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Abstract: Years of outbreaks of woody canker (Cryptosphaeria pullmanensis) in the United States, Iran,
and China have resulted in massive economic losses to biological forests and fruit trees. However,
only limited information is available on their distribution, and their habitat requirements have not
been well evaluated due to a lack of research. In recent years, scientists have utilized the MaxEnt
model to estimate the effect of global temperature and specific environmental conditions on species
distribution. Using occurrence and high resolution ecological data, we predicted the spatiotemporal
distribution of C. pullmanensis under twelve climate change scenarios by applying the MaxEnt model.
We identified climatic factors, geography, soil, and land cover that shape their distribution range and
determined shifts in their habitat range. Then, we measured the suitable habitat area, the ratio of
change in the area of suitable habitat, the expansion and shrinkage of maps under climate change, the
direction and distance of range changes from the present to the end of the twenty-first century, and
the effect of environmental variables. C. pullmanensis is mostly widespread in high-suitability regions
in northwestern China, the majority of Iran, Afghanistan, and Turkey, northern Chile, southwestern
Argentina, and the west coast of California in the United States. Under future climatic conditions,
climate changes of varied intensities favored the expansion of suitable habitats for C. pullmanensis in
China. However, appropriate land areas are diminishing globally. The trend in migration is toward
latitudes and elevations that are higher. The estimated area of possible suitability shifted eastward in
China. The results of the present study are valuable not only for countries such as Morocco, Spain,
Chile, Turkey, Kazakhstan, etc., where the infection has not yet fully spread or been established,
but also for nations where the species has been discovered. Authorities should take steps to reduce
greenhouse gas emissions in order to restrict the spread of C. pullmanensis. Countries with highly
appropriate locations should increase their surveillance, risk assessment, and response capabilities.

Keywords: Cryptosphaeria pullmanensis; MaxEnt model; global climate change; habitat shift; population
distribution

1. Introduction

Canker and dieback are considered to be devastating fungal diseases of woody plants
that can result in significant economic and ecological losses for orchards and forest ecosys-
tems [1]. Airborne fungal pathogen Cryptosphaeria pullmanensis causes canker disease in
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crops and forest plant, which was first recorded and described on fallen Populus trichocarpa
branches in the United States in 1984 [2], and was subsequently found in California, Nevada,
Washington, etc. [3,4]. This fungus primarily causes canker on the branches of P. fremontii [3],
Vitis vinifera, P. deltoides [4], P. nigra [5,6], Salix alba, P. alba [6,7], P. euphratica [6,8], Elaeagnus
angustifolia [9], Tilia cordata Mill [9], and Juglans regia [10,11]. The species has effectively
established itself in China [7,11–13] and Iran [5,10] over the past decade, where it was not
previously found. According to the literature reports, C. pullmanensis was first discovered
in 2016 on Populus alba, P. nigra, S. alba, and S. matsudana in Xinjiang Uygur Autonomous
Region, China [6,7]. Since then, C. pullmanensis was successively discovered on T. cordata
Mill [9], P. euphratica in [6,9], E. angustifolia [9], and J. regia [11,14] in Xinjiang Uygur Au-
tonomous Region and P. alba in Inner Mongolia Uygur Autonomous Region [12,13]. It
suggests that C. pullmanensis may spread rapidly and the danger level is increasing in
China. But to date, it is not clear when or how C. pullmanensis invaded China and how
widespread the disease is in the country. As we all known, the Xinjiang Uygur Autonomous
Region and Inner Mongolia Autonomous Region both comprise a fourth of China’s land
area. Despite its vast distribution area, little is known about the factors that influence the
existing and future distribution patterns of C. pullmanensis for the sake of its management
and monitoring.

Cryptosphaeria canker is typically observed on woody plants damaged by biotic and
abiotic stressors [15,16]; C. pullmanensis is no exception. C. pullmanensis can harm the bark,
cambium, heartwood, sapwood, and other types of wood [3], typically killing young trees
two to three years after infection, and older trees through disease, other infections, or
abiotic stressors [7]. The plant pathogen’s spores may be dispersed by rain and wind and
transported to new infection sites by insects, birds, and wind. Natural wounds (frost, hail,
wind, and rain) and other methods of wound creation (insects and birds) make infection
feasible [3]. C. pullmanensis has a severe impact in the western United States on native
Fremont cottonwood trees, leading to the widespread decrease in Fremont cottonwood in
California [3] and posing a significant danger to forestry production. In Iran, C. pullmanensis
has also been identified in large numbers in J. regia [17] and P. nigra [10]. In this study, we
pre-investigated 25 walnut orchards and its protective forest belt in the southern and eastern
portions of Xinjiang Uygur Autonomous Region (Aksu Region, Kashgar Region, Hotan
Region, Hami City, Bayingolin Mongolian Autonomous Prefecture) from 2019 to 2022 and
found that C. pullmanensis is relatively common, particularly on J. regia, P. euphratica, P. alba,
and S. matsudana, which was consistent with previous research.

