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Abstract: The Fusarium solani species complex (FSSC) constitutes at least 77 phylogenetically distinct
species including several agriculturally important and clinically relevant opportunistic pathogens.
As with other Fusaria, they have been well documented to produce many secondary metabolites—
compounds that are not required for the fungus to grow or develop but may be beneficial to the
organism. An analysis of ten genomes from fungi within the terminal clade (clade 3) of the FSSC
revealed each genome encoded 35 (F. cucurbitcola) to 48 (F. tenucristatum) secondary metabolite biosyn-
thetic gene clusters (BGCs). A total of seventy-four different BGCs were identified from the ten FSSC
genomes including seven polyketide synthases (PKS), thirteen nonribosomal peptide synthetases
(NRPS), two terpene synthase BGCs, and a single dimethylallytryptophan synthase (DMATS) BGC
conserved in all the genomes. Some of the clusters that were shared included those responsible for
producing naphthoquinones such as fusarubins, a red pigmented compound, squalestatin, and the
siderophores malonichrome, ferricrocin, and triacetylfusarinine. Eight novel NRPS and five novel
PKS BGCs were identified, while BGCs predicted to produce radicicol, gibberellin, and fusaoctaxin
were identified, which have not previously described in members of the FSSC. The diversity of the
secondary metabolite repertoire of the FSSC may contribute to the expansive host range of these
fungi and their ability to colonize broad habitats.

Keywords: nonribosomal peptide synthetase (NRPS); polyketide synthase (PKS); terpene
synthase/cyclase; siderophore; radicicol; gibberellin

1. Introduction

Many fungi are capable of synthesizing complex compounds with bioactive properties
that are not essential for the organism. These compounds, termed secondary metabo-
lites, can have diverse chemical properties and are usually produced by a cluster of genes
within the fungal genome [1]. These biosynthetic gene clusters (BGCs) frequently contain a
key gene encoding the enzyme responsible for the synthesis of the “core” or “backbone”
unit of the compound and may include accessory genes that are responsible for further
modification(s) to the compound. The two most common classes of key genes found in
BGCs encode either polyketide synthases (PKSs) or nonribosomal peptide synthetases
(NRPSs). PKS enzymes generate a compound from linking ketides into a chain and are
further divided into non-reducing and reducing PKS proteins, which are responsible for
generating aromatic and fatty acid-like molecules, respectively. NRPSs catalyze the pro-
duction of peptide-based compounds from individual amino acids. Other key enzymes in
BGCs responsible for secondary metabolite biosynthesis include terpene synthase/cyclases,
which produce compounds with the formula (C5H8)n, dimethylallytryptophan synthases
(DMATS) producing derivatives of tryptophan, as well as BGCs encoding a phospho-
enolpyruvate phosphomutase responsible for producing phosphonate compounds. The
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most prolific fungal producers of secondary metabolites are members of the Ascomycota,
which produce well-known secondary metabolites such as the medically relevant com-
pounds penicillin and lovastatin and the mycotoxins aflatoxin and deoxynivalenol (also
known as vomitoxin).

Members of the ascomycete genus Fusarium produce a myriad of secondary metabo-
lites including several mycotoxins. As a genus, Fusarium is composed of hundreds of
species separated into at least 23 phylogenetically distinct species complexes [2,3]. While
the genus is estimated to have originated ~91 million years ago during the Cretaceous
period [4], the group referred to as the F. solani species complex (FSSC) diverged from the
rest of the Fusaria ~67 million years ago [4]. Currently, the FSSC is divided into at least
77 phylogenetically distinct species and are found worldwide [3,5]. This species complex is
composed of three clades (clades 1–3) where the terminal clade 3 is the largest with at least
61 distinct species and is composed of many agriculturally important species as well as
those associated with clinical infections [3,5–8].

Many secondary metabolites have been identified from members of the FSSC. Primar-
ily these have been napthoquinones including fusarubin and a multitude of derivatives and
similarly structured compounds (javanicin, solaniol, matricin, bikaverin, trichodermaol,
etc.) [9,10]. Other confirmed secondary metabolites include citreoisocoumarin, cyclosporin,
gibepyrone, lucilactaene, N-carbenzoxy-L-phenylalaninol, sansalvadmide, YCM1008A, as
well as unknown metabolites including a red pigment [10,11]. Of these compounds, only
the production of sansalvadmide (PKS30) and the red pigment (PKS35 also referred to as
PKSN) has been experimentally linked to specific BGCs in isolates from the FSSC [12,13].

