Korsmeyer–Peppas Hixson–Crowell

k0 r2 k1 r2 kH r2 kKP n r2 kHC r2

PVA/PEI/GEN/TA0 0.2975 0.6412 0.0013 0.7108 2.610 0.8349 0.2366 0.4551 0.8979 0.0769 0.4740
PVA/PEI/GEN/TA1 0.7834 0.9742 0.0010 0.5347 2.214 0.8610 0.2436 0.4357 0.8595 0.0782 0.6033
PVA/PEI/GEN/TA2 0.2128 0.5206 0.0013 0.7233 1.932 0.7261 0.2541 0.4562 0.8270 0.0736 0.5272
PVA/PEI/GEN/TA3 0.8104 0.9914 0.0012 0.7337 2.393 0.8813 0.1850 0.5256 0.8943 0.0839 0.6206
PVA/PEI/GEN/TA4 1.7272 0.9947 0.0012 07337 2.195 0.8914 0.2079 0.4805 0.9196 0.0855 0.7311

2.10. FESEM and EDS Analysis

The surface morphologies and compositions of the PVA/PEI/GEN/TA0 and PVA/PEI/
GEN/TA1 hydrogel samples were analyzed using FESEM and EDS techniques. Hetero-
geneous and regular structures were observed in the FESEM images (Figure S5A,C), indi-
cating successful sample preparation [74]. An elemental analysis of the sample surfaces
(Figure S5B,D) revealed the existence of C, O, and S elements in the PVA/PEI/GEN/TA0
sample, P and Ca elements originating from the SBF solution residue, and C, O, and S
elements in the PVA/PEI/GEN/TA1 sample. The specific surface compositions of the
samples can be found in Table 4.

Table 4. Elemental analysis of PVA/PEI/GEN/TA0 and PVA/PEI/GEN/TA1 hydrogel samples.

Hydrogel Element Weight % Atamic % Net Int.

PVA/PEI/GEN/TA0
C 57.29 65.51 66.94
O 37.66 32.33 41.48
S 5.05 2.16 20.07

PVA/PEI/GEN/TA1

C 53.26 61.72 102.2
O 41.56 36.16 70.43
P 1.29 0.58 7.60
S 2.19 0.95 12.79

Ca 1.70 0.59 5.66

2.11. Cell Viability Test

The cell viability assessment was performed by the WST-1 assay (Figure 9). The
results revealed that both PVA/PEI/GEN/TA0 and PVA/PEI/GEN/TA1 caused a re-
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duction in the viability of the L929 cells. However, PVA/PEI/GEN/TA1 exhibited a
higher cell viability percentage compared to PVA/PEI/GEN/TA0. The L929 cell viabil-
ity notably decreased to 56.6%, 51.3%, 50.1%, 48.5%, and 72.2% at various dilutions of
PVA/PEI/GEN/TA0 (1:1, 1:2, 1:4, 1:10, and 1:100, respectively) (p < 0.01). In contrast,
the treatment with PVA/PEI/GEN/TA1 showed lower cell toxicity (70.7%, 63.9%, 61.8%,
62.7%, and 111.0% at 1:1, 1:2, 1:4, 1:10, and 1:100, respectively). Especially, the 1:100 dilution
of PVA/PEI/GEN/TA1 did not have any toxic effects on L929 cells due to a higher viability
rate than the control group. Consequently, it can be inferred that tannic acid can mitigate
the toxicity induced by gentamicin in the cells.
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3. Conclusions

This study describes the successful synthesis of gentamicin-loaded and non-gentamicin-
loaded TA-doped PVA-PEI hydrogel samples via the freeze–thaw method to investigate
their potential as wound dressings for wound care and repair with high antibacterial prop-
erties. FTIR analysis indicates crosslinking between PVA and PEI polymers in the presence
of TA. The hydrogel samples demonstrate favorable swelling and moisture retention capaci-
ties. Both drug-loaded and non-drug-loaded samples exhibit strong antibacterial properties,
which is consistent with the literature reporting PEI polymer’s effectiveness. Additionally,
the swelling and drug-release kinetics of the developed hydrogels were examined using
various kinetic equations. While the swelling of hydrogels occurred in accordance with
the pseudo-second-order equation and the Peleg model, GEN release from hydrogels was
found to be diffusion-controlled and follows the Fickian diffusion mechanism, which fits
the Higuchi and Korsmeyer–Peppas models.

