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Abstract: In the last decade, hydrogels for hydraulic fracturing based on viscoelastic surfactants
have been actively studied. Interest in these systems is justified by their unique qualities: good
viscoelasticity and the ability to form stable suspensions of proppant or sand, destruction without
the formation of bridging agents, hydrophobization of the rock surface and metal of technological
equipment, as well as oil-cleaning properties. These qualities are most often provided by a minimum
set of components—a surfactant and an electrolyte. However, the absence of a polymer limits the
use of these gels in formations where fluid leakoff is possible. In this article, a liquid was studied,
based on a pseudo gemini surfactant (PGVES) with the addition of a water-soluble polysaccharide.
The objects of study were selected based on the assumption of interactions between PGVES and the
polymer; interactions which favorably influence the technological characteristics of the fracturing
fluid. To confirm the hypothesis, rheological studies were carried out. These included rotational
viscometry and oscillatory studies at various temperatures. The settling velocity of particles of various
proppant fractions was studied and tests were carried out to assess fluid leakoff. The performed
experiments show an improvement in the characteristics of the PGVES-based gel under the influence
of the polysaccharide. In particular, the rheological properties increase significantly, the stability of
proppant suspensions improves, and the fluid leakoff of systems decreases, all of which expands the
possibility of using these fracturing fluids and makes this area of experimentation promising.

Keywords: hydraulic fracturing; gel fracturing fluid; oil and gas production; oil reservoirs; pseudo
gemini surfactant; hydroxyethyl cellulose; rheology; proppant suspension; fluid leakoff

1. Introduction

Currently, in the oil and gas industry, hard-to-recover hydrocarbon reserves belong-
ing to low-permeability, heterogeneous and poorly drained reservoirs are becoming in-
creasingly involved in development. One of the most effective and common methods
of increasing production in such wells is hydraulic fracturing. Hydraulic fracturing is a
mechanical method of influencing a productive formation and is based on rock rupture
along planes of minimum strength, under the excess pressure of fracturing fluid that is
pumped into the well. Currently, about a third of hydrocarbon reserves can be recovered
only by using this technology [1–4]. In foreign and Russian practice, aqueous systems
based on cross-linked guar gel are most often used as fracturing fluids [5–12]. Cross-linked
guar gels are relatively easy to prepare and environmentally friendly. However, prob-
lems arise when using guar gum-based compositions. These consist of the significant
clogging of the interstitial space with gel residues, which in turn leads to a decrease in
permeability [4,13–16]. In addition, aqueous liquids can negatively affect clay rock, causing
it to swell, which also leads to clogging. High viscosity values of cross-linked guar gel
provide good stability of proppant suspensions of various sizes; however, due to the high
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viscosity, short fractures are formed, although the formation of long and branched fractures
are desirable [17,18]. For the effective breaking of guar gels, it is necessary to introduce
oxidizing or acidic reagents into the composition. Other common fracturing gels are fluids
with polyacrylamide additives (also called slickwater). These fluids are as easy to prepare
as guar-based fluids. Polyacrylamide-based fluids have lower viscosity values than guar
compositions. However, these gels are just as efficient in transporting proppant. There is
a problem with the strong adsorption of polyacrylamide and some authors recommend
avoiding this by adding urea to the compositions [19]. Polyacrylamide-based gels are much
more difficult to break. For this purpose, various peroxide reagents are most often used.
Hydrocarbon-based fracturing fluids are currently much less commonly used, although
the history of hydraulic fracturing began with these reagents. These gels can be prepared
from diesel fuel, gas condensate and commercial oil. Their use is limited because they are
harmful to the environment and dangerous to store. Aluminum or iron alkyl phosphates
are used for gelling hydrocarbons, while alkaline compounds are used for breaking. In
addition to the above, there are also acidic compositions, foam and emulsion compositions
that can be used as fracturing fluids [18,20].

For the last decade, as an alternative to classical fracturing fluids, compositions based
on viscoelastic solutions of surfactants have begun to develop [14,21–23]. Such systems
are formed from surfactants with a hydrocarbon radical of 17 or more carbon atoms. They
form associates in an aqueous environment in the form of long worm-like micelles. The
micelles intertwine with each other and form a network, which leads to the formation of
a hydrogel.

