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Abstract: The ear- to shell-shaped fruiting bodies of the genus Auricularia are widely used as food and
in traditional medicinal remedies. This study was primarily focused on the composition, properties
and potential use of the gel-forming extract from Auricularia heimuer. The dried extract contained
50% soluble homo- and heteropolysaccharides, which were mainly composed of mannose and
glucose, acetyl residues, glucuronic acid and a small amount of xylose, galactose, glucosamine,
fucose, arabinose and rhamnose. The minerals observed in the extract included approximately 70%
potassium followed by calcium. Among the fatty and amino acids, 60% unsaturated fatty acids and
35% essential amino acids could be calculated. At both acidic (pH 4) and alkaline (pH 10) conditions,
the thickness of the 5 mg/mL extract did not change in a temperature range from −24 ◦C to room
temperature, but decreased statistically significantly after storage at elevated temperature. At neutral
pH, the studied extract demonstrated good thermal and storage stability, as well as a moisture
retention capacity comparable to the high molecular weight sodium hyaluronate, a well-known
moisturizer. Hydrocolloids that can be sustainably produced from Auricularia fruiting bodies offer
great application potential in the food and cosmetic industries.

Keywords: Auricularia heimuer; extract; hydrocolloids; polysaccharides; composition; stability;
moisture retention; sustainable production

1. Introduction

The genus Auricularia producing the peculiar ear- to shell-shaped jelly and slightly
crunchy fruiting bodies is well known as a source of tasty food and pharmacologically active
compounds. A large number of publications, as summarized in two recent reviews, ref. [1,2]
show the anticancerogenic, antimicrobial, anti-inflammatory, antioxidant, anticoagulant,
hypoglycemic and many other effects of Auricularia spp. The fungus has a history of more
than 2000 years in China [3]. In 2018–2019, it was estimated as the second most cultivated
mushroom worldwide, with 21% of the global mushroom production [4].

Like other jelly fungi, Auricularia fruiting bodies contain a high level of polysac-
charides. They can be divided into homo- and heteropolymers. The homopolysaccha-
rides have mostly a β-(1→3)-linked D-glucopyranosyl backbone with (1→6)-linked β-D-
glucopyranosyl single groups or chains [5]. This type of β-glucans is the most abundant
in edible and medicinal mushrooms as, inter alia, water-insoluble cell wall structural
compounds. Interestingly, Auricularia neutral polysaccharides exist as single stiff comb-
branched chains in water, whereas other soluble glucans (scleroglucan, schizophyllan, and
lentinan) adopt a triple-helical conformation [5].
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The heteropolysaccharides (often called (1→3)-α-D-glucuronoxylomannans or acidic
polysaccharides) have (1→3)-linked α-D-mannopyranosyl (sometimes (1→4)-linked β-D-
glucopyranosyl) backbones with the branches of D-glucopyranosyluronic acid, D-mannopy-
ranose, D-glucopyranose, D-xylopyranose, D-galactopyranose residues, and O-acetyl
groups [1,6,7]. Recently, chitosan with a high degree of deacetylation was also extracted
from Auricularia [8]. Particular features of the Auricularia-soluble polysaccharides are their
thermal stability and gel-forming properties in water. Because of the excellent swelling
and water storage capacities [6], some extracts from A. auricula-judae and A. polytricha are
offered as humectants, skin conditioning and skin protecting cosmetic ingredients [9].

Generally, hydrocolloids, which dissolve in water as colloids and show a high capacity
for gel formation, have been used as gelling agents, thickeners and stabilizers in the food
and cosmetics industry for decades. Industry demand for new hydrocolloids from natural
sources is very high. Factors to be considered include but are not limited to manufacturing
simplicity, scalability, costs, and economic use of the product.

The type and activity of the isolated compounds strongly depend on the species or
strains and extraction process [10]. The spectrum of bioactivity of the Auricularia extracts is
broad by the crude extracts and narrowed down after fractionation. As published in Elkha-
teeb et al. [11], the nonpolar n-hexane extract from A. auricula-judae was the most potent
in cytotoxicity against the colon cancer HCT116 cell line, and the polar extracts showed
antioxidant and antidiabetic activities. Another study of different fractions extracted from
A. auricula-judae showed that, in contrast to the crude or neutral polysaccharides, the acidic
polysaccharides had no impact on genetically diabetic KK-AY mice [12].

