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Abstract: The postharvest quality of muskmelon can be affected by fruit rot caused by the fungus
Fusarium incarnatum, resulting in loss of quality. The utilization of electrostatic atomized water
particles (EAWPs) in agriculture applications has been shown to induce disease resistance in plants.
Therefore, in this study, we determined the effect of electrostatic atomized water particles (EAWPs)
on the disease resistance of muskmelon fruits against postharvest fruit rot caused by F. incarnatum.
EAWPs were applied to muskmelon fruits for 0, 30, 60, and 90 min. EAWP-treated muskmelon
fruits were inoculated with F. incarnatum, and disease progress was measured. Quantitative reverse-
transcription polymerase chain reaction (qRT-PCR) of the chitinase (CmCHI) and β-1,3-glucanase
(CmGLU) genes of Cucumis melo (muskmelon) was performed for EAWP-treated and -untreated
muskmelon fruits. The activities of cell-wall-degrading enzymes (CWDEs), chitinase, and β-1,3-
glucanase were also assayed in EAWP-treated and -untreated muskmelon fruits. The results showed
that disease progress was limited by EAWP treatment for 30 min prior to pathogen inoculation.
Muskmelon fruits treated with EAWPs for 30 min showed an upregulation of CWDE genes, CmCHI
and CmGLU, as observed by qRT-PCR, leading to high chitinase and β-1,3-glucanase activities, as
observed through enzyme assays. The results of SEM microscopy revealed that the effect of the
crude enzymes of EAWP-treated muskmelon caused morphological changes in F. incarnatum mycelia.
Furthermore, treatment with EAWPs preserved postharvest quality in muskmelon, including with
regard to texture stiffness and total chlorophyll contents, compared to untreated muskmelon. These
results demonstrate that the pretreatment of muskmelon with EAWPs suppresses the development
of F. incarnatum in the early stage of infection by regulating gene expression of CWDEs and elevating
the activities of CWDEs, while also maintaining postharvest muskmelon quality.
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1. Introduction

Muskmelon (Cucumis melo L.) is a species of Cucumis plants in the Cucurbitaceae family
that has been bred into many cultivated varieties for commercial purposes worldwide. The
nutritional value of muskmelon is high, because it contains ascorbic acid, carotene, folic
acid, and potassium, along with other beneficial bioactive compounds for human health [1].
In Thailand, the cultivation of muskmelon has increased to meet market demand, with an
annual production of about 16,440 ton (Department of Agriculture Extension). Muskmelon
is commonly cultivated in Thailand in polyhouses to maintain a favorable environment
and avoid insect pests. However, Thailand is located in tropical and subtropical regions,
where the climate favors pathogen germination, so muskmelon production is challenged
by several diseases during all stages of growth [2–4]. Postharvest fruit rot of muskmelon is
one of the most destructive diseases affecting sealable muskmelon, and the causal agent
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was recently isolated and identified as Fusarium incarnatum [5]. Fusarium sp. normally
infects plants through wounds during rain or irrigation [5]. The pathogen starts to invade
plant tissues and rapidly spread to other parts of plants. The general morphological
characteristics of F. incarnatum include a cotton-like colony and rapid growth on PDA. The
hyphae of F. incarnatum are hyaline septate with a smooth cell wall [5]. Some Fusarium
isolates produce cellulase and pectinase, which contribute to the weakening and successful
invasion of the host plant [6], causing tissue rot. After harvesting, muskmelon fruits are
normally stored at ambient temperature (28 ± 2 ◦C) before delivery to the market shelf.
During the rainy season, about 10% of muskmelon fruits are infected with fruit rot and
postharvest fruit rot [5]. The disease primarily starts from wounded or cracked muskmelon
fruits near peduncles, which then become rotten with mycelia-covered lesions, and wet
rotten tissues that can be observed beneath the lesions [5].