Secondary metabolites play an important role in fungal pathogenicity on plants and
animals. Additionally, many secondary metabolites have inhibitory activity against other
microbes, and therefore may influence the soil microbiome through their production.
As members of the FSSC are soil-borne plant pathogens, evaluation of their secondary
metabolite biosynthetic potential is essential to better understand these pathogens. Analysis
of ten FSSC genomes revealed BGCs that were shared between all the FSSC genomes while
some were unique to a single genome. Despite the abundance of these BGCs in the FSSC,
the biosynthetic product of a vast majority of these BGCs remains unknown.

2. Materials and Methods
2.1. Genomic Data of FSSC Isolates

The relevant information of the FSSC genomes included in this study are listed in
Table 1. The genome sequence and annotation of seven FSSC isolates were obtained from
Mycocosm at the Joint Genome Institute (JGI) and three genomes were obtained from the
National Center for Biotechnology Information (NCBI). A revised version of the F. vanettenii
77-13-4 genome assembly and annotation was used in this study resulting in a discrepancy
in the protein IDs of the PKS and NRPS proteins provided in Tables S2–S5 and protein IDs
reported in previous studies [14]. The predicted number of BGCs in the newer version of
the F. vanettenii 77-13-4 genome was different (total 39) compared to the previous version
(total 36).

In addition to the genome data listed in Table 1, the PKS and NRPS reference protein
sequences from other Fusarium spp. and fungal species were obtained from GeneBank and
included in the phylogenetic analyses for comparison (Tables S2 and S3).
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Table 1. List and details of FSSC genomes used in this study.

Species Strain Genome Size
(Mbp)

Number of
Proteins Source/Reference

F. vanettenii 77-13-4 54.59 16,929 [15]
F. vanettenii T23 61.89 18,783 [16]

F. tenuicristatum NRRL 22470 61.51 17,800 [16]
F. mori NRRL 22230 43.64 14,523 [16]

F. cucurbiticola NRRL 22165 42.45 12,147 [16]
F. bataticola NRRL 22400 50.41 16,777 [16]

F. solani FS5 52.93 17,656 [17]
F. ambrosium NRRL 20438 49.04 17,262 NCBI
F. euwallaceae UCR1854 50.55 17,630 NCBI
F. floridanum NRRL 62606 47.42 16,762 NCBI

2.2. Species Phylogeny of FSSC Isolates

The gene sequences of translation elongation factor (TEF1) and the subunits of RNA-
dependent polymerase (RPB1 and RPB2) for all the FSSC isolates were identified using
BLAST+ [18]. A multiple gene sequence alignment was conducted in MEGA11 [19], and
the gaps and non-conserved regions were trimmed using Gblocks [20]. Model selection
and a maximum likelihood phylogeny with 1000 bootstrap replicates were constructed
using MEGA11 [19].

2.3. Prediction of Secondary Metabolite Gene Clusters and Phylogenetic Analysis of PKS and
NRPS Proteins

The secondary metabolite gene clusters in the FSSC genomes were predicted using the
fungal version of antiSMASH 6.0 using the options KnownClusterBlast, ClusterBlast, and
SubClusterBlast [21]. The number of biosynthetic gene clusters (BGCs) for each genome
was calculated and the PKS and NRPS protein sequences from these predicted clusters
were extracted. The PKS and NRPS proteins from both the previous and revised versions of
the F. vanettenii 77-13-4 genomes were included in the analysis to compare the differences
in annotation. The PKS and NRPS proteins were classified into various groups separately
using a phylogeny-based approach. Already known PKS and NRPS reference protein
sequences from various fungal genomes (Tables S2 and S3) were also included in the
analysis to aid in the classification [14,22–24]. For the phylogenetic analysis, PKS and
NRPS protein sequences from all FSSC isolates and reference protein sequences were
aligned using MAFFT [25]. All the gaps and non-conserved regions were removed from
the alignment using BMGE [26]. The best protein model selection was conducted using the
program ProtTest 3.4 [27], and maximum likelihood phylogeny trees with 1000 bootstrap
replicates were generated using RAxML 8.0 [28]. Visualization of the phylogenetic trees
was completed in iTOL v6 [29]. The PKS and NRPS clades were classified based on the
reference proteins.