Furthermore, gentamicin-doped hydrogel samples display a wider effective area,
demonstrating their improved properties. The hydrogels offer 48 h of antibacterial protec-
tion, making them advantageous for use as wound dressings. Contact angle measurements
confirm the samples’ desirable hydrophilic properties. Examination of the microstructure
and morphology shows that the products have successfully attained regular and irregular
porous structures. Elemental analysis of the hydrogel structures reveals the presence of
C, O, P, S, and Ca elements. The WST-1 cytotoxicity test indicates that the TA additive
reduces the cytotoxic effects of the samples on L929 cells. These findings highlight the
potential for these hydrogels to provide controlled drug release, moisture, and oxygen
permeability, with long-term and high antibacterial effects, positioning them as potential
burn wound dressings.
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4. Materials and Methods
4.1. Polymers and Additive Materials

In the presented investigation, a hydrogel was synthesized by incorporating polyvinyl
alcohol (Merck, Darmstadt Germany) and polyethyleneimine (Sigma-Aldrich, St. Louis,
MO, USA) polymers, with the crosslinking agent being tannic acid (Merck Brand). The
hydrogel was enriched with gentamicin (40 mg/mL injection solution), known for its
potent antibacterial activity to enhance its antibacterial characteristics further.

The preparation of the phosphate buffer solution (PBS) involved utilizing disodium
hydrogen phosphate (Na2HPO4, Sigma-Aldrich) and monosodium phosphate (NaH2PO4)
salts, with the pH being adjusted using hydrochloric acid (HCl) to attain the desired
balance [75].

For the creation of simulated body fluid (SBF), ion-exchanged and distilled water
(DW) were combined with various salts, including NaCl, NaHCO3, KCl, K2HPO4·3H2O,
MgCl2·6H2O, CaCl2, and NaSO4. In addition, Tris-hydroxymethyl aminomethane (Tris)
and 1 M HCl, as well as pH standard solutions (pH 4, 7, and 9), were employed in
this process.

Furthermore, the WST-1 cytotoxicity testing utilized mouse fibroblasts, and the DMEM
environment (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) was filled with
10% fetal bovine serum (Gibco) and 1% penicillin-streptomycin (Gibco).

4.2. Devices and Equipment

The hydrogel solutions were prepared using a magnetic stirrer subjected to a high-
temperature magnetic field. The pH of the PBS was adjusted via a Mettler Toledo pH
meter. A standard graph for controlled drug-release analysis was established by mixing
various concentrations of the GEN drug with an orbital shaker (Biosan, Rı̄ga, Latvia).
Characterization analyses were conducted using advanced equipment, including a Perkin
Elmer Spectrum (Motic, Waltham, MA, USA) Two FT-IR Spectrometer (Metoree, Billerica,
MA, USA), an optical microscope from Motic (Waltham, MA, USA), a thermal camera from
FLIR (Teledyne FLIR, Wilsonville, OR, USA), a lyophilizer from Biobase (Jinan, China), an
Attension contact angle measuring device (Nanoscience Instruments, Phoenix, AZ, USA),
and a Shimadzu UV-2600 UV-Vis spectrophotometer (Shimadzu, Kyoto, Japan) for drug-
release measurement. Furthermore, the hydrogels were incubated at 37 ◦C in a bacterial
medium using a Nuve, FN 120 oven (Nuve, Tokyo, Japan). The mechanical properties were
assessed using the Zwickroell tensile tester (Zwickroell, Guangzhou, China), and imaging
was carried out using the Philips XL30 SFEG SEM (regen microscopy, Los Angeles, CA,
USA) with WST-1 for cell quantification, Quanta FESEM, and the EVOS FL Cell Imaging
System from Thermo Fisher Scientific (Waltham, MA, USA).