In the present work, the sustainably produced gel-forming crude extract from Auricu-
laria heimuer fruiting bodies was tested for its composition, water retention capacity and
storage stability at different concentrations, temperatures and pH values.

2. Materials and Methods
2.1. Extract Preparation and Deacetylation

Dried fruiting bodies of the mushroom were obtained on the market and identified
by sequencing the nuclear ribosomal internal transcribed spacer region as A. heimuer [13].
This species is especially widespread in China and was incorrectly identified as A. auricula
and A. auricula-judae for a very long time [14].

Gel-forming crude Auricularia extract was obtained by a patented method that in-
cluded milling of the mushrooms and alcohol/water extraction followed by centrifugation
and lyophilization using a VaCo freeze dryer (Zirbus Technology GmbH, Bad Grund, Ger-
many) [15]. The yield of the dried extract did not exceed 10%. For analytical purposes, the
crude extract was treated with aqueous ammonia at 37 ◦C to remove O-acetyl groups [16].

Different concentrations of the crude extract (1–5 mg/mL) were prepared by dissolving
the lyophilized extract in sterile water under stirring (IKA Werke GmbH & Co. KG,
Staufen im Breisgau, Germany) for 10 min followed by incubation in a water bath (P-D
Industriegesellschaft mbH) at 100 ◦C for 5 min.

2.2. FTIR and NMR Measurements

FTIR spectra were measured on a Nicolet 6700 FTIR spectrometer in KBr pellets. The
wavenumber range was 400–4000 cm−1 with a resolution of 2.0 cm−1 and 64 scans. The
spectra were recorded, smoothed and baseline corrected using Omnic 8.0 software (Thermo
Fisher Scientific, Waltham, MA, USA). Then, the FTIR spectra were exported in ASCII
format to Origin 6.0 software (OriginLab Corporation, Northampton, MA, USA) for the
creation of graphical output.

Proton NMR and 13C APT NMR spectra of the crude and deacetylated extracts were
recorded on a Bruker Avance III HD 600 MHz (Bruker, Billerica, MA, USA) in D2O and
D2O/NaOD solutions at 20 ◦C. Correlation 1H, 1H COSY, 1H, 13C HMQC and 1H, 13C
HMBC NMR experiments were used for signal assignment. The 1D and 2D NMR spec-
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tra were processed using MestReNova 10.0 software (Mestrelab Research, Santiago de
Compostela, Spain).

2.3. Determination of Total Carbohydrates and Glucans

The total carbohydrate content was determined spectrophotometrically using the
anthrone–sulfuric acid assay [17] with some modifications. An anthrone solution was
prepared with concentrated sulfuric acid (2 mg/mL). A 50 µL sample was mixed with 2 mL
of the anthrone solution and incubated at 95 ◦C for 10 min. All samples were measured at
620 nm using an Eppendorf BioSpectrometer (Eppendorf, Wesseling, Germany) against a
blank consisting of anthrone solution and distilled water. Glucose was used for calibration.

Total glucans, α- and β-glucans were determined using an enzyme-based assay devel-
oped for mushrooms and yeasts (Megazyme International Ireland Ltd., Wicklow, Irland),
according to the manufacturer’s instructions [18]. To determine the total glucans, the
samples (90 mg) were mixed with 2 mL of ice-cold 12 M sulfuric acid and incubated in an
ice-water bath for 2 h. After 10 mL of distilled water was added, the samples were incu-
bated in a boiling water bath for 2 h. After a neutralization step with 6 mL of 8 M sodium
hydroxide, the samples were adjusted to 100 mL with sodium acetate buffer (200 mM,
pH 4.5). Then, 0.1 mL aliquots were incubated with exo-1.3-β-glucanase (20 U/mL) and
β-glucosidase (4 U/mL) at 40 ◦C for 60 min. Three milliliters of glucose oxidase/peroxidase
(GOPOD) were added to each tube and incubated at 40 ◦C for 20 min.