Fracturing fluid based on viscoelastic surfactant has a number of positive qualities [17,21–26]:

• Viscosity values are lower compared with cross-linked guar gel, which promotes the
formation of long and branched fractures;

• High viscoelasticity in fresh and mineralized water, due to which the fracturing has
the necessary sand-carrying ability;

• The use of surfactants increases the oil recovery factor;
• Hydrophobization of terrigenous rock and clays, as a result of which the degree of

clays’ swelling is reduced, and water blockages do not form after hydraulic fracturing;
• Viscosity reduction when mixed with formation fluids, resulting in complete restora-

tion of rock permeability after hydraulic fracturing (pure fracturing).

One of the new discoveries is pseudo gemini surfactant [14,27–32]. They are shown
as two surfactant molecules that are represented by higher alkylamines, in the form of
which a polybasic acid or its anion can be used. These higher alkylamines are connected
to each other by a bridge. PGVES differ from classical dimeric surfactants in that they are
formed not by covalent, but by hydrogen and electrostatic bonds between the bridging
group and surfactant molecules. This fact determines the ease of obtaining these com-
pounds. There are many studies that seek to examine the properties of pseudo gemini
surfactants themselves (their behavior at different pH, the influence of salts, technological
properties as fracturing fluids). The behavior of surfactant–polymer mixtures is quite well
researched [16,33–36]. However, today, the behavior of PGVES in a mixture with polymers
remains poorly understood. Because there are various functional groups in both the surfac-
tants themselves and the polymers, various intermolecular interactions are quite possible,
which can positively affect the properties of these fracturing fluids. Considering that one of
the reasons for limiting the use of surfactant-based gels is their tendency toward high fluid
leakoff in highly permeable layers [15,16], this research area becomes very relevant, as the
polymer will form a certain amount of filter cake. Because the type of bonding in PGVES
is very sensitive to the presence of electrolytes, a non-dissociating water-soluble polymer
that can interact with PGVES through hydrogen bonds will be chosen as a sample. Based
on the above, we can define the purpose of the work: the study of the hydrogel based on
PGVES and polymer. To achieve this purpose, it is necessary to carry out rheological and
oscillation studies of compositions. Additionally, the technological properties of these gels
as hydraulic fracturing fluids will be evaluated. On the basis of the experiments, we will
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make a conclusion about the promising use of PGVES–polymer hydrogels in hydraulic
fracturing and offer recommendations for further research.

2. Results and Discussion
2.1. Effective Viscosity Study

To process the obtained values of effective viscosity in a wide range of speeds, the
Carreau fluid model was used [37,38], which is expressed by the following formula:

η − η∞ =
η0 − η∞[

1 +
(
λ

.
γ
)2
]m/2 , (1)

where η is the non-Newtonian apparent viscosity at any shear rate; η0 and η∞ are the
plateau of viscosity values at zero shear rate and infinite shear rate, respectively;

.
γ is shear

rate; λ is the characteristic constant of the Carreau model; and m is the dimensionless
rate constant.

The results of the experiment at 20 ◦C are shown in Figure 1. The range of shear rates
used is 0.005 s−1 to 100 s−1.
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Figure 1. Viscosity versus shear rate for PGVES-based formulations with various hydroxyethyl
cellulose (HEC) concentrations at 20 ◦C.

At low shear rates, a Newtonian plateau is observed for the systems under study, at
which point the viscosity does not depend on the shear rate. For micellar systems, this
plateau is explained by the fact that the shear rate imparted to the sample is insufficient
to stretch the micelles in the direction of the rotor spinning [32,37]. In the range of the
Newtonian plateau, the effect of the HEC additive is most noticeable. Initially, when adding
0.1% HEC, a sharp increase in zero-shear viscosity is observed, and with a further increase
in concentration, the increase in viscosity does not occur so intensely, as can be seen in
Figure 2. As the shear rate increases, the compositions noticeably lose viscosity. This fact
is favorable in relation to fracturing fluid, as its injection is simplified. Separately, we
assessed the viscosity of the HEC solution at the maximum concentration (0.4%) without
PGVES. Based on the results, we can conclude that there are synergistic effects in the
PGVES/HEC system, which may be associated with the formation of surfactant–polymer
associates [35,36].
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2.2. Oscillation Experiments

