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Plant diseases can be classified according to pathogenic organisms, and 70–80% of
them are fungal diseases. Fungal diseases cause a significant reduction in crop yield
and quality and threaten global food security. More than 20,000 species of fungi are
known to cause diseases in crops and plants. As of 5 June 2023, the genome data of
over 4239 different fungal species have been published and are available at the NCBI
database (https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/, accessed on 5
June 2023). Comparative genomes of fungal plant pathogens provided great insight into
fungal genomic compositions and structures.

Pyricularia oryzae (syn. Magnaporthe oryzae), Botrytis cinerea and Fusarium graminearum
are ranked first, second and fourth of the top ten global fungal plant pathogens [1]. These
fungal species are now considered to be model systems for the study of plant–fungus
pathogen interactions. In this Special Issue, 156 genome assemblies were used to construct
a pan-genome of P. oryzae; then, the mechanisms of genetic divergence and virulence
variation of different sub-populations were elucidated. The pan-genome contained a total
of 24,100 genes—twice that of the reference genome 70-15 strain, including 70% of core
genes and 5% of strain-specific genes. Conventional secreted proteins were enriched in
high-frequency near-core genes and localized proximate to transposable elements (TEs).
The virulence genes AVR1-CO39, AVR-Pi54, AvrPi9 and AvrPiz-t are present in all of the
investigated isolates, except for AvrPii and Avr-Pia [2].

Moreover, the genome sequence data of six other fungal plant pathogens were per-
formed, and their genome sizes ranged from 38.25 Mb to 66 Mb (Table 1). These data
provided new insights into the genome sizes and the composition of fungal plant pathogens
and laid a solid foundation for further studies on the mechanisms of pathogenicity, on
morphological characteristics, on forward/population genetics, on molecular markers, and
on disease management.

Table 1. Genome assembly features of six fungal plant pathogens.

Pathogen Genome
Size (Mb)

Predicted
Genes

GC
Content

Repeat
Sequence Reference

Calonectria ilicola 66.3 18,366 48% 1.53% [3]
Diaporthe amygdali 51.5 15,818 52.1% 1.1109% [4]

Diaporthe eres 60.8 16,499 47.6% 1.3151% [4]
Bipolaris zeicola 32.21 10,108 50.66% 11.63% [5]

Exserohilum
rostratum 34.05 10,457 50.56% 3.7% [5]

Stagonospora
tainanensis 38.25 12,206 51.49% 13.20% [6]
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Ultimately, one of the direct ways to determine how a gene (and the protein it encodes)
functions in cellular processes is to see what happens to the organism when that gene
is lacking or overexpressed. Genes are contained within the nucleus, mitochondria and
chloroplasts (plant) in eukaryotes. In this Special Issue, the function of two mitochondrial
genes in Botrytis cinerea and Fusarium graminearum were elucidated. One is mitochondrial
transport protein (MTP), which catalyzes the transport of biochemical substances across the
mitochondrial inner membrane. Shao et al. [7] generated the Bcmtp1 mutant of B. cinerea.
The results demonstrate that BcMTP1 is involved in the regulation of the vegetative growth,
asexual reproduction, stress tolerance and virulence of B. cinerea. Han et al. [8] investigated
F. graminearum mitrochondrial porin, or voltage-dependent anion-selective channels, which
regulate the complex interactions associated with organellar and cellular metabolism. The
authors generated Fgporin mutant in F. graminearum and characterized the function of
FgPorin. The results showed that FgPorin is involved in the regulation of fungal hyphal
growth, conidiation, sexual reproduction, virulence on wheat and autophagy.

The small Rho GTPase family regulates most fundamental processes of eukaryotic
cells, including (but not limited to) morphogenesis, polarity, movement, cell division, gene
expression and cytoskeleton reorganization [9,10]. In order to elucidate the function of the
small GPTase MoRho3 in M. oryzae, Li et al. [11] performed comparative transcriptomic anal-
ysis of MoRho3 constitutively active mutant (MoRho3-CA) and MoRho3 dominant-negative
mutant (MoRho3-DN). In MoRho3-CA vs. WT, about 874 up-regulated, differentially ex-
pressed genes (DEGs) were detected, and the DEGs were significantly enriched in the
ribosome biogenesis pathway, while 1511 down-regulated DEGs were also detected and
were enriched in different amino acids and chemical metabolism pathways. Meanwhile,
in MoRho3-DN vs. WT, the authors detected 986 up-regulated DEGs which were enriched
in genes associated with some metabolic pathways, ABC transporters and regulators for
autophagy. They similarly detected 1215 down-regulated DEGs which were enriched
in genes associated with some selected metabolic pathways. This reveals that MoRho3
plays crucial roles in ribosome biogenesis and protein secretions. In another study, Zheng
et al. [12] used another phytopathogenic fungus, Fusarium odoratissimum, to elucidate the
function of a small GTPase FoSec4. The results also showed that FoSec4 plays a crucial role
in vegetative growth, reproduction, pathogenicity and response to environmental stress in
F. odoratissimum.