4.3. Preparation of Hydrogel

The drug-free hydrogels were prepared as follows. First, the polymer solutions were
prepared separately. For this, 5 g of PVA were dissolved in 50 mL of DW by magnetic
stirring at 80 ◦C for 2 h, and 2 g of PEI were dissolved in 10 mL of DW. Subsequently, the
PEI solution was slowly added to the PVA solution at a 5:1 ratio, as outlined in Figure 10A,
and mixed for 10 min. A portion of the resulting solution (10 mL) was transferred to a Petri
dish to form the first hydrogel sample, while the remainder was distributed into separate
10 mL beakers. Various percentages of (1–6%) of TA were added to these beakers, and the
mixtures were further blended for 15 min. The resulting solutions were then transferred to
Petri dishes and subjected to the freeze–thaw method before being left to set in a refrigerator
overnight to yield the PVA/PEI hydrogels.
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including drug addition.

Subsequently, a fresh PVA/PEI solution was prepared using the same steps and
ratios, with the addition of GEN before distribution into Petri dishes (Figure 10C). A
homogeneous 10 mL sample of the solution was then poured into a Petri dish, with the
remaining solution divided into new 10 mL solutions containing increasing TA ratios
and subsequently transferred to Petri dishes. Drug-containing PVA/PEI-based hydrogel
samples were also prepared using the freeze–thaw method (Table S1). These samples were
readied for use in various characterization tests (Figure S6).

4.4. Preparation of PBS

The preparation of the phosphate-buffered saline (PBS) for conducting drug-release
tests involved dissolving 1.7799 g of Na2HPO4 and 0.1913 g of NaH2PO4 salts in 50 mL of
DW. Due to the rapid dissolution of the salts, 0.1 M HCl acid was added to adjust the pH of
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the alkaline solution to 7.4. Once the desired pH was achieved, the volume was adjusted to
100 mL using DW to obtain 0.1 M PBS.

4.5. Preparation of SBF

The SBF production followed the methodology outlined by Kokubo [76]. Special care
was taken to ensure that the SBF was colorless and transparent. In a beaker, 700 mL of DW
were heated to 36.5 ± 1.5 ◦C using a magnetic stirrer. Subsequently, specific amounts of
NaCl, KCl, NaHCO3, K2HPO4·3H2O, CaCl2, MgCl2·6H2O, and Na2SO4, as indicated in
Table S2, were added in sequence to the heated water and dissolved. The total volume was
adjusted to 900 mL. The pH of the solution was initially measured at 2. Tris reagent was
then gradually added while monitoring the pH until it reached 7.3 at 36.5 ± 0.5 ◦C. A small
excess of Tris was added, and the pH was allowed to stabilize. To adjust the pH to 7.4, if
necessary, 1 M HCl was slowly introduced. Once the pH reached the desired level, the SBF
was transferred to a 1 L volumetric flask and completed to 1 L with DW for further use.

4.6. FTIR Analysis

The study encompassed the evaluation of hydrogel specimens, specifically PVA/PEI/
TA0, PVA/PEI/TA1, PVA/PEI/TA2, PVA/PEI/TA3, PVA/PEI/TA4, PVA/PEI/GEN/TA0,
PVA/PEI/GEN/TA1, PVA/PEI/GEN/TA2, PVA/PEI/GEN/TA3, and PVA/PEI/GEN/
TA4. FTIR analyses were performed by a Perkin Elmer (Spectrum Two) spectrometer using
samples cut in a cylindrical shape with a thickness of 0.5 mm from hydrogels that were
subjected to freeze–thaw cycles without being lyophilized. The assessment encompassed
configuring the % transmittance mode within the wavenumber range of 400–4000 cm−1 to
capture the FTIR spectra.

4.7. Swelling Test

The cylindrical-shaped PVA/PEI/GEN/TA0, PVA/PEI/GEN/TA1, PVA/PEI/GEN/
TA2, PVA/PEI/GEN/TA3, and PVA/PEI/GEN/TA4 hydrogel samples with a diameter of
0.8 cm were cut, and their initial weights (A0) were measured using a precision balance.
Subsequently, beakers were filled with 20 mL of distilled water, and the prepared samples
were individually placed in the beakers. At predetermined time intervals, each sample was
taken out of the water, excess water was removed, and their weights were recorded (A).
This process was repeated at specified time intervals over a 72 h period. Additionally, the
measurement results were calculated using the formula [77].