For the formulations, a linear viscoelastic region (LVER) test was initially performed
to find the optimal amplitude value, which was 50%. At this amplitude, the values of
the dynamic moduli G′ (storage modulus) and G′′ (loss modulus) were obtained from the
oscillation frequency. The storage modulus G′ is a parameter that characterizes the elastic
properties of a material. This parameter can be used specifically for VES compositions in
order to characterize the density of micellar packing and the number of entanglements
between micelles. VES compositions are characterized by high values of storage modulus.
The high elasticity of the compositions may indicate an optimal mechanical strength of
the fracturing fluids, as well as a good stability proppant suspension. Due to the elastic
component, when surfactant systems are used as fracturing fluids, a more efficient transfer
of the proppant is realized. The elastic component, when surfactant systems are used
as fracturing fluids, results in more efficient energy transfer from the wellhead to the
bottomhole, which can reduce energy consumption during hydraulic fracturing. Loss
modulus G′′ is a parameter that characterizes the behavior of the investigated sample as
a viscous fluid. In solutions of worm-like micelles over a wide frequency range, the loss
modulus usually has lower values than the storage modulus.

The used frequency range was from 0.01 Hz to 10 Hz (from 0.063 rad/s to 62.832 rad/s).
The Maxwell model with one relaxation time is suitable for describing the obtained
curves [26,28,39–42]. According to this model, the dynamic module curves are described
by the following equations:

G′ =
G0(ω·τR)

2

1 + (ω·τR)
2 (2)

G′′ =
G0·ω·τR

1 + (ω·τR)
2 (3)

where ω is the oscillation frequency, τR is the relaxation time and G0 represents the values
of the storage modulus on the plateau. Using the intersection point of the dynamic modulus
curves ωc, the value of the relaxation time τR ∼ 1/ωc can be determined.

The dependences of the curves of dynamic moduli on the oscillation frequency for
gels based on PGVES with HEC are presented in Figure 3. Similar to the values of η0, the
addition of HEC contributes to an increase in the values of dynamic moduli, especially
affecting the storage modulus G′. At low frequencies (ω < ωc), gels are characterized by the
behavior of a viscous liquid; in this range, the values of the loss modulus are greater than
the values of the storage modulus. At higher frequencies (ω > ωc), the storage modulus
values become noticeably higher. In this frequency range, the behavior of the gel resembles
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the behavior of an elastic body. The intersection point of the curves of the dynamic moduli
ωc with increasing polymer concentration moves to lower frequencies, which indicates
an increase in the relaxation time τR. As the relaxation time reflects dynamic processes in
the system (the time of rupture and assembly of one micelle), its increase occurs due to
compaction of the micellar network with increasing polymer concentration [37,41]. Accord-
ingly, at a HEC concentration of 0.4%, a system with the highest viscoelastic properties
is formed.
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For a more complete study of the mechanism of the HEC influence on the rheological
properties of PGVES, one can consider Cole–Cole plots [26,39,42,43], which allow one to
evaluate the deviation of the system from the Maxwell model (Figure 4). For each of the
compositions, curves were constructed based on theoretical values calculated using the
Maxwell model; in the figure they are presented in the form of semicircles and correspond
to the following equation: (

G′ − G0

2

)2
+ G′′2 =

G2
0

4
(4)Gels 2024, 10, x FOR PEER REVIEW 6 of 16 
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The experimental data show a strong deviation from the theoretical values of the
Maxwell model, which is justified by the large values of the storage modulus [26]. More-
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over, this feature can be seen both in compositions with the addition of polymer and in
compositions without it. Close intermolecular interactions between PGVES and polymer
micelles can contribute to large values of the elastic modulus. An overestimation of the
storage modulus values relative to the theoretical values is also observed in the absence of
polymer, which indicates intense interactions between PGVES molecules.

Taking into account these data and those obtained from studies of effective viscosity, it
can be assumed that the formation of a mixed polymer–micellar system occurs in PGVES–
HEC solutions.

2.3. Rheological Studies at Elevated Temperatures

Micellar systems are formed through intermolecular interactions of various natures.
Accordingly, the viscoelastic behavior of such compositions strongly depends on external
conditions, especially temperature. Figure 5 shows Cole–Cole plots based on oscillatory
data obtained with a gradual increase in temperature. The temperature range was selected
from 20 to 50 ◦C in increments of 5 ◦C. The studies were carried out for gels based on
PGVES and PGVES with the addition of HEC at the maximum concentration (0.4%).
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As the temperature increases, the dynamic processes in micellar systems intensify and
at the same time the contour length of the micelles and, as a consequence, the relaxation
time decrease [2,4]. The range of oscillatory frequencies at which gels behave like viscous
liquids increases with growing temperature. On the Cole–Cole graphs, this is demonstrated
by the fact that, as the temperature increases to certain values, the experimental curves
become increasingly closer to the curve calculated using the Maxwell model.