Sorting nexins (SNX) are a highly conserved and diverse family of cellular trafficking
proteins that confer a wide variety of functions, including signal transduction, membrane
deformation and cargo binding. Moreover, sorting nexins are key modulators of endosome
dynamics and autophagic functions [13]. In this Special Issue, Yu et al. [14] generated
Chsnx4 and Chsnx41 mutants and elucidated their functions in Cochliobolus heterostrophus.
The results demonstrated that both ChSNX4 and ChSNX41 are involved in regulating vege-
tative growth, asexual reproduction, appressorium formation, oxidative stress, adaptation
to antifungal agents and virulence of C. heterostrophus. These phenotypes are similar to those
characterized in M. oryzae and F. graminearum [15–19]. This indicates that, at the very least,
the morphological functions of SNX4 and SNX41 are similar in phytopathogenic fungi.

Members of the Glycosyltransferase 2 (GT2) family include cellulose synthase, chitin
synthase, glycosyl-transferase, mannosyltransferase, galactosyltransferase, rhamnosyl-
transferase, etc. [20]. Glycosyltransferases (GT) play crucial roles in fungal biosynthesis
pathways, including fungal cell wall synthesis, and many glycosyltransferases are unique
to these fungi [21]. In this Special Issue, Blandenet et al. [22] generated the membrane pro-
tein glycosyl-transferase BcCps1 deletion mutant in B. cinerea and elucidated the functions
of BcCps1. The results indicate that BcCps1 is essential for the mycelial growth, sexual
reproduction, stress tolerance and cell wall biosynthesis of B. cinerea. These phenotypes
are also similar to those observed in M. oryzae, F. graminearum, F. verticillioides and Zy-
moseptoria tritici [23–25], indicating that the morphological functions of Cps1 are similar in
phytopathogenic fungi.
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The regulator family of protein, zinc binuclear cluster proteins (Zn(II)2Cys6), are
unique to fungi. Zn(II)2Cys6 play crucial roles in fungal development, carbon and nitrogen
utilizations, secondary metabolites biosynthesis, stress response, virulence, chromatin
remodeling and so on. In this Special Issue, Bansal et al. [26] used the Zn(II)2Cys6 coding
sequences from nine ascomycetes phytopathogenic fungal species and yeast to analyze
their composition and codon usage bias patterns. The nine fungal species were divided
into two major groups based on their zinc binuclear cluster coding sequences, and the phy-
topathogenic fungal species in cluster-1 (B. maydis, B. oryzae, Alternaria alternate, F. gramin-
earum and Aspergillus flavus) showed a lower number of GC-rich high-frequency codons
than the species in cluster-2 (Gaeumannomyces tritici, P. oryzae, Colletotrichum graminicola
and Verticillium dahliae), while C. cerevisiae tends to be AT-rich. The presence of Zn(II)2Cys6
GC-rich codons could facilitate the invasion process. The results also showed that specific
codons and sequences can modulate the interaction between a host and pathogen through
genome editing functional genomics tools.

In plant pathology, unveiling the mechanisms of host–pathogen interactions is of
paramount importance. From both sides, many genes are involved in the process. In this
Special Issue, Wang et al. [27] obtained 229 isolates of Blumeria graminis (Bgh) and analyzed
their virulence and genetic traits. Isolates form Yunnan showed the highest diversity in
virulence complexity and genetic diversity. The results demonstrated that inter-group
genetic variation was 54.68%, while inter- and intra-group genetic variation were 21.4% and
23.9%, respectively. The results indicated that the Bgh population in Tibet has undergone
expansion recently, resulting in increased virulence on wheat and a loss of genetic diversity.
These results are similar to the virulence and genetic diversity of B. graminis in Southeastern
and Southwestern China [28].
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