2.4. Similarity Network and Phylogenetic Analysis of the Terpene Synthase/Cyclase, DMATS, and
Phosphoenolpyruvate Phosphomutase

The similarity network analysis and the diversity of the BGCs responsible for the
production of terpenes, dimethylallytryptophan derivatives, and phosphonate compounds
were explored using the program BiG-SCAPE [30]. BiG-SCAPE is a genome mining tool
that facilitates the fast and interactive analysis of BGCs from multiple genomes, develops
similarity networks, and classifies the clusters into various gene cluster families (GCFs). All
the reference BGCs from the MIBiG database [31] were included in the analysis to identify
the similarities with known natural products.

In addition to developing the similarity networks of BGCs and classifying various
GCFs, BiG-SCAPE elucidates the phylogenetic relationship within these families using a
multi-locus phylogeny approach. The phylogenetic analysis of the terpenes, dimethylal-
lytryptophan derivatives, and phosphonate-producing BGCs was accomplished using the
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program BiG-SCAPE [30], which also generated the genetic organization figures for each
of these BGCs. The phylogenetic tree files from the BiG-SCAPE analyses were visualized
using MEGA [19] and arranged manually.

2.5. Analysis of the Genetic Organization of the Conserved and Unique Biosynthetic Gene Clusters
with Known Products

The GeneBank files of the conserved BGCs from PKS and NRPS groups, as well
as the unique BGCs: radicicol, gibberellin, and fusaoctaxin A, were extracted from the
antiSMASH output. If the BGC was similar to any previously characterized cluster as
determined by antiSMASH results, the corresponding GeneBank file was obtained from
the MIBiG repository of known BGCs [31]. These homologous BGCs were compared and
visualized using the program clinker [32], generating the gene cluster comparison figures.

3. Results
3.1. Phylogenetic Analysis of FSSC Isolates Used in This Study

To better understand the evolutionary relationship between the FSSC isolates used in
this study, a phylogenetic analysis was generated using three phylogenetically informative
loci including the coding genes of TEF1, RPB1, and RPB2. A maximum-likelihood phy-
logenetic tree using the concatenated three gene sequences allowed for the visualization
of the relationship between the ten FSSC genomes (Figure 1). The organization of the
FSSC isolates in the phylogenetic tree was in agreement with previous studies [3], placing
the three FSSC isolates (F. floridanum, F. euwallaceae, and F. ambrosium) in the ambrosia
Fusarium clade.
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Figure 1. Phylogenetic analysis of ten FSSC isolates analyzed in this study. The maximum-likelihood
phylogenetic tree of ten FSSC isolates from the terminal clade was constructed using the coding
sequences of TEF1, RPB1, and RPB2. The robustness of the tree was assessed using 1000 boot-
strap replicates.

3.2. Identification of Secondary Metabolite Biosynthetic Clusters

The secondary metabolite biosynthetic gene clusters (BGCs) for all ten FSSC genomes
were identified using the fungal version of antiSMASH 6.0 [21]. The antiSMASH analysis
revealed the FSSC genomes encoded an average of 41 BGCs, with the least in F. cucurbitcola
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with 35 and the most in F. tenuicristatum with 48 (Table 2). The predicted number of
BGCs in the two genomes of F. vanettenii, 77-13-4 and T23, were 39 and 42, respectively,
indicating that diversity in the secondary metabolite potential exists within the same
species (Table 2). The revised version of the F. vanettenii 77-13-4 genome identified 39 BGCs,
3 more than in the prior version. The FSSC isolates were predicted to produce PKS, NRPS,
terpene synthase/cyclase, DMATS, phosphonate biosynthetic, and hybrid BGCs. The BGCs
containing a PKS or NRPS gene as the main biosynthetic core gene were the most abundant
gene clusters followed by terpene synthase/cyclase- containing clusters. Among these
BGCs, only F. bataticola NRRL 22400 was predicted to encode a PKS–terpene hybrid cluster.
Two ambrosia Fusarium clade genomes, F. floridanum NRRL 62606 and F. euwallaceae UCR
1854, were capable of producing an NRPS–terpene hybrid cluster and the F. bataticola and
F. solani FS5 genomes were predicted to carry an NRPS–DMATS hybrid cluster.

Table 2. Number and type of predicted secondary metabolite producing BGCs in ten clade 3 FSSC
genomes.