To determine the α-glucan content, samples (100 mg) were stirred with 2 mL of
1.7 M sodium hydroxide on ice for 20 min. After adding 8 mL of sodium acetate buffer
(1.2 M, pH 3.8) and 0.2 mL of invertase-amyloglucosidase mix (1630 U/mL and 500 U/mL),
the samples were incubated in a water bath at 40 ◦C for 30 min. Then 0.1 mL aliquots
were mixed with 0.1 mL of sodium acetate buffer (200 mM, pH 4.5) and 3 mL of GOPOD
and incubated at 40 ◦C for 20 min. A yeast standard and an internal mushroom powder
standard were used for the control. All samples were measured at 510 nm using an
Eppendorf BioSpectrometer against a reagent blank. The β-glucan content was determined
by subtracting the α-glucans from the total glucans.

2.4. Carbohydrate Profile

Acid hydrolysis with sulfuric acid, according to Sluiter et al. [19], followed by high-
performance anion exchange chromatography coupled with pulsed amperometric de-
tection (HPAE-PAD) was used to estimate glucose, mannose, glucuronic acid, xylose,
galactose, rhamnose and arabinose. In short, a Dionex ICS-5000 ion chromatography
system (Thermo Fisher Scientific, Waltham, MA) equipped with a CarboPac-PA20 guard
column (3 × 30 mm) and a CarboPac-PA20 analytical column (3 × 150 mm) was used. An
integrated pulsed amperometric detection (IPAD) with a gold working electrode and an
Ag/AgCl reference electrode was applied. A standard carbohydrate quadruple potential
waveform was used. The gold electrode was regularly maintained. Integration was per-
formed using a Dionex Chromeleon 7.2 SR5 chromatography data system (ThermoFisher
Scientific, Waltham, MA, USA). Elution was carried out with sodium hydroxide at a flow
rate of 0.6 mL/min. The analyte concentration was calculated using a calibration curve.

Additionally, neutral polysaccharides were analyzed after hydrolysis in 72% H2SO4
as alditol acetates using gas chromatography coupled with flame ionization (GC-FID). In
short, a Shimadzu GC-2010 (Shimadzu, Kyoto, Japan) equipped with a 30 m capillary
column DB-225 with an internal diameter of 0.25 mm and a film thickness of 0.15 µm
was used. The injector and detector temperatures were 220 ◦C and 230 ◦C, respectively.
The oven temperature was kept at 200 ◦C for 1 min, then increased to 220 ◦C at a rate of
40 ◦C min−1 and maintained constant for 7 min. Afterwards, the temperature was elevated
to 230 ◦C at a rate of 20 ◦C min−1 and maintained for 1 min, with a total run time of 9 min.

The amount of glucosamine was estimated after hydrolysis with 6 N hydrochloric
acid for 7 h at 100 ◦C according to Ekblad and Näsholm [20], followed by HPAE-PAD as
described above.
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Acid hydrolysis with sulfuric acid followed by high-performance liquid chromatog-
raphy with refractive index detection (HPLC-RI) was used to estimate the amount of the
acetyl groups. Briefly, the Series 200 high-performance liquid chromatography system with
refractive index detector (PerkinElmer Life and Analytical Sciences, CT, USA), equipped
with Phenomenex ® Rezex™ ROA-Organic Acid H + (8%), column (300 × 7.8 mm) and
TotalChrom 6.3.1 software (PerkinElmer Life and Analytical Sciences, CT, USA) was used.
Elution was carried out with 5 mN sulfuric acid at a flow rate of 0.6 mL/min and column
temperature of 65 ◦C. The analyte concentrations were calculated using an internal standard
calibration method.

2.5. Lipid Fraction

Crude fat was determined as the sum of ethanol-extractable material, such as waxes,
resins, and lipids, according to Sluiter et al. (procedure NREL/TP-510-42619) [21]. Sam-
ples were extracted with 95% ethanol using a Soxhlet extractor for 16 h. The extract
was evaporated to dryness in a weighed flask using a vacuum evaporator at 80 ◦C and
measured gravimetrically.