Presently, C. pullmanensis research focuses mostly on host range, the detection of fungal
pathogens [5,10,12], biological features [7,18], and whole genome analysis [11]. There is
a lack of research on the epidemic of C. pullmanensis. The emergence of a plant disease
epidemic is dependent on the presence of an aggressive pathogen, a susceptible host plant,
and favorable environmental conditions [19]. Thus, It is critical to identify the primary
environmental elements that contribute to plant disease prevalence. Climate, geography,
soil, and land cover are the key factors restricting species dispersal [20]. Determining the
probable geographic distribution of Cryptosphaeria canker is crucial for advising field man-
agement and monitoring strategies. To our knowledge, very few studies have attempted to
forecast the possible dissemination of C. pullmanensis, especially potential developments in
response to climate change. Instead, most surveys and studies of the disease have focused
on orchards in small towns and rural villages.

It is well accepted that global temperature change would have a considerable ef-
fect on species distribution [21,22] and may exacerbate fungal diseases [20]. Due to the
unique life cycles and growth patterns of fungi, however, few research works [23–25]
have examined the distribution of fungi at vast spatial and temporal scales. The spatial
data management and geographic information system (GIS) offer a potential answer to
this issue [26–28]. Currently, a variety of species distribution models (SDMs) have been
used to predict distribution area, ecological requirements and ecological response, in-
cluding GARP (genetic algorithm for rule-set production) [29], CLIMEX (climate change
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experiment) [30], BIOCLIM (bioclimatic modeling) [31], GMPGIS (global geographic in-
formation system for a medicinal plant) [32], and MaxEnt (maximum entropy) [33,34].
Among these modeling approaches, the MaxEnt is an extensively used tool with superior
predictive performance [35–37], and it has been demonstrated that it remains useful even
when the distribution point’s number is imprecise and the correlation between climatic
and environmental parameters is unpredictable [38,39]. For example, Zhang et al. [40]
recently integrated GIS and MaxEnt methods to forecast the possibly appropriate locations
for Monilinia fructicola under different climate change scenarios in China. Ruheili et al.
also investigated the proportions and hotspots of witches’ broom disease using the future
climate projections in Oman [41]. Therefore, immediate study is required to prevent the
pandemic spread of C. pullmanensis, and it is critical to determine the possible danger
locations and prevalence levels [42].

In our study, we combine a total of 76 distribution points (25 collected by ourselves;
51 obtained through the literature) of the C. pullmanensis combined with 34 environmental
variables to forecast the probable global distribution variations of C. pullmanensis under
various climatic circumstances using the MaxEnt model. In addition, we evaluated the
direction of C. pullmanensis range alterations in response to climate change. The following
are the objectives of the current study: (1) under climate change conditions, to simulate
the probable geographic dispersion range of C. pullmanensis throughout the world and
China; (2) to explore the primary climatic conditions that limit the potential distribution
of C. pullmanensis; and (3) to develop a theoretical foundation for future C. pullmanensis
prevention and management.

2. Materials and Methods
2.1. The Distribution Points of C. pullmanensis

We used “Cryptosphaeria pullmanensis” as keywords to search the databases of the
GBIF (Global Biodiversity Information Facility) (https://www.gbif.org/occurrence/search?
taxon_key=5486752, accessed on 15 November 2022), Google Scholar (https://scholar.
google.com.hk, accessed on 15 November 2022), and the CNKI (China National Knowl-
edge Infrastructure) (https://www.cnki.net/, accessed on 16 November 2022), ultimately
obtaining the complete literature occurrence points for the C. pullmanensis. Additionally,
from 2019 to 2022, we conducted a field survey in China’s Xinjiang Uygur Autonomous
Region and collected 25 occurrence sites using GPS. Subsequently, a thorough database
of C. pullmanensis occurrences was created (Supplementary Table S1). The geographic
distribution data for C. pullmanensis was then processed as follows.

First, we used the online longitude and latitude query tool (www.mapcarta.com,
accessed on 20 November 2022) to retrieve the exact longitude and latitude for a certain
collection location (for example, hamlet or specific location) in the literature. Second, we
converted the literature’s six-decimal latitudes and longitudes to a floating-point number
(decimal system). Third, we ensured that the locations acquired individually matched
the latitudes and longitudes reported in the literature. To reduce data sampling bias, we
used the ENMTools.pl software (https://github.com/danlwarren/ENMTools, accessed on
26 November 2022) to trim occurrence points so that only one observation is maintained
in each 2.5 arc min grid cell (approximately 5 km2) (matching to environment variable
data below) [43]. Finally, C. pullmanensis had remaining occurrence points of 60 (Figure 1),
providing enough data points to develop species distribution models [44]. The base map
was from the standard map service system of the Ministry of Natural Resources as analysis
base maps.

https://www.gbif.org/occurrence/search?taxon_key=5486752
https://www.gbif.org/occurrence/search?taxon_key=5486752
https://scholar.google.com.hk
https://scholar.google.com.hk
https://www.cnki.net/
www.mapcarta.com
https://github.com/danlwarren/ENMTools
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manensis. They were analyzed using three separate socioeconomic models driven by CO2: 
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bution of C. pullmanensis while taking into account the stability of the terrain, soil type, 
and land cover type [47]. 