Species Strain Total
BGC a

Total b Hybrid BGCs

PKS NRPS Terpene DMATS Phosphonate
PKS–
PKS

Hybrid

NRPS–
NRPS

Hybrid

NRPS–
PKS

Hybrid

PKS–
Terpene
Hybrid

NRPS–
Terpene
Hybrid

NRPS–
DMATS
Hybrid

Fusarium
vanettenii 77-13-4 39 14 18 6 2 1 1 1

Fusarium
vanettenii T23 42 16 17 8 1 1 1

Fusarium
tenuicrista-
tum

NRRL
22470 48 18 18 10 2 2 1 1

Fusarium
mori

NRRL
22230 41 15 17 9 1 1 1 1

Fusarium
cucurbiticola

NRRL
22165 35 10 18 4 2 1

Fusarium
bataticola

NRRL
22400 45 17 22 7 2 1 1 1 1 1

Fusarium
solani FS5 43 15 22 6 2 1 2 1

Fusarium
ambrosium

NRRL
20438 40 14 19 5 2 1 1

Fusarium
euwallaceae UCR1854 40 13 21 5 3 1 1 1 1

Fusarium
floridanum

NRRL
62606 38 14 16 6 2 1 1

a Total BGC number is the number of BGCs in each genome and can be calculated as = (the sum of core biosynthetic
genes from each BGC class—the number of hybrid BGCs). b The total is the number of the indicated core protein
and does not necessarily reflect the number of BGCs with that type of core biosynthetic protein. Some NRPS–PKS
hybrids consisted of a single core biosynthetic protein and were classified only under the PKS category. These
BGCs were not included in the NRPS–PKS hybrid BGC list.

Of the putative BGCs, natural products for only a few were able to be predicted
using the KnownClusterBlast function in antiSMASH (Table S1). The natural products
squalestatin, a red pigment, and fusarubins/oxyjavanicin as well as several potential
siderophores including fusarinine, ferricrocin, malonichrome, and metachelin, were pre-
dicted to be produced by all ten FSSC isolates analyzed in the study. Sansalvamide (NRPS30)
and clavaric acid were predicted to be produced by all the FSSC isolates with the exception
of those included in the ambrosia Fusarium clade (Table S1). An NRPS–PKS hybrid BGC
in F. solani FS5 and F. tenuicristatum was predicted to be responsible for the synthesis of
cyclosporin, a secondary metabolite that has previously been described from members of
the FSSC [10,33].

3.3. Comparison of the Polyketide Synthase (PKS)-Containing Clusters

PKS reference proteins from Fusarium and other fungal species (Table S2; [14,22–24])
and the PKS proteins (including those in hybrid PKS BGCs) from our FSSC study group
(Table S4) were included in the analysis for a total of 290 PKS amino acid sequences. The
phylogenetic analysis of the PKS proteins revealed 27 different groups of PKS orthologues
in the FSSC genomes used in this study (Figures 2,S1 and Table S4), and were represented
by 23 previously known PKS proteins in other Fusarium spp. and 4 that were previously
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undescribed (PKSA-D; Figure 2B). BGCs containing PKS3, PKS7, PKS22, PKS32, PKS33,
PKS35, and the previously undescribed PKSB were conserved in all the FSSC genomes
included in this study. Among the 27 PKS BGC groups, only the products of 10 were
able to be predicted (Figure 2) based on antiSMASH results and previous studies [11,14].
The secondary metabolites fusarubins (PKS3), gibepyrone (PKS8), and the red pigment
(PKS35) are the currently known conserved secondary metabolites from the FSSC [11].
While the core biosynthetic gene PKS3 is moderately conserved across the ten FSSC isolates
in this study, an analysis of the genetic organization of the entire PKS3 BGC responsible for
fusarubin/oxyjavanicin synthesis revealed that the accessory genes of the ambrosia FSSC
genomes were different compared to the other FSSC isolates (Figure S2). Previously, the
gene encoding a PKS responsible for the production of a red pigment (termed PKSN/PKS35)
was characterized [13], and the genetic organization of the BGC encoding PKS35 was
conserved across all the FSSC isolates (Figure S3).

3.4. Comparison of the Nonribosomal Peptide Synthetase (NRPS)-Containing Clusters

A phylogenetic analysis of 332 NRPS proteins was conducted representing NRPS
proteins identified from the antiSMASH analysis of the FSSC genomes (including the
NRPSs in hybrid BGCs) and using NRPS reference proteins from other Fusarium and fungal
species (Table S3) [23,24]. Twenty-six different clades of NRPS proteins were distinguished
(Figure 3 and Table S5), of which eighteen were previously identified in other Fusarium
spp. and eight (NRPSA-H) were previously undescribed NRPS proteins found in the
FSSC genomes.