The fatty acid profile was measured using gas chromatography, according to Ger-
man Society of Fats Science procedure DGF C-VI 10a (00) + 11f (08) after extraction with
petroleum ether [22]. In brief, an Agilent DB-WAX column (60 m × 0.32 mm; film thickness:
0.5 µm; Agilent Technologies, Santa Clara, CA, USA) was used. The inner coating of
this column consists of highly polar polyethylene glycol. Hydrogen was the carrier gas
(0.95 mL min−1). The oven temperature was increased from 100 to 190 ◦C at a rate of
5 ◦C min−1 and kept for 14 min. Afterwards, the temperature was elevated to 250 ◦C at
a rate of 5 ◦C min−1 and maintained constant for another 14 min. The flame ionization
detector was operated at 260 ◦C. The samples (1 µL) were injected in the split mode (50:1).
The analytical standards were obtained from Merck.

2.6. Protein Content

The proteinogenic amino acids (AAs) were measured after hydrolysis using high-
pressure liquid chromatography (HPLC) with a fluorescence detector, according to the
method of Algermissen et al. [23]. Briefly, hydrolysis of the samples was performed in 6 M
hydrochloric acid at 110 ◦C for 18 h. For tryptophan analysis, hydrolysis was performed
with lithium hydroxide (110 ◦C, 24 h). For methionine and cysteine analysis, the samples
were pretreated with a mixture of formic acid and hydrogen peroxide (4 ◦C, 16 h) followed
by hydrolysis with 6 M hydrochloric acid. After hydrolysis of the samples, the acid was
removed using vacuum rotation evaporation. The residues were re-dissolved with water.
Before HPLC, the AAs aspartic acid, glutamic acid, serine, histidine, glycine, threonine,
arginine, alanine, tyrosine, valine, phenylalanine, isoleucine, leucine, lysine, methionine
and cysteine were derivatized with phthalaldehyde; proline and hydroxyproline were
derivatized with 4-chloro-7-nitrobenzofurazan. Tryptophan was directly measured using
its own fluorescence. HPLC was performed using an Agilent system with a fluorescence
detector, an RP-C18-column and a gradient method (methanol/acetate buffer). Elution was
carried out at a flow rate of 0.5 mL/min at 37 ◦C for 45 or 10 min (for the samples deriva-
tized with phthalaldehyde or 4-chloro-7-nitrobenzofurazan, respectively). L-Homoserine
(4.44 ng) was used as an internal standard.

Proteins were recorded as a sum of the proteinogenic AAs after HPLC measurement.
Additionally, the crude proteins were calculated using total nitrogen measured using the
method of Kjeldahl [24]. The conversion factor of 4.16 was used, as recommended for fungi
containing nonprotein nitrogen [25].

2.7. Ash Content and Minerals

The ash content was detected gravimetrically after incineration at 550 ◦C according to
Sluiter et al. (NREL/TP-510-42622) [26], as well as using a Phoenix Black muffle furnace
(CEM GmbH, Kamp-Lintfort, Germany). The sodium, potassium, calcium, magnesium,
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copper, iron and zinc contents were measured with atomic absorption spectrometry, ac-
cording to the German Institute for Standardization standard (DIN EN 1134:1994-12) after
pressure digestion (DIN EN 13805:2014) [27,28].

2.8. Relative Density and Flow Rate Measurements

The relative density, also called specific gravity (SG), is the measured density of a
sample divided by the density of water at a certain temperature. In our experiments, the
sample density at 20 ◦C was divided by the water density at the same temperature (SG20/20)
using a digital density meter based on the oscillating U-tube principle (Anton Paar GmbH,
Graz, Austria).

The consistency of the samples was compared using the custom-made analog of the
Bostwick consistometer. A Bostwick consistometer is a simple instrument to determine the
flow rate of different liquids using the distance of the fluid traveled along an inclined ruled
track in the unit of time [29,30]. Consistency or thickness, which is a response of the liquid
to gravity, should not be confused with viscosity, which is a measure of the resistance to
flow. Nevertheless, depending on the type of samples, a strong to middle correlation of
these parameters can be observed [31].

Two hundred microliters of each sample were applied to the starting point. A digital
timer was started, and the sample was then free to flow through the 250 mm trough inclined
at 45 ◦C. A reading of the distance (in mm) that each sample flowed was taken after 5 s.
Measurements were made at room temperature (24 ◦C) and carried out in triplicate.