Figure 1. C. pullmanensis occurrence sites throughout the world were kept after spatial thinning with
ENMTools with a 5 km buffer.

2.2. Environmental Factor Variables

The distribution of species is generally greatly influenced by climate conditions, habitat
characteristics, terrain, and land cover [23,45], and various species have distinct environ-
mental needs. We used soil conditions and vegetation conditions in this study as limiting
ecological parameters since C. pullmanensis primarily damages woody plants. We first
download 34 environmental variables (Supplementary Table S2) from the World Climate
website (http://www.worldclim.org, accessed on 3 December 2022) with a spatial resolu-
tion of 2.5 min (approximately 5 km), which includes bioclimatic variables (Bio1-Bio19)
and elevation. These variables may have an impact on the distribution of C. pullmanensis.
They were analyzed using three separate socioeconomic models driven by CO2: shared
socioeconomic pathways (SSPs) 126, 370, and 585 [46]. The BCC-CSM2-MR was utilized
to perform this. ArcGIS 10.4.1 was used to determine the topographic information in the
grid, which includes aspect and slope (ESRI, Redlands, CA, USA). Additionally, 11 soil
factors were collected as the crucial environmental data using the Harmonized World Soil
Database (http://www.fao.org/soils-portal/, accessed on 3 December 2022) for our study.
Additionally, we obtained the worldwide land cover data for this study (around 1 km)
from https://globalmaps.github.io (accessed on 5 December 2022). Using ArcGIS 10.4.1,
all these data were transformed into ASCII format and their spatial resolution was unified
into 2.5 arcminutes. We employed the same topography factors, land cover, soil data, and
similar bioclimatic variables from different periods to forecast the future distribution of
C. pullmanensis while taking into account the stability of the terrain, soil type, and land
cover type [47].

http://www.worldclim.org
http://www.fao.org/soils-portal/
https://globalmaps.github.io
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We performed the jackknife analysis to determine the percentage contribution of
each environmental variable in the MaxEnt program (version 3.4.4) because too many
environmental variables can affect the ecological space dimension, in turn leading the
accuracy of the results [45,48]. All 34 environmental variables were used for analysis using
the ENMTools.pl software, and variables (correlation coefficient of more than 0.8) were
eliminated [47]. Specifically, the variable was eliminated with a smaller contribution if the
absolute value was >0.8 of the correlation coefficient between two variables. Both variables
were kept if the correlation coefficient’s absolute value was less than 0.8 (Supplementary
Figure S1) [49]. Therefore, for the purpose of building the species distribution model, we
finally decided on 11 environmental factors (Supplementary Table S3).

2.3. Construction and Accuracy Evaluation of the MaxEnt Model
2.3.1. Parameter Optimization of Maximum Entropy Model

An appropriate parameter optimization approach was helpful in reducing mistakes
due to model overfitting [50]. Aside from species occurrence data and environmental
variables, the RM (regularization multiplier) (values ranging from 0.1 to 4, increments
of 0.1) and FC (feature combination) (L: linear; Q: quadratic; H: hinge; P: product; T:
threshold) [34] in the MaxEnt software are required to build the species distribution model.
To find the best model tuning parameters for C. pullmanensis, we used the R software
(version 3.6.3) with kuenm package (https://github.com/marlonecobos/kuenm, accessed
on 12 November 2022) [51]. In general, the AIC (Akaike information criterion correction) is
regarded as a criterion for evaluating the goodness of fitting statistical model since it takes
into account the complexity of the model as well as the goodness of the model fitting data.
This prioritizes the source with the lowest delta AICc model [52]. As a result, the model
parameters were optimal when the rate of the omission was <5%, and the delta AICc was
the minimum (<2 or =0) [51].

The filtered environmental variables and species distribution data were then put into
the programs “Samples” and “Environmental layers,” and four future climatic scenarios
(2030s, 2050s, 2070s, and 2090s) were forecasted. By choosing “Create response curves,”
climate variables’ response curves were constructed, predictions were drawn, and Jackknife
test results were used to assess the relative importance of environmental components [53].
Both the output format and the file type are set to “Logistic” and “asc”. To confirm the
accuracy of the results, 10,000 background points and 10 replications (file type is subsample)
were conducted. We set the RM = (1.1) and FC = (LQPT) parameters in MaxEnt models
for C. pullmanensis based on the findings of model optimization (Supplementary Table S4).
A total of 25% was chosen as the “Random test percentage” for the test data [53,54]. The
“random seed” parameter has a random ratio set. The default values for the software’s
other settings were used.