Of the 26 NRPSs in the FSSC genomes, 13 were conserved in all 10 genomes (NRPS1,
NRPS2, NRPS3, NRPS6, NRPS10, NRPS11, NRPS12, NRPS13, NRPS27, NRPS28, NRPSA,
NRPSB, and NRPSF; Figure 3). Conversely, NRPS21 and NRPS43 were found in only a
single FSSC genome, F. tenuicristatum NRRL 22470 and F. solani FS5, respectively. Many
of the conserved NRPS BGCs were predicted to be responsible for the biosynthesis of the
siderophores malonichrome (NRPS1), ferricrocin (NRPS2), triacelyfusarinine (NRPS6), and
metachelin (NRPS27) (Figures S4–S7). The only NRPS in the FSSC that has been exper-
imentally confirmed is NRPS30, responsible for sansalvamide biosynthesis [12], and it
was present in all FSSC genomes included in this study except for those in the ambrosia
Fusarium clade (Figure 3). NRPS43 is predicted to contribute to the biosynthesis of fumary-
lalanine, and a single BGC containing this NRPS was identified in the genome of F. solani
FS5 (Figure 3). Two NRPS-encoding genes, NRPS5 and NRPS9, were found to reside in a
single BGC in the genomes of F. bataticola and F. euwallaceae and homologues of these NRPS
genes have been characterized in F. graminearum and are known to produce the octapeptide
fusaoctaxin A [34].
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Figure 2. Overview of the distribution of PKS-encoding genes across FSSC genomes. (A) Maximum
likelihood phylogenetic tree of 290 PKS proteins from FSSC genomes and reference PKS proteins
from Fusarium and various other fungal species. The robustness of the tree was assessed using
1000 bootstrap replicates. The clades with PKS proteins from 10 FSSC genomes are highlighted in
various colors in the phylogenetic tree. (B) The detailed distribution of PKS genes in FSSC genomes.
Known products of the PKS-containing BGC are also provided. Light blue color indicates the presence
of one core biosynthetic gene and the dark blue color indicates the presence of two or more core
biosynthetic genes. Previously undescribed PKS genes are indicated with letters, i.e., PKS A-D.
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Figure 3. Overview of the distribution of NRPS-encoding genes across FSSC genomes. (A) Maximum
likelihood phylogenetic tree of 332 NRPS proteins from FSSC genomes and reference NRPS proteins
from Fusarium and various other fungal species. The robustness of the tree was assessed using
1000 bootstrap replicates. The clades with NRPS proteins from 10 FSSC genomes are highlighted in
various colors in the phylogenetic tree. (B) The detailed distribution of NRPS genes in FSSC genomes.
Known products of the NRPS-containing BGC are also provided. Light blue color indicates the presence
of one core biosynthetic gene and the dark blue color indicates the presence of two or more core
biosynthetic genes. Previously undescribed NRPS genes are indicated with letters, i.e., NRPS A-H.
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3.5. Comparison of the Terpene Synthase/Cyclase, DMATS, and Phosphonate-Producing BGCs

A total of 98 BGCs responsible for the production of terpenes, dimethylallytryptophan
derivatives, and phosphonate compounds were predicted from the 10 FSSC genomes using
antiSMASH and were further analyzed using BiG-SCAPE [30]. Of all these BGCs within
these biosynthetic groups, only two terpene- synthase/cyclase-containing clusters and a
single DMATS were conserved between all ten FSSC genomes (Figure 4). The multi-locus
phylogenetic analysis of these GCFs (Figures S8–S10) revealed that their phylogenetic
grouping is mostly in accordance with their species phylogeny (Figure 1).
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amino acid similarity and the synteny of the cluster indicates that it was conserved during 
vertical inheritance throughout the terminal clade of the species complex (Figures 4, 5A 
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from F. bataticola was a hybrid PKS–terpene cluster (Figures 4, 5B and S8). Seven FSSC 

Figure 4. Distribution of terpene synthases/cyclases, DMATS, and BGCs responsible for the synthesis
of phosphonate compounds across the FSSC genomes. Similarity network analysis of the terpene
synthases/cyclases, DMATS, and phosphonate-generating BGCs was conducted to identify their
distribution and conservation across the FSSC genomes. The product name is indicated alongside the
gene cluster family (GCF) if predicted or known. GCF grouping of (A) terpene synthases/cyclases
(T-GCF), (B) DMATS (I-GCF), and (C) phosphonate-producing BGCs (P-GCF) are shown across the
FSSC genomes. Light blue color indicates the presence of one core biosynthetic gene and the dark
blue color indicates the presence of two or more core biosynthetic genes.

