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Plant protection faces a growing number of challenges, partly stemming from intensi-
fication of plant cultivation to ensure food security for a rapidly growing global population.
The challenges include extensive and widespread use of pesticides and fertilizers which
pose a risk to human health and damage the environment. The challenges are exacerbated
by the development of resistance in pest populations, withdrawal of many conventional
pesticides, and the threat of invasive species. One solution to these challenges is the use of
entomopathogenic fungi (EPF), particularly members of the Hypocreales such as Metarhiz-
ium, Beauveria and Isaria. Efficacious use of these microbes in plant protection programmes
requires an in-depth understanding of their ecology, evolution and biology, especially
interactions with the invertebrate host [1,2]. Currently over 700 EPF-based products are
sold worldwide. The market share is increasing and will continue to increase as more
growers become familiar with these organisms, but also because these fungi have been
shown to stimulate plant growth and increase their resistance to biotic and abiotic stress.

This Special Issue attracted high-quality articles addressing both fundamental and
applied questions pertinent to the development EPF for use in crop pest management
programmes. These studies, conducted at the molecular-biochemical to whole organism
level, revealed a myriad of diverse, complex interactions which have greatly enhanced
our understanding of EPF and how best to exploit them or their byproducts. Researchers
established that the Slt2-MAPK signalling pathway and the transcription factor RNS1
controlled conidiation in Metarhizium robertsii via direct regulation of the central regulatory
pathway [3]. They also identified the elongator subunit (Elp3) that regulates development,
stress tolerance, cell cycle and virulence in Beauveria bassiana [4]. MicroRNAs involved in
immunity and development were found to participate in the modulation of M. anisopliae–
Plutella xylostella interactions [5]. Toll-like receptors (TLRs) in Diaphorina citri were shown to
be induced by endophytic B. bassiana [6]. Lobesia botrana pupae were shown to be susceptible
to Beauveria pseudobassiana with those without a cocoon being more susceptible than those
with a cocoon [7].

Studies of EPF–insects and EPF–plant systems in field conditions have helped im-
prove deployment of EPF. For example, direct spraying of B. bassiana significantly reduced
survival of all life stages of the green stink bug, Nezara viridula [8]. Researchers have shown
that resporulated M. anisopliae granules were highly infective, causing 100% mortality
of Tenebrio molitor larvae 9 days post inoculation [9]. Much progress has been made in
the production of Metarhizium microsclerotia, and identification of factors affecting their
storage and germination [10]. EPF coformulation with nanoparticles (bypassing host de-
fence systems) and dsRNA (inducing RNAi) were shown to enhance EPF efficacy in pest
control [11,12]. Combinations of B. bassiana and emamectin benzoate were shown to act
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synergistically, providing significantly higher control of Megalurothrips usitatus than if either
agent was used alone [13]. Root colonization by M. brunneum was shown to prime local and
systemic jasmonic acid pathways in oilseed rape Brassica napus, thus negatively affecting
the development of cabbage root fly (Delia radicum) larvae [14].

There were several studies showing that EPF stimulating plant grow, and some studies
shed light on the underlying mechanisms. Six M. anisopliae CFEM proteins with various
structures were analysed in connection to EPF-plant interactions and their subcellular
localization in host cells suggests they play some role during plant colonization by the
fungus [15]. Furthermore, B. bassiana- and M. brunneum-mediated Fe solubilization was
shown to involve upregulation of Fe acquisition genes in melon and cucumber [16]. Re-
searchers also showed that onion plants colonized by endophytic B. bassiana were more
tolerant to stress due to drought [17]. New studies highlight that M. brunneum volatile
organic compounds (VOCs) were actively involved in plant growth promotion of a wide
range of commercially important crops [18]. These VOCs were also shown to suppress the
development of bacterial and plant pathogenic fungi [19].
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