One of the best and most extensively used methods for evaluating the accuracy of
niche models is the ROC (receiver operating characteristic) curve created by MaxEnt [43,44]
by reducing false negative and false positive distribution findings. True skill statistic (TSS)
and Kappa statistic were used to evaluate the accuracy of MaxEnt’s prediction [55]. To
assess prediction accuracy, the AUC (the area under the receiver operating characteristic
curve) is typically utilized [45]. The AUC value range is 0 to 1 [56]: ≤0.5 is regarded as poor
prediction, >0.5 and ≤0.7 is regarded as acceptable prediction, >0.7 and ≤0.9 is regarded
as good prediction, and >0.9 and ≤1 is regarded as outstanding prediction [57,58]. TSS
was evaluated as excellent, 1.0–0.85; very good, 0.7–0.85; good, 0.55–0.7; fair, 0.4–0.55; and
fail, <0.4 [59,60]. Kappa statistic was evaluated as excellent, >0.8; useful, 0.4–0.8; and poor,
<0.4 [61].

2.3.2. Classification of Potentially Suitable Areas

When used in conjunction with the reclassification command, the output data (“asc”
file) from the MaxEnt model replication might be converted from ASCII to raster format
using the ArcGIS format conversion tool. To categorize the model outputs, we utilized the

https://github.com/marlonecobos/kuenm
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maximum test sensitivity plus specificity (MTSPS) [37,62] threshold and constructed binary
maps (suitable or not suitable). The distribution map was then classed as no suitability
p ≤ 0.1915 (MTSPS), low suitability 0.1915 < p ≤ 0.4, medium suitability 0.4 < p ≤ 0.6, and
high suitability p > 0.6, respectively.

2.4. Statistical and Spatial Analysis
2.4.1. Calculating Distribution Shifts

Using SDM toolbox (version 2.4), changes in possible distribution areas were computed
after modeling the present and future appropriate suitable area for C. pullmanensis [63]. We
compared future acceptable suitable areas to the present distribution to determine zones
that were: (1) expanded, (2) stable, and (3) shrunken. The area of the regions selected in
steps 1 through 3 was then computed.

2.4.2. Centroid Migration

To further investigate the dynamic shift pathways of C. pullmanensis, we initially
calculated the centroid coordinates of C. pullmanensis in different time periods (present,
2030s, 2050s, 2070s, and 2090s) and SSP (SSP126, SSP370, and SSP585) using SDM toolbox
(version 2.4) [63]. Second, The centroid’s migration trajectory was analyzed by creating a
vector file that depicted the direction and magnitude of changes over time [64]. Thirdly,
migration distance was determined by comparing the centroids of several time periods
(current—2030s, current—2050s, current—2070s, and current—2090s) in various climate
scenarios. All of our geographical maps were projected using the Asia North Albers equal
area conic projection to accommodate the study area’s location.

3. Results
3.1. Assessment of the Model’s Accuracy

MaxEnt predicted the potentially suitable area for C. pullmanensis in China using
60 distribution records and 11 environmental variables, and the minimal AICc was used
to choose the best feature combination. After optimization, the parameter RM was set
to 1.1, the FC to LQPT, and the delta AICc to 0. (Supplementary Table S4). The MaxEnt
model runs 10 times with optimal parameters (Supplementary Figure S2). The optimized
MaxEnt model performed remarkably well in predicting the potentially suitable area for
C. pullmanensis, as shown by the average training AUC (Supplementary Figure S3) of
0.9904 and the average test AUC of 0.978. Both values were greater than 0.9 and greater
than the AUC value corresponding to random classification (0.5). The TSS and Kappa
values were 0.938 and 0.937, respectively, demonstrating that the optimized MaxEnt model
performed well in predicting the potentially suitable area for C. pullmanensis.

3.2. Environmental Variable Analysis for the Identification of the Predicted Potentially Appropriate
Area of C. pullmanensis

Detailed jackknife testing and a percent contribution study revealed that annual mean
temperature (bio1, 35.4%), the precipitation of the warmest quarter (bio18, 29.4%), the
precipitation of the driest month (bio14, 15.3%), land cover (6%), and elevation (5.4%) had
the greatest influence on C. pullmanensis distribution (Supplementary Table S5). The total
percentage contribution was 91.5%, while the total permutation importance was 93.4%.
Out of the eleven environmental variables, precipitation had the greatest impact, followed
by temperature, land cover, and elevation; on the other hand, soil and terrain both had a
relatively small impact on the distribution of C. pullmanensis distribution.