Plant defense mechanisms against pathogens play a crucial role in resisting invading
pathogens. Plants monitor a broad range of defense mechanisms against abiotic and
biotic stresses. Plants respond to abiotic and biotic stresses through oxidative burst of
cells, synthesis of phytoalexin, and the production of pathogenesis-related proteins (PR)
and producing and accumulating reactive oxygen species (ROS) [7–9]. PR proteins are
accumulated, localized in the infected cells and neighboring tissues, in order to limit
pathogen spread and improve the defensive capacity of plants [10]. Of the 17 different PR
proteins, PR2 and PR3 function as glucanase and chitinase [11], and are involved in plant
defense against fungal pathogen infection. Furthermore, ROS act as signaling molecules for
regulating growth, development, and stress response [7]. ROS in plants include super oxide
(O2
−), hydrogen peroxide (H2O2), and hydroxyl (OH−) groups. H2O2 is one of the most

studied ROS species, and is stable [12] and acts as a signaling ROS for plant development
and stress responses [13]. However, despite extensive studies on plant defense mechanisms,
the roles of these mechanisms are not fully understood. H2O2 is a major ROS that plays
diverse roles in plant defense against pathogens [14].

Electrostatic atomized water particles (EAWPs) are the products of electrostatic at-
omization, and are produced and released in fine liquid droplets with a diameter ranging
10 to 100 µm [15]. EAWPs consist of ROS, including H2O2, O2

− and OH−, as well as
nitric oxide [16–18]. EAWPs can delay cell senescence in fruits and vegetables [18,19],
suppress chlorophyll breakdown and senescence in horticultural crops [20,21], and induce
disease resistance in tomato against Botrytis cinerea [22]. With respect to postharvest quality,
application of EAWPs for an appropriate period of time (90 min) has been shown to result
in color and total chlorophyll content of a spear of asparagus being maintained during
storage at 4 ◦C [21]. Application of EAWPs for 60 min was able to maintain the postharvest
quality of ‘Namwa’ bananas by delaying ripening and senescence [19]. Furthermore, for
disease control, the application of EAWP has been shown to induce disease resistance in
tomato by upregulating the nitrate reductase gene and salicylic-dependent chitinase 3 [22].
The induction of H2O2 in transgenic plants enhances resistance to bacterial and fungal
pathogens [23].

Thus, these studies led us to hypothesize that EAWPs containing H2O2 may induce a
defense response in muskmelon plants against F. incarnatum. Postharvet fruit rot negatively
impacts the quality and quantity of muskmelon fruit production, with a disease incidence
of 10% on the market shelf. Pretreatment with EAWPs for an appropriate time could help
to decrease disease development and maintain the postharvest quality of muskmelon fruit
during storage. Therefore, in this study, we investigated the effect of applying EAWPs on
disease resistance in muskmelon against postharvest fruit rot caused by F. incarnatum.

2. Materials and Methods
2.1. Plant Material and Pretreatment of Muskmelon with EAWPs

Muskmelon fruits in the harvesting stage (13–15 cm in diameter and weight of
0.8–1 kg) were obtained from Krisamai Plantation Farm, Hatyai, Songkhla, Thailand. Each
muskmelon was surface disinfected with 70% ethanol prior to treatment with EAWPs. The
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muskmelon fruit was kept in a plastic box (24 × 35 × 18 cm) and exposed to EAWPs. Each
muskmelon was treated constantly with EAWPs, generated using a Panasonic F-GMK01
Nanoe Air Purifier, for 0 (control), 30, 60, 90, or 120 min in a closed plastic box, as shown
in Figure 1. The experiment was performed in 5 replications, and each replicate consisted
of 2 fruits. The muskmelons were immediately subjected to pathogen inoculation after
EAWP treatment.
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Figure 1. Schematic of apparatus used to generate air flow containing EAWPs for the treatment of
muskmelon fruit in a closed chamber.

2.2. Pathogen Inoculation and Disease Assessment

The postharvest fruit rot pathogen of muskmelon, F. incarnatum, which was isolated
from infected muskmelon in previous study [5], was obtained from the Culture Collection
of Pest Management, Faculty of Natural Resources, Prince of Songkla University, Thailand.
The spore suspension was inoculated onto plant tissues following the method reported by
Pornsuriya et al. [24]. The fungal pathogen was cultured on potato dextrose agar (PDA)
and incubated at ambient temperature (28 ± 2 ◦C) for 7 days for sporulation. The conidia
of F. incarnatum were collected, and their concentration was adjusted with sterile distilled
water (DW) to 1 × 106 conidia/mL. The treated muskmelons were wounded using fine
needles (0.8 mm in diameter), and 10 µL of F. incarnatum spore suspension was applied onto
the wounded muskmelon. The inoculated muskmelons were then incubated at ambient
temperature for 3 days, and symptom development was observed. Lesion development
was measured at 3 days post inoculation.