Almost complete equality of the experimental values with the theoretical semicircle for
gels based on PGVES and PGVES with HEC occurs at temperatures of 35–40 ◦C. Moreover,
the behavior of compositions with and without a polymer up to 40 ◦C has a similar trend.
A further increase in temperature contributes to the deviation of the experimental values
from the theoretical semicircle towards higher values (due to the superiority of the loss
modulus over the storage modulus in a wide frequency range). This is mostly distinctive
for compositions with polymer. At 50 ◦C, it is not possible to construct a Cole–Cole plot
for a composition with a polymer, as the composition behaves like a viscous liquid over
the entire range of oscillation frequencies. A possible explanation for this could be the
degradation of hydrogen interactions between PGVES and the polymer with increasing
temperature. At high temperatures, polymer molecules act as nothing more than a steric
hindrance for PGVES micelles, and the latter, as a result of intense dynamic processes,
disintegrate into smaller aggregates [5] (Figure 6).
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increasing temperature.

Based on the data obtained from oscillatory studies, it is possible to calculate the corre-
lation length of micelles ξ to calculate the distance between the interweaves of the network
structure, which characterizes the “density” of the micellar network. The correlation length,
as well as other rheological parameters, are presented in Tables 1–3. The correlation length
of micelles ξ was calculated using the following formula [39,40]:

ξ ≈
(

kBT
G0

)1/3
(5)
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where kB—Boltzmann constant; T—absolute temperature.

Table 1. Changes in the rheological parameters of gels based on PGVES depending on the concentra-
tion of HEC at 20 ◦C.

HEC Concentration (%) G0 (Pa) τR (s) ξ (nm) η0 (Pa)

0 26.72 29.49 53.29 75.20
0.1 34.42 24.86 48.98 140.45
0.2 37.34 41.72 47.67 152.33
0.3 45.94 40.62 44.49 183.93
0.4 48.72 40.50 43.63 214.99

Table 2. Changes in rheological parameters of gels based on PGVES depending on temperature.

Temperature (◦C) G0 (Pa) τR (s) ξ (nm) η0 (Pa)

20 26.73 29.49 53.29 75.20
25 25.03 8.73 54.78 69.50
30 26.30 11.12 54.19 57.96
35 27.63 8.02 53.59 46.21
40 29.27 4.74 52.85 26.73
45 30.86 1.91 52.20 12.44

Table 3. Changes in the rheological parameters of gels based on PGVES with HEC (0.4%) depending
on temperature.

Temperature (◦C) G0 (Pa) τR (s) ξ (nm) η0 (Pa)

20 48.72 40.50 43.63 214.99
25 53.01 25.41 42.66 204.31
30 54,70 13.48 42.45 115.53
35 56,21 5.78 42.30 70.61
40 58.04 1.33 42.08 27.63
45 47.20 0.37 45.31 11.68

According to the data from Table 1, the injection of HEC helps to increase the density
of the micellar network. Note that the correlation length practically does not change with
increasing temperature, as shown in Tables 2 and 3. This is also typical for gels based on
PGVES and PGVES with a polymer. However, the values of other rheological parameters,
such as relaxation time and zero-shear viscosity, noticeably decrease due to a decrease in
the length of the micelles and acceleration of dynamic processes in the gels.

Figure 7 shows semi-logarithmic dependences of the zero-shear viscosity of compo-
sitions based on PGVES and PGVES with HEC (0.4%) on the reverse temperature. The
temperature ranged from 20 to 50 ◦C. The zero-shear viscosity curve versus temperature is
described by the Arrhenius dependence [41,44,45]:

η0 = G0 AeEa/RT (6)

where A is the pre-exponential factor, Ea is the flow activation energy and R is the universal
gas constant.