Notably, the study conducted an independent investigation of the influence of prospec-
tive habitats using environmental parameters with a contribution rate of more than 6%
(Supplementary Figure S5). A higher or lower annual mean temperature range (<5.7 ◦C
or >17.3 ◦C) will affect the adaptability of C. pullmanensis. The likelihood of encountering
C. pullmanensis reduces as precipitation increases. The C. pullmanensis is particularly sensi-
tive to precipitation, and a lack of precipitation aids in its spread. When the precipitation of
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the warmest quarter (bio 18) exceeds 71.3 mm and the precipitation of the driest month (bio
14) exceeds 6.7 mm, the environment is no longer adequate for its growth. C. pullmanensis,
on the other hand, is relatively less affected by terrain or soil.

3.3. Current Potentially Suitable Habitats of C. pullmanensis in the World and China
3.3.1. Global Suitable Habitats under Current Climate Scenario Models

The total area of all globally eligible regions, as shown by Figure 2 and Supplementary
Table S6, is 5.38 × 106 km2. The most favorable places are mostly in East Asia (China), West
and Central Asia (Iran, Afghanistan, and Turkey), South America (Chile and Argentina),
and California’s West Coast in the United States. The high-appropriate areas cover a total
world area of 0.59 × 106 km2. Southern Kazakhstan, most of Uzbekistan, northwestern
(mainly in Tarim basin and Gansu Corridor) and northern (most of Inner Mongolia Au-
tonomous Region) China, southern Spain, most of Morocco, northern Algeria, most of
Greece, west and mid-west of the United States, most of Chile, southern Syria, and most
of Afghanistan have low suitable areas. The global low suitable areas cover a total area of
3.37 × 106 km2. The medium suitable areas are roughly spread between the high and low
suitable zones. The global low suitable zones cover a total area of 1.42 × 106 km2.

J. Fungi 2023, 8, x FOR PEER REVIEW 7 of 18 
 

 

°C or >17.3 °C) will affect the adaptability of C. pullmanensis. The likelihood of encounter-
ing C. pullmanensis reduces as precipitation increases. The C. pullmanensis is particularly 
sensitive to precipitation, and a lack of precipitation aids in its spread. When the precipi-
tation of the warmest quarter (bio 18) exceeds 71.3 mm and the precipitation of the driest 
month (bio 14) exceeds 6.7 mm, the environment is no longer adequate for its growth. C. 
pullmanensis, on the other hand, is relatively less affected by terrain or soil. 

3.3. Current Potentially Suitable Habitats of C. pullmanensis in the World and China 
3.3.1. Global Suitable Habitats under Current Climate Scenario Models 

The total area of all globally eligible regions, as shown by Figure 2 and Supplemen-
tary Table S6, is 5.38 × 106 km2. The most favorable places are mostly in East Asia (China), 
West and Central Asia (Iran, Afghanistan, and Turkey), South America (Chile and Argen-
tina), and California’s West Coast in the United States. The high-appropriate areas cover 
a total world area of 0.59 × 106 km2. Southern Kazakhstan, most of Uzbekistan, northwest-
ern (mainly in Tarim basin and Gansu Corridor) and northern (most of Inner Mongolia 
Autonomous Region) China, southern Spain, most of Morocco, northern Algeria, most of 
Greece, west and mid-west of the United States, most of Chile, southern Syria, and most 
of Afghanistan have low suitable areas. The global low suitable areas cover a total area of 
3.37 × 106 km2. The medium suitable areas are roughly spread between the high and low 
suitable zones. The global low suitable zones cover a total area of 1.42 × 106 km2. 

 
Figure 2. Global suitable habitats under current climate scenario models (no suitability p ≤ 0.1915; 
low suitability 0.1915 < p ≤ 0.4; medium suitability 0.4 < p ≤ 0.6; high suitability p > 0.6, p = probabil-
ity). 

Figure 2. Global suitable habitats under current climate scenario models (no suitability p ≤ 0.1915; low
suitability 0.1915 < p ≤ 0.4; medium suitability 0.4 < p ≤ 0.6; high suitability p > 0.6, p = probability).

3.3.2. Current Potentially Suitable Habitats of C. pullmanensis in China

Figure 3 and Supplementary Table S7 show that the predicted potentially suitable
locations for C. pullmanensis in China are primarily distributed in 11 provinces, including
Xinjiang Uygur Autonomous Region, Qinghai, Inner Mongolia Autonomous Region, Gansu,
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Ningxia, Shanxi, Shannxi, Hebei, Liaoning, Jilin, and Tibet. The majority of Ningxia
and the western portion of Gansu are also found in these regions. Distributions are
sporadic in northern Qinghai, southern Tibet, northern Shanxi, the bulk of Hebei, and the
westernmost portions of Liaoning and Jilin, and are found mostly in the whole of Xinjiang
Uygur Autonomous Region, west of Gansu (mainly in Gansu Corridor), and most of Inner
Mongolia and Ningxia. Northern Qinghai, southern Tibet, northern Shannxi, the majority
of Hebei, and west of Liaoning and Jilin all have sporadic distributions.
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p ≤ 0.1915; low suitability 0.1915 < p ≤ 0.4; medium suitability 0.4 < p ≤ 0.6; high suitability p > 0.6,
p = probability).