2.9. Moisture Retention Capacity

The moisture retention capacity was measured using a modified version of the method
proposed by Li et al. [32]. Briefly, 10 mg of 2 mg/mL solution were added to a 9-cm2 filter
paper 401 (VWR, Langenfeld, Germany) at 22 ◦C and 40% relative humidity. The weight
change of the filter paper was recorded every minute to estimate the kinetic of water loss
over time.

2.10. Statistical Analysis

Data represent the mean ± SD. Statistical analysis was performed with the GraphPad
Prism 9.0 software package (La Jolla, CA, USA). Significant differences between the samples
were determined using two-way analysis of variance (ANOVA). Significant values were
defined as p < 0.05.

3. Results and Discussion
3.1. Composition

The proximate composition of the freeze-dried A. heimuer extract included approx-
imately 50% soluble carbohydrates measured using the anthrone method, 17.7% crude
fat, 7.4% proteins calculated using total nitrogen measured using the method of Kjeldahl
with the conversion factor of 4.16 as recommended for fungi [25], and 7.4% ash (Figure 1).
According to the published data, the composition of Auricularia strongly depends on the
species, but carbohydrates are always the major compound [1,2].

The carbohydrate composition of the A. heimuer extract, calculated as a percentage to
the total carbohydrates, showed a majority of the mannose and glucose (Figure 2). Essential
amounts of the acetyl groups and glucuronic acid (16.6 and 8.9%, respectively) were also de-
tected. Approximately 10% was composed of the sum of the xylose, galactose, fucose, arabi-
nose and rhamnose. All measured monomers are characteristics for the acidic heteropolysac-
charides with mannopyranosyl backbones and branches of D-glucopyranosyluronic acid,
D-mannopyranose, D-glucopyranose, D-xylopyranose, D-galactopyranose residues and
O-acetyl groups, as well as for some other neutral sugars reported in Auricularia mush-
rooms earlier [33–36]. The acidic heteropolysaccharides are claimed to be responsible for
the gel-forming properties of the Auricularia [1,6,37], as well as other jelly fungi, such as
different Tremella species [5] or encapsulated yeast Cryptococcus [38]. Some amount of the
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soluble chitin/chitosan is also expected because of the availability of the glucosamine
and acetyl groups. A high amount of the glucose monomers indicates the presence of
homopolysaccharides (Figure 2). Indeed, approximately 20% of β-glucan was measured
using an enzyme-based assay (Table 1). De facto, the β-glucan amount could be a bit lower
due to part of the glucose belonging to heteropolymers. β-Glucans are typical to fungi and
possess, inter alia, immunomodulatory, antibacterial and antitumor properties [39]. Usu-
ally presenting in a water-insoluble form, β-glucans are soluble in the studied Auricularia
extract. However, the treatment with NH4OH led to the product being insoluble in hot
water but soluble in aqueous alkaline solutions (see NMR analysis).
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Table 1. Relative content of total glucans, α-glucans, and β-glucans in A. heimuer extract (n = 7).

Constituent Mean ± SD (g/100 g DW)

Total glucans 18.77 ± 1.47
α-Glucans 0.53 ± 0.13
β-Glucans 18.86 ± 0.71
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Proteins are the second most valuable but generally understudied compounds of
Auricularia extract with their tolerance to acids, alkali, heat, freezing and dehydration [40].
In total, 8.2% of 18 proteinogenic amino acids were measured with HPLC in our experiments
(Table 2).

Table 2. Amino acid profile of A. heimuer extract (n = 3).

Amino Acids Mean, g/kg SD % of Total Amount

Alanine 6.6 0.7 8
Arginine ** 3.2 0.3 4

Aspartic acid 9.0 0.9 11
Cysteine ** 1.4 0.1 2

Glutamic acid 8.8 0.9 11
Glycine ** 3.9 0.4 5
Histidine * 2.4 0.2 3
Isoleucine * 2.6 0.3 3
Leucine * 5.4 0.5 7
Lysine * 2.5 0.2 3

Methionine * 0.9 0.1 1
Phenylalanine * 4.2 0.4 5

Proline ** 3.6 0.4 4
Serine 5.5 0.5 7

Threonine * 6.2 0.6 8
Tryptophan * 1.1 0.1 1

Tyrosine ** 10.0 1.0 12
Valine * 4.3 0.4 5

Total amount (18 AAs) 81.6 100
Essential AAs * 29.6 36

Essential * + semi-essential
** AAs 51.7 63

Top 5 AAs 40.6 50
* essential, ** semi-essential.