The analysis of 67 terpene-synthase-/cyclase-containing BGCs revealed 18 different ter-
pene synthase/cyclase gene cluster families (T-GCFs), including 10 singletons (Figure 4A).
Of these 18 T-GCFs, a product of 5 of these terpene synthase/cyclase-containing clusters
was predicted. Squalestatin was predicted to be produced by all ten FSSC isolates; its amino
acid similarity and the synteny of the cluster indicates that it was conserved during vertical
inheritance throughout the terminal clade of the species complex (Figures 4, 5A and S8).
Aspterric acid was predicted to be produced by five FSSC isolates, while a BGC from F.
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bataticola was a hybrid PKS–terpene cluster (Figures 4, 5B and S8). Seven FSSC genomes
were predicted by antiSMASH to have the terpene synthase BGC responsible for the
production of clavaric acid (T-GCF-6; Figures 4 and 5C).
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Nineteen total BGCs containing a DMATS were identified across the ten FSSC genomes,
and only one DMATS-encoding BGC was conserved between all FSSC genomes in the analy-
sis (Figures 4B and S9). A single conserved BGC encoding a putative phosphoenolpyruvate
phosphomutase was present in all FSSC genomes with the exception of F. cucurbiticola
NRRL 22165, which had a unique phosphonate-producing BGC Figures 4C and S10).

3.6. Unique and Specific BGCs of Interest

Phylogenetic analysis indicated that the genome of F. mori carries a BGC that is similar
to the BGC responsible for gibberellin biosynthesis in F. fujikouri (Figure 5D). Further
analysis between these two gibberellin BGCs uncovered four homologous genes and
the organization of the cluster was conserved (Figure 6A). The homologue encoding
a geranylgeranyl diphosphate synthase may be responsible for the production of the
precursor to gibberellin, geranylgeranyl diphosphate (GGDP), while the homologue to the
CPS/KS-encoding enzyme is necessary for the cyclization of the final product.
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The antiSMASH analysis revealed that the genome of F. tenuicristatum has a PKS BGC
that is similar to the BGC responsible for radicicol biosynthesis in Pochonia chlamydosporia
(Figure 6B). Further analysis between these two radicicol BGCs uncovered five orthologous
genes, and the organization of this cluster was also conserved. Our study indicates that
PKS116/rdc5 and PKS13/rdc1 in F. tenuicristatumn confer the ability to likely synthesize
radicicol as opposed to zearalenone, a secondary metabolite from F. graminearum with a
similar chemical structure.

A phylogenetic analysis of various NRPS proteins indicated the presence of NRPS5 and
NRPS9 in F. bataticola and F. euwallaceae (Figure 3). These two NRPS proteins are known to be
involved in the production of the octapeptide fusaoctaxin A in F. graminearum [34]. Further
analysis between these three homologous BGCs for fusaoctaxin A uncovered conservation
in the organization of this cluster, indicating that fusaoctaxin might potentially be produced
by F. bataticola and F. euwallaceae.

4. Discussion

Overall, the FSSC isolates included in this analysis revealed that there was a diverse
array of potential secondary metabolites that could be synthesized. Collectively, a total
of 74 different BGCs (19 PKSs, 2 PKS–PKS hybrids, 21 NRPSs, 1 NRPS–NRPS hybrid,
17 terpene synthases/cyclases, 4 DMATS, 3 phosphonate-producing BGCs, 4 NRPS–PKS
hybrids, 1 PKS–terpene hybrid, 1 NRPS–terpene hybrid, and 1 NRPS–DMATS hybrid)
were identified in the 10 clade 3 FSSC genomes. The secondary metabolite BGC repertoire
for each isolate was unique where no two genomes had the same secondary metabolite
biosynthetic potential, even between the two F. vanettenii genomes. There were seven PKSs,
thirteen NRPSs, two terpene synthases/cyclases, and one DMATS BGC common between
all ten FSSC genomes included in this analysis. PKS3, PKS7, and PKS8 are frequently found
in most Fusarium genomes [11,14], and all 10 FSSC isolates in this study carried these BGCs.
Conversely, PKS32, PKS33, and PKS35 are primarily found in genomes of the FSSC and all