Swelling ratio % =
A − A0

A0
× 100 (14)

4.8. Water Retention Test

Cylindrical samples with a diameter of 0.5 cm were prepared and initial measurements
(A0) of the hydrogels were taken using a precision balance. Subsequently, the hydrogel
samples were placed on a tray and allowed to air-dry at 37 ◦C. The masses of the samples (A)
were periodically measured over a 432 h duration. The moisture retention of the samples
was then calculated using the prescribed formula [78].

Water retention % =
A
A0

×100 (15)

4.9. Contact Angle Measurements

The measurement of contact angles is utilized to assess the hydrophilic or hydropho-
bic characteristics of hydrogel samples. The commonly acknowledged criteria state that
samples possessing a contact angle below 90◦ are hydrophilic, whereas those with a contact
angle higher than 90◦ are hydrophobic [79]. Distilled water was meticulously loaded
into a Hamilton syringe for this assessment. Subsequently, cylindrical PVA/PEI/TA0,
PVA/PEI/TA1, PVA/PEI/TA2, PVA/PEI/TA3, PVA/PEI/TA4, PVA/PEI/GEN/TA0,
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PVA/PEI/GEN/TA1, PVA/PEI/GEN/TA2, PVA/PEI/GEN/TA3, and PVA/PEI/GEN/
TA4 hydrogel samples, each with a diameter of 1.4 cm, were positioned in the camera
focus of the measurement apparatus. A 4 µL droplet of distilled water from the syringe
was then dispensed onto the samples, and their contact angles were computed using a
computerized method.

4.10. Tensile Test

The test entails assessing the mechanical strength of the prepared hydrogel samples.
Initially, the hydrogel samples were shaped into rectangles, and their cross-sectional areas
(S) were computed. Subsequently, each sample was individually placed in the jaw of the
device and subjected to tension by pulling from both ends. The force per unit applied
during this process is known as tension. As per the literature, the results were calculated as
MPa using the designated formula [80].

Tensile strength =
Force

S
(16)

4.11. SEM Analysis

The hydrogel samples, each with a 1.4 cm diameter, were placed in individual Petri
dishes with the lids partially closed. They underwent freeze-drying at −20 ◦C for 24 h and
an additional 12 h at −60 ◦C in a lyophilizer to ensure low-pressure lyophilization. After
complete drying, the Petri dish lids were closed to prevent moisture ingress. Subsequently,
the morphological analysis of the hydrogel samples was performed via a SEM specifically,
the Philips XL30 SFEG model. Prior to testing, the samples were affixed to a metal base
using conductive adhesive. Imaging was performed at a test voltage of 15 kV [81].

4.12. Antibacterial Test

The hydrogel samples were cut into 0.8 mm diameters and prepared for testing to
evaluate their effects against E. coli and S. aureus bacteria, which are known to proliferate
around wound tissue, causing inflammation. In the initial step of the testing process, the
bacteria were seeded into the media and allowed to incubate briefly. Subsequently, the
hydrogel samples were methodically introduced into the bacteria-seeded media within Petri
dishes, which were then subjected to incubation at 37 ◦C for 24 and 48 h. This incubation
aimed to assess whether the hydrogel samples exhibited any antibacterial properties.

4.13. Self-Healing Test

Test samples of the hydrogel were prepared by cutting them into cylindrical shapes
with a diameter of 0.8 mm. To capture images, the samples were individually positioned on
a slide under an inverted optical microscope (Motic BA310 Upright equipped with a digital
camera, Richmond, BC, Canada), and images were taken at 40×/0.65/S (WD 0.5 mm)
magnification. A photograph was taken of the initial state of each sample. Subsequently, a
precise scratch was made on the hydrogel sample using a sharp, pointed razor blade, and
the resulting image was promptly captured and recorded. After 5 min had elapsed since
the initial scratch, a second set of images was taken, followed by a third set 15 min later.
These images were obtained to assess the self-healing capability and to determine if the
hydrogel sample scratch had dissipated [82].