The majority of Xinjiang Uygur Autonomous Region, western Gansu, Midwest Inner
Mongolia Autonomous Region, Northern Qinghai, and Ningxia had high suitability areas
for C. pullmanensis, and the entire area was 24.96 × 104 km2, accounting for 2.6% of China’s
total territory. C. pullmanensis medium-suitability habitats were frequently next to high-
suitability habitats, with a total area of 43.89 × 104 km2, accounting for 4.57% of the
research area. The remaining suitable areas are low-suitable habitats, with a total area of
99.07 × 104 km2, accounting for 10.32% of the research area. Furthermore, other provinces
and cities were unfavorable places for C. pullmanensis, with a total size of 792.08 × 104 km2,
accounting for 82.51% in China.
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3.4. Future Potentially C. pullmanensis Habitats in the World and China
3.4.1. Global Suitable Areas under Future Climate Scenario Models

Figure 4 and Supplementary Table S6 show that the global trend for suitable land
area is generally decreasing. In the SSP370 and SSP585 scenarios, the two-period total
usable area declined significantly (maximum reduction of 55.58%) and showed a modest
northward shift in the northern hemisphere. The clearest indication was the establishment
of suitable regions in northern Canada (Figure 4(C2,C3,D2,D3)). In the SSP126 scenario,
however, the total acceptable area decreased somewhat, and the overall changes are in-
significant. All future changes in high-suitability areas show a slight increase trend only in
the SSP126 scenario.
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Figure 4. The future potentially geographical distributions of C. pullmanensis in the world under future
climatic conditions. (A1–A3) Potential habitats of C. pullmanensis in the world in the 2030s under the
SSP126, SSP370, and SSP585 scenarios. (B1–B3) Potential habitats of C. pullmanensis in the world in the
2050s under the SSP126, SSP370, and SSP585 scenarios. (C1–C3) Potential habitats of C. pullmanensis
in the world in the 2070s under the SSP126, SSP370, and SSP585 scenarios. (D1–D3) potential habitats
of C. pullmanensis in the world in the 2090s under the SSP126, SSP370, and SSP585 scenarios.
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3.4.2. Potentially Suitable Habitats for C. pullmanensis Based on Future Climatic Scenarios
in China

Figure 5 and Supplementary Table S7 illustrate the circumstances of suitable C. pullmanensis
habitats during various future eras and climate scenarios. Middle and high-appropriate
habitats for C. pullmanensis in China are primarily located along the edges of the Tarim basin
and Junggar basin, eastern Xinjiang, Gansu Corridor, Midwest Inner Mongolia, and north
of Qinghai and Ningxia under each future climatic scenario model. And the low-suitable
regions are primarily located in the central Tarim basin and Junggar basin, southwestern
Tibet, and eastern Inner Mongolia. The suitable area is increasing as a whole in China;
among them include the fact that the future changes in total appropriate areas indicated
a dropping and then rising tendency in the SSP126 and SSP370 conditions. However, in
the SSP585 scenario, the overall area of eligible regions expanded at first and then reduced
in comparison to the current condition. In addition, the maximum suitable area appeared
in the 2070s (183.66 × 104 km2) under the SSP126 scenario, the maximum suitable area
appeared in the 2070s (204.25 × 104 km2) under the SSP370 scenario, and the maximum
suitable area appeared in the 2030s (202.67 × 104 km2) under the SSP585 scenario.

Figure 6 and Supplementary Table S8 illustrate the adaptability changes in C. pullmannensis
under different future climate scenarios (Figure 3). C. pullmanensis has significantly ex-
panded its range in the north of Junggar basin, the Tarim basin’s edge, eastern Xinjiang,
northwestern Gansu, northern Qinghai, and southwestern Tibet. Under the SSP370 and
SSP585 scenarios for the 2090s, the predominant shrinkage area is the margin of the Tarim
basin, indicating that the environmental conditions in this region are not suitable for the
life of C. pullmanensis.

3.5. Centroid Migration of Potential Suitable areas for C. pullmanensis Based on Future
Climatic Scenarios

Due to the uneven form of the acceptable habitat areas for C. pullmanensis, we utilized
a centroid migration analysis to evaluate the changes in the distribution pattern under
twelve climate change scenarios. We found that the core of the C. pullmanensis acceptable
habitat areas under the current climate change scenario is situated in Yuli county, in south-
ern Xinjiang Uygur Autonomous Region (89.552582◦, 41.070778◦). Under various climate
change scenarios, it was expected that the center of appropriate habitat areas will shift
eastward. 2090s_SSP585 predicted the most distant migration (91.872354◦, 40.936859◦),
followed by 2090s_SSP370 (90.948488◦, 40.901504◦). However, according to the SSP126 sce-
nario, C. pullmanensis was projected to move eastward in the 2070s and subsequently
westward in the 2090s (90.218878◦, 41.016473◦) (Table 1 and Figure 7).
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Table 1. Centroid shifts of potential suitable areas for C. pullmanensis under future climatic conditions.