2.3. Formation of H2O2 from EAWPs

To confirm that the closed atmosphere contained H2O2, quantitative H2O2 was mea-
sured under the same conditions described in Section 2.1. Petri dishes containing 3 mL of
distilled water (DW) were exposed to the same EAWPs in a closed plastic box for 0 (control),
30, 60, 90, or 120 min, as described in Section 2.1. The accumulation of H2O2 in the DW
was measured using the ferric thiocyanate method, with some modifications [25].

2.4. qRT-PCR of PR Protein Genes

Quantitative RT-PCR was conducted to observe the expression of PR proteins at
the molecular level [26]. EAWP-treated muskmelon peels were subjected to RNA ex-
traction using Trizol reagent (ThermoFisher, Waltham, MA, USA), and total RNA was
dissolved in RNase-free DW and immediately used as an RNA template. The total RNA
was reversed-transcribed to complementary DNA (cDNA) and subjected to quantitative
reverse-transcription PCR (qRT-PCR), following the method of Dumhai et al. [27]. The
qRT-PCR reaction mixtures contained 1 ng of cDNA as the template and iScript One-Step
RT-PCR reagent with SYBR Green (Bio-Rad, Hercules, CA, USA). The internal reference
gene in this study was actin (act), which we used to normalize the variations in the input
total cDNA template between the control and EAWP-treated specimens. The primer pairs
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of PR protein genes (chitinase and β-1,3-glucanase) are shown in Table 1. The relative gene
expression, as fold change in expression of PR protein genes relative to actin as the inter-
nal reference gene, was analyzed with Bio-Rad CFX Manager analysis software (Bio-Rad,
Hercules, CA, USA).

Table 1. Specific primer pairs for the gene expression determinations with quantitative real-time
reverse-transcription polymerase chain reaction (qRT-PCR).

Gene Accession No. Primer Sequence (5′→3′) Product Size (bp)

CmCHI 1 AF241538 Chi-F AGGATCCACAATGTCCAAGC 160
Chi-R CCGGTGGTTTGATGAGAAGT

CmGLU AF459794 Glu-F AGAATGGTGGAGGATCGTTG 182
Glu-R GTCAGACATGGCGAACACAT

CmACT AB033599 ACT-F TGTTGGTCGACCTCGTCATA 234
ACT-R GGGTTGAGTGGTGCTTCAGT

1 CmCHI, chitinase; CmGLU, β-1,3-glucanase; CmACT, actin genes.

2.5. Enzyme Assay

EAWP-treated muskmelon was subjected to an enzyme assay to determine defense-
related and cell-wall-degrading enzymes [28,29]. Muskmelon peels were homogenized
with potassium phosphate buffer (KPB) pH 7.4 and centrifuged at 12,000× g for 20 min.
The supernatant was immediately used as the crude enzymes for the enzyme assay. The
cell-wall-degrading enzymes used in this study included chitinase and β-1,3-glucanase.
The activities of chitinase and β-1,3-glucanase were determined via the 3,5-dinitrosalicylic
acid (DNS) method [30]. The chitinase activity was determined using 1% colloidal chitin as
a substrate; glucose, a reducing sugar, as a product, was observed using a UV-5300 UV/VIS
spectrophotometer at 575 nm. The β-1,3-glucanase activity was quantified using laminarin
as the substrate, and the product N-acetyl-D-glucosamine was observed at 550 nm.

2.6. Scanning Electron Microscopy Observation

To test the effect of the CWDEs produced from the muskmelon fruits treated with
EAWPs, scanning electron microscopy was performed. EAWP-treated muskmelon peels
were subjected to extract crude enzymes with potassium phosphate buffer pH 7.0, as
described in Section 2.5. EAWP-untreated muskmelon fruits were used as the control group.
Agar plugs of F. incarnatum were cut from the edge of 5-day-old colonies and incubated in
crude extract at 37 ◦C for 1 h [31]. The samples were fixed in 3% glutaraldehyde at 4 ◦C
overnight. The samples were then dehydrated in gradual alcohol series (30, 50, 70, 80, 90,
and 100%) and dried to perform critical point drying (CPD). Finally, samples were coated
with gold particles and observed using a scanning electron microscope (SEM, JSM-5800 LV,
JEOL, MA, USA). Each treatment was composed of 5 replicates, and the experiment was
conducted twice.