Along the spectrum, more than 35% of essential amino acids and more than 60% of
essential and conditionally essential amino acids could be calculated. The top five, or one
half, of the amino acids comprised tyrosine, aspartic, glutamic, alanine and threonine. Some
of the proteins and peptides isolated from Auricularia appear to have medical properties
similar to polysaccharides, such as immunomodulation [40,41], or broad antimicrobial
activity towards Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-
negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae), yeast
(Candida albicans) and dermatophytic pathogens (Trichophyton schoenleinii, Trichophyton
mentagrophytes, Microsporum gypseum, and Microsporum ferugineum) [42]. The distinction of
the effective component (protein or carbohydrates) has not yet been completely clarified.
For example, the Tris and hot water extracts of the A. auricular-judae mushroom, studied by
Oli et al. [42], contained 23.75% proteins and approximately 40% carbohydrates. Because
of the already known antimicrobial activity of the carbohydrates [43,44], the effects of the
extracts could refer to both compounds.

The crude fat proportion was 17.7% of the dried extract (Figure 1), or approximately
1.8% if calculated to the mushroom dry weight, and includes ethanol-extractable lipids,
such as fatty acids, sterols, phospholipids, mono-, di- and triglycerides. Around one-tenth
of the crude fat (1.6% of the extract DW) was composed of fatty acids, including more than
60% of unsaturated ones (Table 3). Approximately 90% of top four were represented by
linoleic (C 18:2), oleic (C 18:1), palmitic (C 16:0) and stearic (C 18:0) fatty acids. These data
are in accordance with the published average fat content of the Auricularia spp. that ranges
from 0.5 to 4.5% with prevalence of linoleic and other unsaturated fatty acids [1,2].
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Table 3. Fatty acid profile of A. heimuer extract (n = 3).

Fatty Acid Mean ± SD (% of Total Fatty Acid)

Capric acid (C 10:0) 0.06 ± 0.01
Lauric acid (C 12:0) 0.1 ± 0.01

Myristic acid (C 14:0) 0.57 ± 0.06
Pentadecanoic acid (C 15:0) 1.47 ± 0.15

Palmitic acid (C 16:0) 21.76 ± 2.15
Palmitoleic acid (C 16:1) 0.48 ± 0.05
Margaric acid (C 17:0) 0.41 ± 0.04

Stearic acid (C 18:0) 10.49 ± 1.04
Oleic acid (C 18:1) 23.55 ± 2.33

Linoleic acid (C 18:2) 34.05 ± 3.37
gamma-linolenic acid (C 18:3) 0.21 ± 0.02
alpha-linolenic acid (C 18:3) 1.09 ± 0.11

Arachidic acid (C 20:0) 1.18 ± 0.12
Eicosenoic acid (C 20:1) 0.23 ± 0.02

Eicosadienic acid (C 20:2) 0.15 ± 0.01
Eicosatrienic acid (C 20:3) 0.32 ± 0.03

Erucic acid (C 22:1) 2.97 ± 0.29
Docosadienic acid (C 22:2) 0.08 ± 0.01

Lignoceric acid (C 24:0) 0.84 ± 0.08

Unsaturated fatty acids 63
Top 4 90

The obtained ash content of 7.4% (Figure 1) was in the range between 1.1 and 9.4%
earlier reported for different Auricularia spp. [2]. Approximately one half of the ash amount
was composed of oxygen due to the formation of oxides during complete combustion.
The rest of the residue on ignition contained minerals. The most abundant element was
potassium (approximately 70%) followed by calcium, copper, magnesium, sodium and
traces of iron and zinc (Table 4). A similar order of minerals with a prevalence of potassium
was previously obtained [2]. A surprisingly high amount of copper in our extract could
be explained by the nature of the substrate used during mushroom growing. Usually
the amount of Cu is lower than Zn but could be increased by different supplements. For
example, Yao et al. [45] reported that corn stalks as a cultivation substitution material
increased protein, ash, copper and iron contents in A. auricula but reduced the content of
magnesium, manganese, zinc and colloidal substances.