J. Fungi 2023, 9, 799 12 of 16

10 FSSC genomes had these BGCs. While the biosynthetic products of PKS32 and PKS33
are not known, PKS35 is responsible for the production of a red pigment [13]. The presence
of these PKS BGCs in an unidentified Fusarium sp. could aid in their identification as a
member of the FSSC; however, it should be noted that PKS35 has recently been identified
in closely related Fusarium species complexes such as F. staphlyeae, F. decemcellulare, and
F. dimerum [14].

The production of a vast array of secondary metabolites likely contributes to the
diverse environmental niche that members of the FSSC can be isolated from. For instance,
many naphthoquinones have been isolated from members of the FSSC [3]. PKS3 is involved
in the production of naphthoquinones such as fusarubin and oxyjavanicin, and could
provide a competitive advantage to the FSSC isolates producing them as napthoquinones
have antibacterial activity, especially against Gram-positive bacteria as well as inhibitory
activity against protozoa and fungi [9,35].

Members of the FSSC are well-established plant pathogens and collectively have a
broad host range, while some within the terminal clade of the FSSC are also associated
with clinical infections resulting in fusariosis [3,5–8]. Some secondary metabolites have
been demonstrated to be important virulence factors in fungi other than the FSSC [36].
The NRPS BGCs responsible for the synthesis of siderophores have been documented
to be important for virulence for the closely related phytopathogen F. graminearum [37].
NRPS6 is conserved in ascomycetes and is responsible for the synthesis of the extracellular
siderophore triaceylfusarinine, which is critical for virulence in several plant pathogenic
fungi [38]. NRPS1 is responsible for the synthesis of another extracellular siderophore
malonichrome, although it appears not to be as important for virulence as NRPS6, while
NRPS2 is responsible for the production of the intracellular siderophore ferricrocin. In
addition to these three siderophores, another might be produced by NRPS27, which is
closely related to NRPS6; this may synthesize metachelins, which have been characterized
in Metarhizium spp. [39].

In addition to siderophore production, two FSSC genomes included in this study
also carried a BGC encoding NRPS5 and NRPS9, which are responsible for fusaotaxin A
production in F. graminearum. Fusaotaxin A is a virulence factor involved in the cell-to-cell
invasion of wheat [34]; however, mutants lacking the cluster display virulence similar
to wild-type when inoculated in a maize stalk rot assay, indicating that this secondary
metabolite is host-specific [34]. The NRPS5 homologues in the FSSC isolates are shorter,
and therefore, it is hypothesized that they are responsible for producing a smaller product,
although the similarity between the NRPS9 homologues suggests that the initial unit is
likely γ–amino butyl acid (GABA), as seen with fusaotaxin A.

Many secondary metabolites have phytotoxic activity and can aid in pathogenicity; in
particular, the previously mentioned naphthoquinones are reported to arrest root growth [9].
Another example is radicicol (also known as monorden), which was first identified as a
phytotoxin in F. virguliforme, a member of clade 2 of the FSSC and is the causative agent
of soybean sudden death syndrome (SDS) [40]. Radicicol is capable of producing SDS-
like symptoms such as marginal curling and interveinal necrosis on soybean leaves. The
secondary metabolite is an inhibitor of heat shock protein 90 [41], and its production in the
fungus Colletotrichum graminicola is hypothesized to suppress competing microorganisms
and the plant defense response [42]. The two core radicicol PKS biosynthetic genes from
F. tenuicristatum are similar to the PKS4- and PKS13-containing BGC in F. graminearum,
which are responsible for the synthesis of the mycotoxin zearalenone [43,44]. A recent genus-
wide phylogenetic analysis of PKS proteins from Fusarium resolved the radicicol-producing
PKS4 into a separate clade, PKS116, and identified structural differences in radicicol and
zearalenone that were caused by reducing PKSs and post-PKS modification by other
enzymes [14]. While there is similarity between the zearalenone BGC of F. graminearum and
the radicicol BGC in F. tenuicristatum, radicicol biosynthesis could provide a competitive
advantage in rhizosphere colonization and/or be directly involved in suppressing the plant
host immune response.
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The presence of some of the genes from the gibberellin BGC have been previously
described in genomes of other Fusarium spp. that are more evolutionarily related than
members of the FSSC (i.e., F. mangiferae, F. circinatum, and F. oxysporum; [45]). The F. mori
genome has four of the seven genes in the gibberellin BGC including a homologue of the
key CPS/KS gene (Figure 6A). While other Fusarium genomes have been identified to have
intact gibberellin BGCs, these Fusarium isolates did not produce gibberellins under standard
laboratory conditions [45]. Therefore, it is unlikely that F. mori is capable of producing
gibberellins and the product of this similar BGC, if any, is unknown.