2.7. Postharvest Quality Measurement

The EAWP-treated muskmelon at 0 min (control) and the most effective time from
those listed in Section 2.1 were subjected to testing for postharvest quality. EAWP-treated
muskmelons were stored at 20 ◦C from 0 to 9 days, and postharvest quality was tested at 3, 6,
and 9 days. The parameters used to determine postharvest quality included percentage of
weight loss, fruit stiffness, total soluble solid, and total chlorophyll content. Each treatment
contained 3 muskmelon fruits (3 replicates), and the treatment was repeated twice. The
percentage of weight loss was measured in EAWP-treated muskmelon after 3, 6, and 9 days of
storage. Fruit firmness (stiffness) was measured using a System TA.Xtplus Texture Analyzer
(Stable Micro Systems, Godalming, UK) and is expressed in Newtons (N). The total soluble
solid content of the muskmelons was analyzed using a hand refractometer (N1; Atago Co.,
Ltd., Tokyo, Japan), and is expressed in degrees Brix in fresh muskmelon tissues. Total
chlorophyll content was determined following the method of Kaewsuksaeng et al. [32].
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2.8. Statistical Analysis

Experiments were conducted following a completely randomized design, and analysis
of variance (ANOVA) was applied to the data. The data were subjected to an analysis of
the significant differences among the treatments using Student’s t-test and Tukey’s test.

3. Results
3.1. Application of EAWPs Limits Disease Progression

To confirm that EAWPs had been released from device, the accumulation of H2O2 in
the Petri dishes was measured. The results showed that H2O2 accumulated in the Petri
dishes containing DW from 30 to 120 min (Figure 2).
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Figure 2. Electrostatic atomized water particle (EAWP)-induced hydrogen peroxide accumulation in
Petri dishes (A, B) containing 3 mL of distilled water.

The increase in H2O2 content was related to the duration of application. Compared
with the untreated control muskmelon, pretreatment with EAWPs produced a significant
reduction in lesion diameter at 3 days after challenge inoculation with F. incarnatum. Treat-
ment with EAWPs for 30 min was the most effective at restricting the disease development
of F. incarnatum, whereas the control group and other treatments showed more severe dis-
ease (Figure 3). We observed cotton-like mycelia of F. incarnatum and fruit rot beneath the
fungal colony in the muskmelon (Figure 3). Muskmelon fruit pretreated with EAWPs for
30 min showed no fruit rot at the inoculation points and remained healthy in comparison
to those in the other treatments. Therefore, the EAWP treatment for 30 min was considered
the optimal condition, and was used for further study.

3.2. Overexpression of PR Protein Genes by EAWPs in Muskmelon

In this study, we determined expression levels of PR genes including CmCHI and
CmGLU, which are expressed as chitinase and β-1,3-glucanase in qRT-PCR. Our results
showed that the expression levels of CmCHI and CmGLU were significantly higher in
muskmelon treated with EAWPs for 30 min than in the control (without EAWP treatment),
as shown in Figure 4. The relative expression levels of CmCHI were 2.71 and 0.91 for the
EAWP-treated muskmelon and untreated muskmelon, respectively. The relative expression
levels of CmGLU were 3.07 and 0.85 for the EAWP-treated muskmelon and untreated
muskmelon, respectively (Figure 4).
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3.3. Effect of EAWPs on Defense-Related Enzymes and CWDEs’ Activity in Muskmelon

To determine the defense response owing to muskmelon pretreatment with EAWPs,
the activities of CWDEs were determined via an enzyme assay. The enzyme activities of
CWDEs in muskmelon fruit treated with EAWPs for 30 min were significantly higher than
those in the control (Figure 5). The chitinase activity was 0.034 and 0.008 U/mL for treated
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and control muskmelon, respectively. The β-1,3-gucanase activity was 0.240 and 0.002
U/mL for treated and control muskmelon, respectively (Figure 5).
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chitinase (A) and β-1,3-glucanase (B). Muskmelon fruits were inoculated with Fusarium incarnatum
after treatment with EAWPs for 0 (control) and 30 min. Error bars indicate the standard deviation
(SD) of enzyme activity (units), whereas letters indicate significant differences among treatments
according to Tukey’s test (p < 0.05).