Table 4. Mineral content of the A. heimuer extract (n = 3).

Mineral Content Mean ± SD (mg/100 g DW)

Macroelements

K 2560 ± 235
Ca 527 ± 52
Mg 203 ± 20
Na 92 ± 9

Microelements

Cu 238 ± 24
Fe 11.5 ± 1.1
Zn 3.7 ± 0.4

Total 3635
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3.2. Spectroscopic Analyses

In order to better evaluate the chemical composition, the crude and deacetylated
extracts were analyzed using FTIR and NMR spectroscopic methods. The spectra obtained
are represented in Figures 3–5.
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3.2.1. FTIR Spectra

FTIR spectra of the crude and NH4OH-treated Auricularia extracts measured in the
KBr tablets (Figure 3) showed significant differences in their composition. The strong IR
bands at 1734 and 1250 cm−1 observed for the crude extract were assigned to the C=O
and C-O-C stretching vibrations of O-acetyl groups, respectively, and two bands at 1624
and 1415 cm−1 arose from the stretching vibrations of carboxylate anions from the salts
of carbonic acids, possibly uronic acids as part of polysaccharides [46–48]. These O-acetyl
and carboxylic groups are probably originated from glucuronoxylomannan, which was
previously isolated from this mushroom [1,6,7,35], from mushroom Tremella aurantialba [49]
and yeast Cryptococcus neoformans [38,50–52]. All these bands disappeared after the treat-
ment with ammonium. By contrast, the characteristic bands of β-D-glucan at 1377, 1076
and 1041 cm−1 were pronounced in the spectrum of the crude Auricularia extract, and these
and other β-D-glucan bands at 1375, 1157, 1038 and 893 cm−1 were presented in the extract
after the NH4OH treatment [53,54]. Therefore, according to the FTIR spectra, the crude
extract contained β-D-glucans and possibly also O-acetylated glucuronoxylomannan. The
treatment with NH4OH led to O-deacetylation and removal of the heteropolysaccharides
by the washing with aqueous ethanol, while β-D-glucan was retained after this treatment.

3.2.2. NMR Spectra

Proton NMR and 13C APT NMR spectra of the crude and NH4OH-treated Auricularia
extracts are demonstrated in Figures 4 and 5; the zooms of some 2D NMR spectra (COSY,
HMQC and HMBC) are also shown in these figures. A strong proton signal at approximately
2 ppm, together with smaller ones at 1.93, 1.87 and 1.75 ppm and corresponding carbon
signals around 21 ppm indicate the O-acetylation of monosaccharide units in the crude
extract [35]. This assignment is confirmed by the HMQC signal at 2.0 ppm/21.0 ppm
and the HMBC signal at 2.0 ppm/174 ppm, indicating interactions between CH3 protons
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and CH3 and C=O carbons in O-acetyls, respectively. The proton signals at 5.00, 3.66,
3.58, 3.45 and 3.27 ppm and the carbon signals at 94.18, 73.43, 72.92, 71.83, 70.58 and
61.47 ppm were assigned to 1,3-linked α-D-mannopyranose units (A), which probably
compose the backbone of glucuronoxylomannan. Unfortunately, the low resolution of
the HMBC spectrum does not permit to assign possible O-acetylation patterns for this
carbohydrate unit. The main proton and carbon signals observed for the Auricularia
extract after the treatment with NH4OH were assigned to terminal, 1,3,6-linked and 1,3-
linked β-D-glucopyranosyl units designed as units B, C and D (Figure 5). These signal
confirmed the presence of highly branched (1→3)(1→6)-β-D-glucan having terminal β-D-
glucopyranosyls attached to the O-6 position of some 1,3-linked β-D-glucopyranoses in
the backbone. Branched β-D-glucan of the same structure has been described earlier for
Auricularia mushrooms [55].

3.3. Storage Stability

The storage stability of the samples was tested by measuring their flowability at
different concentrations (1–5 mg/mL), temperatures (−26 ◦C, 4 ◦C, RT and 40 ◦C), and pH
values of 4, 6.7 and 10.