Several DMATSs and phosphonate BGCs were identified in the FSSC; however, after an
analysis of these clusters, none of the final products could be predicted. DMATSs catalyze
the prenylation of L-tryptophan to generate dimethylallytrypthohan (DMAT), which is
then predicted to be further modified by the accessory proteins also encoded within the
cluster [46]. One of the best-known examples of secondary metabolites synthesized by a
DMATS encoded in BGCs are the ergot alkaloids of Claviceps spp. Phosphonate-producing
BGCs are capable of aiding an organism to sequester phosphorus when it is scarce or can
function as an antimicrobial metabolite by producing toxic phosphonate compounds [47].
Further experimental characterization of these BGCs is necessary to identify the natural
products synthesized and evaluate their biological relevance.

Fungal secondary metabolites have a diverse array of bioactivity as evidenced in
the number of compounds that have been developed for clinical use. As a majority of
the secondary metabolite BGCs from members of the FSSC produce unknown products,
further research into this area could provide alternative therapeutics. Additionally, better
knowledge of these compounds could provide alternative options for disease management.
Overall, the vast armamentarium utilized by members of the FSSC not only plays a critical
role in pathogenesis but likely provides a competitive advantage to these fungi for further
expanding their environmental niches.
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biosynthetic gene PKS3 is indicated; Figure S3: Genetic organization and conservation of the red
pigment BGC across the FSSC genomes and Talaromyces stipitatus. Each color represents a different
gene and the core biosynthetic gene PKS35 is indicated; Figure S4: Genetic organization and conser-
vation of the malonichrome BGC across the FSSC genomes. Each color represents a different gene
and the core biosynthetic gene NRPS1 is indicated; Figure S5: Genetic organization and conservation
of the ferricrocin BGC across the FSSC genomes. Each color represents a different gene and the
core biosynthetic gene NRPS2 is indicated; Figure S6: Genetic organization and conservation of the
triaceylfusarinine/fusarinine BGC across the FSSC genomes. Each color represents a different gene
and the core biosynthetic gene NRPS6 is indicated; Figure S7: Genetic organization and conservation
of the metachelin BGC across the FSSC genomes and Metarhizium robertsii. Each color represents a
different gene and the core biosynthetic gene NRPS27 is indicated; Figure S8: The multi-locus phylo-
genetic analysis of the terpene GCFs generated by BiG-SCAPE. Only the T-GCFs shared by at least
three members of FSSC isolates are shown. T-GCF4, T-GCF5, and T-GCF6 are predicted to produce
squalestatin S1, lanosterol/clavaric acid, and aspterric acid, respectively; Figure S9: The multi-locus
phylogenetic analysis of the DMATS GCFs generated by BiG-SCAPE. Only the I-GCFs shared by at
least three members of FSSC isolates are shown. Figure S10: The multi-locus phylogenetic analysis of
the phosphonate GCFs generated by BiG-SCAPE. Only the P-GCFs shared by at least three members
of FSSC isolates are shown. Table S1: Secondary metabolite biosynthetic gene clusters (BGCs), their
core biosynthetic protein IDs, and the most similar known cluster as predicted by antiSMASH in ten
clade 3 FSSC genomes; Table S2: List of reference PKS proteins from various Fusarium and fungal
species used in this study; Table S3: List of reference NRPS proteins from various Fusarium and fungal
species used in this study; Table S4: Distribution of polyketide synthases (PKS) identified in ten clade
3 FSSC genomes and their protein IDs; Table S5: Distribution of nonribosomal peptide synthetases
(NRPS) identified in ten clade 3 FSSC genomes and their protein IDs; Table S6: Distribution of the
terpene synthase/cyclase gene cluster families (T-GCF) identified in ten clade 3 FSSC genomes and
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