3.4. Effect of EAWP-Treated Muskmelon Crude Enzymes on Morphological Changes in Fusarium
incarnatum

To test the effect of the crude enzymes of EAWP-treated muskmelon on the morpho-
logical changes in F. incarnatum, SEM was used. SEM microscopy showed abnormal fungal
cell walls and abnormal shapes for the F. incarnatum mycelia, as indicated by the wilting
and rough mycelia; in comparison, the mycelia of the control remained healthy (Figure 6).
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extract of EAWP-untreated muskmelon (A) and EAWP-treated muskmelon for 30 min (B).

3.5. Effect of EAWPs on Postharvest Quality

Treatment with EAWPs not only induced resistance in muskmelon against the posthar-
vest fruit rot pathogen F. incarnatum, it also maintained postharvest quality (Figure 6). We
found no statistical difference in weight loss between EAWP-treated muskmelon fruits and
the control (Figure 7A). Fruit firmness, or fruit stiffness, was also measured, and the results
showed that the fruit stiffness of the EAWP-treated muskmelon fruits was significantly
higher than that of the control after 3, 6, and 9 days of storage (Figure 7B). The total soluble
solid content fluctuated, and varied over time (Figure 7C). The chlorophyll content was
also detected in the EAWP-treated muskmelon fruits to be significantly higher than that of
the control (Figure 7D).
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4. Discussion

In this study, we tested the effectiveness of EAWP treatment, which generated H2O2,
for inducing disease resistance in muskmelon against the postharvest fruit rot caused by
F. incarnatum. Our results demonstrated that the application of EAWPs for 30 min was
appropriate for limiting disease progress on inoculated muskmelon fruits (Figure 3). The
upregulation of cell-wall-degrading enzymes (CmCHI and CmGLU) was associated with
high activities of CWDEs (chitinase and β-1,3-glucanase), resulting in abnormal F. incarna-
tum morphology and disease resistance in muskmelon fruits (Figures 4–6). Furthermore, the
application of EAWPs maintained the postharvest quality of muskmelon fruits (Figure 7).

Infection with Fusarium species can cause fruit rot, dirty panicles, and wilting in
several plant species [5,33,34]. Plants respond to fungal infection through the production of
antimicrobial compounds and/or ROS [35]. H2O2 plays various important roles in plants,
with multifaceted functions in plants’ defense against fungal invasion [14]. For instance,
H2O2 exerts direct antimicrobial activity in the prevention of pathogen infection [36].
H2O2 may act as a signal transducer of systemic acquired resistance and induced gene
expression [37,38]. In the present study, we found that muskmelon fruits pretreated with
EAWPs showed enhance resistance against F. incarnatum, observed on the basis of symptom
limitation (Figure 3) and the increased transcription levels of the defense-related genes
CmCHI and CmGLU (Figure 4). We selected an EAWP application time of 30 min in order to
investigate gene expression and enzyme activities in muskmelon fruits against F. incarnatum
due to their capacity to limit lesion development (Figure 3). These results suggested that
defense-related genes were induced in the muskmelon fruits treated with EAWPs for
30 min. Similar results was observed in tomato plants pretreated with EAWPs, where an
upregulation of salicylic acid (SA)-dependent chitinase 3 (chi3) was observed after the
leaves were inoculated with Botrytis cinerea [22]. Therefore, the application of EAWPs for
30 min is considered appropriate for inducing disease resistance against the postharvest
fruit rot caused by F. incarnatum in muskmelon fruits.
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Although the expression of PR genes (CmCHI and CmGLU) and the enzyme activity
of chitinase and β-1,3-glucanase in EAWP-untreated muskmelon fruits demonstrated a
significantly lower expression and activity level compared to EAWP-treated muskmelon.
However, untreated muskmelon fruits showed expression of PR genes and activity of
both enzymes. This phenomenon may be due to PR proteins being strongly induced by
wounding or infection by pathogens, and it has been reported that wounding the plant
tissues induces expression of PR genes in tobacco [39]. Furthermore, artificial wounding
has been reported to enhance the expression level of PR-10 in bilberry leaf [40]. In our
study, muskmelon fruits were wounded by needles before inoculation with F. incarnatum
spore suspension and DW (control). This wounding may have induced expression of PR
genes and enzyme activity, as observed in Figures 4 and 5.