In some tests, the high molecular weight sodium hyaluronate was used as a reference,
as its MW, which is more than 1 MDa, is comparable with polysaccharides of Auricularia, [1]
and it has a reputation as an optimal moisture retention ingredient [56,57].

3.3.1. Consistency at Neutral pH

The flow rate of the samples, measured with a custom-made analog of the Bostwick
consistometer, was changed after 2 months of storage at a neutral pH = 6.3 ± 0.3. At
the start point (Day 0), the sodium hyaluronate hydrogel was approximately 10–30 times
thicker as Auricularia at the same concentrations (Figure 6A,B, Day 0). This is not surprising,
because the dissolved hyaluronic acid could form a three-dimensional cellular structure at
concentrations less than 1 µg/mL [58], whereas other biopolymers can make pseudo-gels
only when concentrations are equal to or above 10 mg/mL [57]. To ensure that the initial
differences in the consistency of the A. heimuer and sodium hyaluronate samples were not
caused by the different densities, the relative densities of the samples were measured. As
expected, this parameter positively correlated with increases in the concentration from 1 to
5 mg/mL solution, but at the same concentration the relative densities of the Auricularia
and sodium hyaluronate samples were not distinguishable (Figure 7).
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As shown in Figure 6A, the flow rate of the A. heimuer samples decreased with the
length of time of storage at different temperatures. At lower concentrations of 1 and
2 mg/mL, the differences were statistically significant, whereas at the higher concentrations
of 3 and 5 mg/mL a decreasing tendency was observed.

On the contrary, an increasing tendency of the flowability, which means a decreasing
thickness with the length of the storage time, was observed for the 2–5 mg/mL sodium
hyaluronate solutions at all studied temperatures. At an elevated temperature of 40 ◦C, the
increase in the flowability was especially remarkable (Figure 6B).
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In this manner, the difference in the thicknesses of the Auricularia and sodium hyaluro-
nate samples dropped by three times on average with the storage time.

3.3.2. Consistency at Different pH Values

The pH-dependent stability of the 5 mg/mL A. heimuer solution after storage at differ-
ent temperatures was also studied. Decreasing the flow rate of the extract at neutral pH,
presented already in Figure 6, was observed again, but this time statistically significant
(Figure 8, pH 6.7). At both acidic (pH 4) and alkaline (pH 10) conditions, the abovemen-
tioned increase in the thickness with the length in time of storage was not registered
anymore. The flowability of the samples was not affected in the range from −24 ◦C to room
temperature, but significantly increased at 40 ◦C (Figure 8). A similar negative impact of the
extreme pH values on the viscosity of the Auricularia polysaccharide aqueous solutions was
previously published and explained by the breakdown of the hydrogen bonds of the car-
boxyl group of glucuronic acid [7,37]. Bao et al. could show that, namely, hydrogen bonds
rather than electrostatic interactions are the deciding force maintaining the Auricularia gel
network [37]. An elevated temperature is suggested as an additional factor promoting the
breakup of hydrogen bonds [59].
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3.4. Moisture Retention Capacity

The moisture retention capacity of the A. heimuer extract was as potent as that of high
molecular weight sodium hyaluronate—an optimal and broadly used humectant (Figure 9).
A water retention capacity similar to the sodium hyaluronate was measured earlier using
an aqueous extract of the white strain of A. fuscosuccinea [60].
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4. Conclusions

The particular advantage of the Auricularia gel-forming extract described here en-
compasses its possible environmentally friendly and resource-saving production with a
good option to scale-up. The extract was composed of a large share of soluble homo- and
heteropolysaccharides and included minerals, essential amino acids and unsaturated fatty
acids. The thickness of the A. heimuer hydrogel was inferior to the high molecular weight
sodium hyaluronate, but the difference decreased with the length of time of storage due to
the higher stability of the Auricularia extract, especially at elevated temperature. The gel
strength of the A. heimuer extract was diminished in acidic or alkaline solutions (pH 4 and
10). At neutral pH, the extract possessed good thermal and storage stability, as well as a
moisture retention capacity comparable to the high molecular weight sodium hyaluronate,
the well-known moisturizer. The hydrocolloids, sustainably produced from the Auricularia
fruiting bodies, offer great application potential in many areas of the food and cosmetic
industries. Their nutritional benefits and practical applications should be further explored.
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