This dependence arises from the exponentially decreasing length of micelles with
increasing temperature. Therefore, the longer the cylindrical micelles, the higher the value
of η0. The experimental values obtained in the work fall in a straight line corresponding to
Equation (6). Using the slope of the straight line, we calculated the flow activation energy
for the PGVES composition and PGVES with HEC (0.4%).
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The calculated values of activation energy Ea for compositions based on PGVES and
PGVES with 0.4% HEC were 31.84 kJ·mol−1 and 53.71 kJ·mol−1, respectively. For systems
consisting of surfactant micelles, the characteristic values of Ea lie in the range from 70
to 300 kJ·mol−1 [33,41,44]. The low activation energy values obtained in this experiment
indicate the high thermal stability of the compositions. At the same time, for a mixture of
PGVES and HEC, the activation energy is higher than for a PGVES solution, because in the
latter the drop in viscosity with increasing temperature does not occur so intensely.

2.4. Determination of Proppant Particle Settling Velocity

The proppant settling velocity was determined for four fractions: 10/14, 12/18, 16/20
and 20/40. Particles with maximum sphericity and roundness were selected for the test; to
obtain comparable results, the test was carried out on at least five particles. The results of
the experiment are presented in Figure 8.
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With increasing temperature, the settling velocity of particles increases, which corre-
lates with the rheological parameters obtained earlier. Experimental points can be described
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by an exponential curve. However, in the case of a PGVES system with a polymer, the
exponential curve can only be used in the case of large proppant fractions: 10/14 and 12/18.
The fractions settling velocity of particles 16/20 and 20/40 does not increase exponentially
with temperature. In addition, for the gel with the polymer these values are lower than for
the gel without, although the rheological parameters with temperature increase degraded
more strongly in the polymer gel. It is possible that the values of G0, which are much larger
in polymer solutions due to a denser micellar network, contribute particularly to this.

2.5. Fluid-Loss

The results of the study are illustrated in Figure 9.

Gels 2024, 10, x FOR PEER REVIEW 11 of 16 
 

 

With increasing temperature, the settling velocity of particles increases, which corre-
lates with the rheological parameters obtained earlier. Experimental points can be de-
scribed by an exponential curve. However, in the case of a PGVES system with a polymer, 
the exponential curve can only be used in the case of large proppant fractions: 10/14 and 
12/18. The fractions settling velocity of particles 16/20 and 20/40 does not increase expo-
nentially with temperature. In addition, for the gel with the polymer these values are 
lower than for the gel without, although the rheological parameters with temperature in-
crease degraded more strongly in the polymer gel. It is possible that the values of 𝐺 , 
which are much larger in polymer solutions due to a denser micellar network, contribute 
particularly to this.  

2.5. Fluid-Loss  
The results of the study are illustrated in Figure 9. 

 
Figure 9. Study of fluid losses of PGVES gels with the addition of HEC. 

The experiment revealed a tendency towards a decrease in the rate of fluid losses 
with increasing polymer concentration, due to the formation of a filter cake on the surface 
of the filter and higher viscosity of the compositions. Note that a system containing only 
HEC 0.4% is characterized by a specific form of fluid loss curve with a rapid exit to a 
plateau due to more intense formation of filter cake [15].  

3. Conclusions  
The research revealed that the addition of HEC can help improve the technological 

properties of fracturing fluid based on PGVES: 
• Rotational and oscillatory studies showed a significant increase in viscosity and vis-

coelastic properties with the introduction of HEC into the compositions. However, 
with increasing temperature, these properties degrade more strongly in gels with 
polymer. For further experiments at elevated temperatures, we recommend the use 
of cationic or anionic polymers that will interact with PGVES by electrostatic mecha-
nism, this will give better thermostability of the gel. The temperature values used in 
this work correspond to the field conditions in the Urals and Volga regions of the 
Russian Federation, and the developed compositions are recommended for these lo-
cations; 

Figure 9. Study of fluid losses of PGVES gels with the addition of HEC.

The experiment revealed a tendency towards a decrease in the rate of fluid losses with
increasing polymer concentration, due to the formation of a filter cake on the surface of the
filter and higher viscosity of the compositions. Note that a system containing only HEC
0.4% is characterized by a specific form of fluid loss curve with a rapid exit to a plateau
due to more intense formation of filter cake [15].