Climate Scenario Period
Centroid Coordinates

Direction
Migration Distance (between
Two Adjacent Decades)/kmLongitude

/◦ E
Latitude

/◦ N

Current 1970–2000 89.552582 41.076586

SSP126

2021–2040/2030s 89.847418 40.967573 Southeast 3.03
2041–2060/2050s 90.188925 41.246166 Northeast 63.5
2061–2080/2070s 90.559061 41.08451 Northeast 97.1
2081–2100/2090s 90.218878 41.016473 Northeast 64.5

SSP370

2021–2040/2030s 90.082805 41.152546 Northeast 51.6
2041–2060/2050s 90.440685 40.959847 Southeast 86.4
2061–2080/2070s 90.73097 41.03039 Northeast 113.8
2081–2100/2090s 90.948488 40.901504 Northeast 135.7

SSP585

2021–2040/2030s 91.013858 41.113851 Northeast 141
2041–2060/2050s 90.324757 40.906896 Northeast 76.3
2061–2080/2070s 90.662871 40.90278 Southeast 108.4
2081–2100/2090s 91.872354 40.936859 Southeast 224.2
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in China. Red star indicates the centroids of the suitable habitats of C. pullmanensis under current
climate. Dots and triangles represent the centroids of the suitable habitats of C. pullmanensis under
different future climate scenarios.

4. Discussion
4.1. Accuracy of MaxEnt after Optimization

MaxEnt can build species response curves, objectively analyze the environmental
characteristics of pertinent habitats, and is unaffected by sample size [65]. Based on the
results of this experiment, 60 occurrence points were adequate data to create species
distribution models [44]. Typically, the species and its data structure define the model
parameters [66]. The bulk of earlier studies used the MaxEnt model with default settings,
which led to overfitting and sampling bias and had a detrimental effect on the capacity
to generalize species predictions [67]. The kuenm package was used in this experiment
to improve the MaxEnt model because it reduces the likelihood of overfitting the model
by matching and analyzing species distribution data with environmental variables and
maintaining an effective distribution data in a similar niche [51]. After changing the RM
from 1 to 1.1 and the FC from LQHPT to LQPT, the AICc decreased from 3051.2 to 0,
showing that there was less overfitting as a result of optimization. Following optimization,
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the AUC, TSS, and Kappa scores were 0.9904, 0.938, and 0.937, respectively, indicating
excellent results accuracy.

4.2. The Effect of Environmental Factors on the Distribution of C. pullmanensis

Due to their distinct development forms, fungi cannot thrive in the absence of proper
flora and soil conditions, even if the climate and terrain are ideal [20]. Therefore, an
excessive amount of environmental variables and parameters need to be taken into account.
Species distribution may be disproportionately impacted by environmental variables [68].
Our findings show that climate factors influence the spread of C. pullmanensis more strongly
than topography, land cover, and soil factors, and the temperature variables (bio1) have a
more significant effect than precipitation variables (bio14 and bio18). Although the total
contribution rate is only 19.9%, the role of topography, land cover, and soil factors cannot be
ignored for the distribution and growth of C. pullmanensis. We hypothesized two reasons,
the first of which focuses on the influence scale of environmental variable type. Changes in
soil factors, land cover, and topographic factors often affect the distribution of species on a
narrow spatial scale, while climate factors are the opposite. Furthermore, in comparison
to climate conditions, topography, land cover, and soil variables have an impact on the
pathogen’s host. The second explanation is related to the infection approach. Previous
investigations have proven that wounds under biotic (i.e., wounds produced by pruning,
insects, birds, etc.) or abiotic (i.e., wounds produced by frost, hail, wind, rain, or the
natural shedding of catkin, etc.) stress [15,16] are the main path of C. pullmanensis infection.
Northwestern and northern China are dominated by temperate continental climate and
temperate monsoon climate, with low annual rainfall, large radiation angles, seasonally
high temperatures [69], cold and dry winters, sparse and solitary vegetation, a high degree
of salinization and alkalinity [70,71], and the main hosts of C. pullmanensis such as S. alba,
P. alba, S. matsudana, J. regia, P. euphratica, and E. angustifolia are widely distributed. Under
such natural environmental conditions, the occurrence of forest wounds is inevitable. In
addition, the optimal temperature for C. pullmanensis growth is 28–31 ◦C in darkness, but
the fungus can still grow slowly at 37–40 ◦C or 0–15 ◦C [7]. Compared to acidic settings,
C. pullmanensis favors alkaline habitats [7]. It indicates that C. pullmanensis can adapt to
extreme temperatures and high salinity environments in northwestern and northern China.
However, southern China is dominated by a subtropical monsoon climate, with a high
annual precipitation and warm and humid winters, which indicates that it is unsuitable for
C. pullmanensis or that suitability is limited in southern China.