4.14. In Vitro Drug-Release Studies

The initial step involved diluting GEN at varying concentrations and subsequently
agitating it for 15 min on an orbital shaker (Biosan, Rı̄ga, Latvia) at a speed of 200 rpm. A
standard graph for GEN was then established through UV-Vis measurements, which were
used for accurate quantification. Individual PVA/PEI/GEN/TA0, PVA/PEI/GEN/TA1,
PVA/PEI/GEN/TA2, PVA/PEI/GEN/TA3, and PVA/PEI/GEN/TA4 hydrogel samples,
each containing GEN, were placed in separate Eppendorf tubes with 2 mL of 0.1 M PBS (pH
7.4). The concentration of GEN in the 0.6 mL samples obtained from the tubes at specified
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time intervals was determined using UV-Vis measurements against the 0.1 M PBS standard
solution, and the quantities of GEN were calculated based on the previously established
standard graph. After each sampling, 0.6 mL of fresh 0.1 M PBS was introduced into the
Eppendorf tubes [83,84].

4.15. FESEM-EDS Analysis

The hydrogel samples underwent surface morphology, smoothness, and surface com-
position analyses. The process involved freezing the samples at −20 ◦C for 12 h and
lyophilization (Biobase) at −50 ◦C at 15 Pa for 2 days. Subsequently, the samples were
immersed in a prepared SBF solution for 7 days and subjected to FESEM-EDS analyses at a
voltage of 15 kV.

4.16. WST-1 Test

Mouse L929 fibroblasts were obtained from Dr. Secil Ak Aksoy and cultured in a
DMEM medium (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) filled with
10% fetal bovine serum (Gibco) and 1% penicillin and streptomycin (Gibco) in a 5% CO2
incubator. The cytotoxic effects of the hydrogels were analyzed using the dilution WST-1
test method [85]. First, the cells were seeded at 2 × 104/well in a 96-well microplate
and incubated for 24 h. The 100 mg gel samples were sterilized by UV and swollen in
PBS. Then, the UV-sterilized hydrogels were added into 10 mL of culture medium and
incubated at 37 ◦C for 24 h. Afterward, the cells were maintained with a serial dilution of
the hydrogels with DMEM medium for 24 h. Afterward, 10 µL WST-1 dye (Biovision, San
Francisco, CA, USA) was suffixed into each well and analyzed by an absorbance reader
at 450 nm. Each experiment was repeated three times. Cell viability was accepted as the
mean percentage of viable cells compared with the control group. The control group was
regarded as 100% viable.

4.17. Statistical Evaluation

Calculating the means and standard deviations (SD) of the data was presented. The
statistical comparison of the data was achieved by SPSS version 22 (IBM Corp., Armonk,
NY, USA). A one-way variance analysis post-Tukey analysis was performed to compare the
groups. p-values of <0.05 were regarded as significant. The percentage of L929 cell viability
upon treatment with a dilution series of PVA/PEI/GEN/TA0 and PVA/PEI/GEN/TA1 for
24 h (p < 0.05 *, p < 0.01 **) was determined.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/gels10110682/s1: Figure S1: Different kinetic models for swelling
of hydrogels; Figure S2: Tensile test applied to PVA/PEI hydrogel samples; Figure S3: Gentamicin
standard chart created for controlled drug-release testing; Figure S4: Various kinetic models for
GEN release of hydrogels; Figure S5: (A,B) FESEM image and EDS analysis of PVA/PEI/GEN/TA0
sample, (C,D) FESEM image and EDS analysis of PVA/PEI/GEN/TA1; Figure S6: PVA/PEI-based
hydrogel samples prepared for characterization tests; Table S1: Composition and ratios of PVA/PEI
based hydrogel samples; Table S2: The required order pertains to the requisite reagent quantities and
purities for the preparation of 1000 mL of SBF.
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