3. Conclusions

The research revealed that the addition of HEC can help improve the technological
properties of fracturing fluid based on PGVES:

• Rotational and oscillatory studies showed a significant increase in viscosity and vis-
coelastic properties with the introduction of HEC into the compositions. However,
with increasing temperature, these properties degrade more strongly in gels with
polymer. For further experiments at elevated temperatures, we recommend the use of
cationic or anionic polymers that will interact with PGVES by electrostatic mechanism,
this will give better thermostability of the gel. The temperature values used in this
work correspond to the field conditions in the Urals and Volga regions of the Russian
Federation, and the developed compositions are recommended for these locations;

• In the case of gels with the addition of HEC, the storage modulus on the plateau
remains consistently large, which indicates a high density of the micellar network;

• Subsequent studies on the settling velocity of proppant show that the settling velocity
of proppant at elevated temperatures, especially fine fractions, is lower for a gel with
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an injected polymer. It can be concluded that the density of the micelle network has a
strong influence on this parameter. Based on this experiment, we recommend the use
of coarse proppant fractions in gels with polymer addition at temperatures up to 50 ◦C.
However, good sand-carrying capacity can also be achieved at higher temperatures
due to turbulence flow;

• The addition of HEC helps to reduce the degree of fluid loss, which was revealed dur-
ing experiments on a fluid-loss cell. Formation damage experiments are recommended
as further studies.

Considering all of the above, studies on the possibility of using HEC in compositions
based on PGVES show promising results. This type of gel can be recommended for further
research as a fluid for hydraulic fracturing.

4. Materials and Methods
4.1. Materials

To obtain a pseudo gemini surfactant, N-[3-(dimethylamino)propyl]octadec-9-enamide
obtained from SIEGU “Petrohim-Servis” JSC, Moscow (Russia) and oxalic acid 99.2%
Hunan (China) were used. Hydroxyethyl cellulose, obtained from Polycell CJSC, Vladimir
(Russia), was selected as a water-soluble polysaccharide. Fresh water was used as a base
for fracturing gels.

4.2. Preparation of Fracturing Gel

The concentration of PGVES in all experiments remained constant—6 wt%. The
gel was prepared by consistently dissolving calculated amounts of oxalic acid and N-[3-
(dimethylamino)propyl]octadec-9-enamide in fresh water at a molar ratio of 1 to 2. When
studying gels based on PGVES with HEC, the required amount of polymer was initially
dissolved in water, and, after its complete dissolution, reagents were introduced to obtain
PGVES. Structural formulas and schematic representations of PGVES and HEC, as well as
the resulting micelles, are shown in Figures 10 and 11.
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4.3. Research Methods
4.3.1. Rotational Viscometry and Oscillatory Rheology

Rheological studies were carried out on the Anton Paar MCR72 rheometer. A coaxial
cylinder measuring system and a double gap measuring system were used. The tempera-
ture at the rheometer was controlled using Pelte elements. The experiments were carried
out at temperatures from 20 to 50 ◦C. In rotary mode, the measuring spindle rotates at a
constant shear rate and the measuring cup remains stationary. As a result of the experiment,
the curves of viscosity dependence on shear rate are obtained. In oscillation mode the
measuring system performs oscillatory movements with a given frequency and amplitude.
The advantage of this test is the ability to measure the sample without destroying the
structure of the sample. When examining a sample in oscillation mode, the first test is
always the amplitude sweep test, because this test allows us to determine the linear vis-
coelasticity range. Knowing this information, we can determine the range of strain values
in which the structure of the test specimen does not break under strain. As a result of the
oscillation experiment, the curves of the storage modulus and loss modulus dependences
on frequency are obtained.

4.3.2. Determination of Proppant Particle Settling Velocity

Ceramic proppant was used in the experiments. The particle diameter ranged from
0.73 to 1.70 mm. To perform the test, the gel was placed in 100 mL cylinders, and the
cylinders were placed in a thermostat. After thermostatting the liquid for an hour, proppant
particles were introduced into the cylinders and the time it took for the proppant to cover a
distance of 1 cm was recorded. Five parallel experiments were carried out at a time and the
results were averaged. The settling velocity was assessed at temperatures from 30 to 50 ◦C.

4.3.3. Experiments on a Fluid-Loss Cell

Fluid-loss cell tests were carried out in accordance with the American standard for
fracturing fluids ISO 13503-4 [46]. The gel under study was placed into the cell of the device
and a pressure of 100 psi (0.68 MPa) was created. The temperature of the experiments was
25 ◦C. After holding for 30 min at a given temperature and pressure, the tap is opened and,
at certain intervals (1, 3, 5, 9, 16, 25, 30 min), the volume of filtrate flowing into the glass
cylinder was measured. The cell diagram is shown in Figure 12. Several layers of filter
paper were used as the filtration medium.
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