4.3. Changes in the Distribution of C. pullmanensis in the Future

According to the IPCC (2021) assessment, yearly precipitation would increase by 5 to
7% by 2050, and the average annual temperature may rise by 2.3 to 3.3 ◦C in China [72].
In other words, China’s climate may become warmer and wetter in the future. According
to predictions, by the end of this century, global warming will be between 1.6 ◦C and
5 ◦C, and annual precipitation will increase by 1.5% to 20% [73]. According to our results,
the predicted potential suitable areas for C. pullmanensis based on the present climate
conditions were primarily located in America, Iran, and China, and the majority can be
found in China’s Xinjiang Uygur Autonomous Region and Inner Mongolia Autonomous
Region, which is consistent with the results of previous resource surveys. The expected
potential suitable areas for C. pullmanensis will shift poleward in latitude over time, based
on several climate scenarios (Figure 4). However, the overall trend for suitable areas in
China is increasing, and habitat fragmentation is a key issue. The centroids migrated to
eastern China based on predicted climate conditions, and the pattern of migration based
on high altitude was strong and clear. The growth in the area of high adaptability in the
Tibetan Plateau, including Qinghai province and the Tibet Autonomous Region, is especially
notable (Figure 6). Along the Tianshan Mountains, Pamir Mountains, Kunlun Mountains,
Altai Mountains, Altun Mountains, Qilian Mountains, and Liupan Mountains, appropriate
habitats have also increased dramatically. In addition, based on the SSP370 scenario from
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2070, the distribution pattern of C. pullmanensis has changed the most due to climate change,
indicating that the predicted potential suitable area for C. pullmanensis may expand in the
future due to increased temperature and precipitation.

4.4. Limitations of SDM in Predicting Species Distribution

Ecological niche models demonstrated good prediction power in identifying currently
occupied and unoccupied areas for C. pullmanensis. Our models can be used to analyze
species distribution as well as to design prevention efforts toward the most critical places in
priority management areas and non-priority management areas. Nonetheless, the present
results may have also been affected by a number of uncertainties. Firstly, the precision of
species occurrence data, particularly from published sources, increases the predictability
uncertainty. Because certain distribution locations lacked latitudes and longitudes, they
were found by searching for place names using coordinate positioning software, which may
have led to geographical mistakes. Secondly, the incidence and prevalence are not only
influenced by climate-causing plant diseases, but also by host conditions and medication
frequency. In addition to soil type, climate, vegetation type, and topographic parameters
utilized in this study, variety type, human activities, species interactions, and socioeconomic
structure can affect host distribution [74,75]. Therefore, the anticipated potential area of
suitability will differ from the actual area of suitability. In addition, the present study
focused solely on the spatial ecology and not the epidemiological elements; hence, the
results do not indicate the likelihood of illness occurrences.

In order to more precisely direct C. pullmanensis surveillance, early warning, and pre-
vention in future studies, on the one hand, it is vital to acquire an extensive amount of field
survey data, and on the other, refining the algorithms to employ more relevant information
and improving the model’s intelligence would further improve the simulation’s accuracy.

5. Conclusions

In this study, for the first time, the MaxEnt model with optimized parameters was
used to simulate the distribution of possibly appropriate habitats for C. pullmanensis based
on current climate conditions and projected climate change. Temperature was the most
significant element (threshold) influencing its distribution, followed by precipitation and
land cover, such as annual mean temperature (5.7–17.4 ◦C), the precipitation of the driest
quarter (<71.3 mm), and the precipitation of the driest month (<6.7 mm). Combining the
response curves of the main climate parameters of C. pullmanensis, warm and dry areas
within a specific temperature range are more conducive to the growth of C. pullmanensis.
For the current climate, C. pullmanensis is mostly found in northwestern China, the majority
of Iran, Afghanistan, and Turkey, northern Chile, southwestern Argentina, and the west
coast of California. As for China, the areas of low, medium, and high suitability for
C. pullmanensis were 99.07, 26, and 24 square kilometers, respectively; the majority of
the high-suitability areas were concentrated in the Xinjiang Uygur Autonomous Region
and Inner Mongolia Autonomous Region in China. These regions have a total area of
167.92 × 104 km2. Future temperature changes of various intensities will improve the
C. pullmanensis suitable regions in China. However, the suitable areas of C. pullmanensis
around the world are decreasing in number. The trend in migration is toward higher
latitudes and altitudes. It is estimated that the center of the suitable area will move
eastward in China. The results of this study will be valuable not only for nations such
as Morocco, Spain, Chile, Turkey, Kazakhstan, etc., where the infection has not yet fully
spread or been established, but also for countries where the species has been identified.
Authorities should implement measures to minimize greenhouse gas emissions to prevent
the spread of C. pullmanensis. Countries with highly appropriate locations should enhance
surveillance, risk evaluation, and response.
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