Another method for preventing fungal infection is via a mechanism that involves
the production of CWDEs. The production of CWDEs, including chitinase and β-1,3-
glucanase, in plants tissues can be caused by biotic and abiotic stresses [41–43], as well
as by some antagonist applications to plants [44,45]. Both enzymes play a crucial role in
hydrolyzing the fungal cell wall and limiting fungal invasion into plant tissues [46,47].
In the present study, pretreatment of muskmelon fruits with EAWPs for 30 min elevated
the activities of both chitinase and β-1,3-glucanase in plant tissues compared with those
of the untreated control fruits (Figure 5). The high levels of both enzymes limited fungal
invasion into the plant tissues. Thus, pretreatment of EAWPs for 30 min is an appropriate
for generating H2O2 with the aim of inducing high activities of both chitinase and β-1,3-
glucanase in muskmelon fruits. This high activity of both enzymes may be related to
the high transcriptional levels of CmCHI and CmGLU in muskmelon fruits, which were
correlated with symptom suppression against postharvest fruit rot. Furthermore, the
SEM results confirmed the activity of CWDEs produced by EAWP-treated muskmelons,
which resulted in an abnormal morphology of F. incarnatum mycelia (Figure 6). This result
suggested that the CWDEs produced by EAWP-treated muskmelons were involved in
changing the morphology of the fungi. These findings are in agreement with those of
Wonglom et al. [28], who reported that crude extracts from plants containing CWDEs are
able to hydrolyze the fungal cell wall.

As EAWPs contain ROS such as H2O2, these molecules may act directly on muskmelon
cells, leading to changes in the expressions of the genes involved in the defense response.
EAWPs have been applied in several plant species to prolong and maintain postharvest
quality. The effects of H2O2, which is generated by EAWPs, on postharvest quality include
the suppression of chlorophyll degradation, which results in the postharvest degreening
of green sour citrus [18]. For instance, Salaemae et al. [19] applied EAWPs to prolong the
postharvest quality of Namwa banana (Musa × paradisiaca). Kaewsuksaeng et al. [32]
demonstrated in relation to the postharvest quality of mangosteen that application of
EAWPs delayed the degradation of chlorophyll (Chl) and the activity of Chl-degrading
enzymes in the calyx. EAWP treatment has been shown to maintain the color, chlorophyll
content and firmness of asparagus [21]. Moreover, the application of EAWPs has been
shown to successfully induce disease resistance in tomato against Botrytis cinerea [22]. Our
findings show that pretreatment with EAWPs in muskmelon fruits not only induces disease
resistance against postharvest fruit rot, but also allows some postharvest fruit qualities to be
preserved. We found no difference in the weights of treated and untreated fruits, whereas
the fruit firmness and chlorophyll content were higher in the EAWP-treated muskmelon
than in the control (Figure 7). These findings suggest that the H2O2 generated by EAWPs
results in fruit firmness and chlorophyll content being maintained in muskmelon fruits.

Based on the results of the present study, it can be concluded that pretreatment of
muskmelon fruits using EAWPs for 30 min induces disease resistance against F. incarnatum
and limits lesion development. In order to prevent muskmelon fruits from experiencing
postharvest fruit rot, and in order to maintain postharvest quality, it is recommended that
pretreatment with EAWPs for 30 min be applied to muskmelon after harvesting and/or
before delivery to the market shelf.
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5. Conclusions

In our current study, EAWPs induced defense-related gene expression (CmCHI and
CmGLU) and elevated the activities of chitinase and β-1,3-glucanase, thereby limiting fungal
invasion into muskmelon fruits. Our findings suggest that EAWPs potentiate pathogen-
induced defense gene expression and activate disease resistance against the postharvest
fruit rot pathogen F. incarnatum in muskmelon fruits. Therefore, EAWPs may be able to be
used to control postharvest disease in fruits and vegetables.
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